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Abstract—In practical power systems, operators generally keep
interface flowing under the transient stability constrained with in-
terface real power flow limits (TS-IRPFL) to guarantee transient
stability of the system. Many methods of computing TS-IRPFL
have been proposed. However, in practice, the method widely
used to determine TS-IRPFL is based on selection and analysis
of typical scenarios as well as scenario matching. First, typical
scenarios are selected and analyzed to obtain accurate limits, then
the scenario to be analyzed is matched with a certain typical
scenario, whose limit is adopted as the forecast limit. In this
paper, following the steps described above, a pragmatic method to
determine TS-IRPFL is proposed. The proposed method utilizes
data-driven tools to improve the steps of scenario selection and
matching. First of all, we formulate a clear model of power system
scenario similarity. Based on the similarity model, we develop a
typical scenario selector by clustering and a scenario matcher by
nearest neighbor algorithm. The proposed method is pragmatic
because it does not change the existing procedure. Moreover, it is
much more reasonable than the traditional method. Test results
verify the validity of the method.

Index Terms—Clustering, data-driven, nearest neighbor,
power system scenario similarity, transient stability constrained
interface real power flow limit (TSC-IRPFL), typical scenario.

NOMENCLATURE

TS-IRPFL Transient Stability Constrained Interface
Real Power Flow Limit.

TS Typical Scenario.
NN Nearest Neighbor.
α, β, γ Power flow scenarios.
α, β, γ Sets of power flow scenarios.
N(α),B(α) Numerical and binary component of α.
Ni(α), Bj(α) The ith, jth element of N(α),B(α).
wN , wB Weights of N(α),B(α) in the

calculation DN and SB.
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B Bias factor in the formula of
comprehensive distance.

v◦2 Hadamard square (element-wise square)
of vector v.

DN(α, β, wN ) Numerical distance between α and β.
DB(α, β, wB) Binary distance between α and β.
D(α, β, wN ,
wB, W )

Comprehensive distance between α and
β.

α[t] The tth value in α.
L[t] The accurate TS-IRPFL for α[t].
L̂(β, α, L, wN ,
wB , B)

The TS-IRPFL of the nearest scenario to
β in α.

α[−t] α\α[t], ‘\’ stands for set difference.
σ(z): RT → RT Standard softmax function for z.
KN Amplification coefficient in the softmax

function.
RD Down-sampling factor.
C(α, r) The rth operation pattern of α.
T(α, r) Representative for C(α, r).
L̂C(α, r) Forecast TS-IRPFL of C(α, r).
TNN(β,α) Nearest representative to β in α.
LNN(β,α) Forecast TS-IRPFL of β by NN using

dataset α.
µ Reliability coefficient to leave a margin

for TS-IRPFL.
E Forecast error rate.
A Forecast accuracy.
Ē/Ā Average forecast error rate/accuracy.
ĀL/ĀH Average forecast accuracy of

underrated/overrated points.

I. INTRODUCTION

DURING the operation of a power system, the satisfaction
of multiple constraints is required to ensure that the

system is operating within its secure boundaries [1]–[5]. For
practical usage, these constraints are explicitly translated into
numerical limits. Among these limits, the transient stability
limit is one of the most determining and focused [6], [7]. In
practice, the transient stability limit is usually represented by
the real power flow limits of several critical interfaces (a set
of tie-lines) [8]. The transient stability constrained interface
real power flow limit (TS-IRPFL) is an important variable
in system operations [9]. Operators generally keep interface
flows under the limits to guarantee transient stability of the
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system. If the interface flow goes near or beyond the limit,
strategies such as generation adjustment need to be carried
out to increase the secure margin of the system [10].

TS-IRPFL varies with the power system scenario. The
determination of accurate TS-IRPFL is accomplished by time-
domain simulation [11], which brings significant computa-
tional burden and is therefore extremely time-consuming [12].
Many methods have been proposed in order to compute TS-
IRPFL faster and better. Generally, the advanced methods fall
into three categories: direct methods, methods based on fast
time-domain simulation, and data-driven methods [12], [13].
Direct methods compute the TS-IRPFL analytically without
time-domain simulation. Most of the direct methods stem from
the concept of energy function [14], which is a generalization
of equal-area criteria to multi-machine systems [15] and [16]
introduced transient stability indices based on the energy func-
tion while calculating TS-IRPFL [17] developed an analytical
method to obtain the sensitivity of the transient energy margin
to parameter changes, based on which a good estimation of
the TS-IRPFL can be calculated. Other types of methods are
based on fast time-domain simulation, which accelerates the
time-domain simulation by leveraging the trajectory sensitivity
approach [18] or numerical integral techniques [12]. Recently,
the data-driven methods boomed due to the rapid development
of data-mining algorithms and big-data techniques. Many
state-of-the-art machine learning algorithms are applied to
solve the TS-IRPFL problem, including fuzzy assessment [19],
Artificial Neural Network (ANN), Extreme Learning Machine
(ELM) [20], and Linear Regression (LR) [9]. Among these,
the most common method is the Decision Tree (DT) [21], [22],
since it is simple to build and easy to implement [23].

However, only a few of them are used in real operations.
In practice, the determination of TS-IRPFL is generally con-
ducted by a procedure (called traditional method in this paper)
consisting of two steps: selection and analysis of typical
scenarios (TS’s), and scenario matching. First, some TS’s
are selected by certain factors. These factors include load
level, proportion of thermal and hydro generations, the on/off
status of some important elements such as the AC-line and
static variable compensator (SVC). Some examples of TS’s
are the high-water period and peak-load scenario, high-water
period and valley-load scenario, low-water period and peak-
load scenario, low-water period and valley-load scenario, and
so on. The TS-IRPFL’s of these TS’s are then computed and
saved. For a scenario to be analyzed, it is matched with a
certain TS, and then the corresponding limit of the TS is
adopted as the forecast value. In practical applications, it is
common for the operators to formulate several operating rules
according to the TS’s and their TS-IRPFL’s. The TS-IRPFL
of a scenario is then determined according to the formulated
rules. An example of the rules, from a practical power system,
is shown in Table I, where CA is the on/off state of series
compensator A, LB is the active power of load B, and TC is
the TS-IRPFL for interface C.

The idea behind this procedure is easy to understand: the
TS’s and the corresponding rules can be regarded as “experi-
ences”, and the online decision is based on these experiences.
However, the obvious deficiency of this method is that the

TABLE I
AN EXAMPLE OF OPERATION RULES

Conditions Matched TS TC (MW)
CA LB (MW)
On < 125 α1 430
On 125 ∼ 175 α2 400
On > 175 α3 380
Off < 125 α4 300
Off 125 ∼ 175 α5 265
Off > 175 α6 235

selection of TS’s and the matching of scenarios are all based
on human experiences. Therefore, a more reasonable method
is preferred. Furthermore, since the procedure is manually
performed by human beings (usually a calculation report is
formulated during the procedure), it increases the burden of
the system analysts and operators.

Multiple data-driven methods have been proposed but few
have been developed following the established procedure,
which are hardly acceptable in realistic operations. It is the
drawbacks of these methods which directly motivate this paper.

In this paper, we propose a pragmatic method to determine
TS-IRPFL, which does not change the two main steps of the
traditional method but implements them in a data-driven and
more reasonable manner. The method is based on the premise
of a large number of scenarios whose accurate limits have
already been computed.

The contributions of this paper can be summarized in the
following three aspects:

1) We establish a fine distance model to quantify the
similarity of power flow scenarios, which is the basis of the
next step.

2) We utilize clustering and Nearest Neighbor (NN) to build
a TS selector and a scenario matcher, which realizes the two
steps of the traditional method. This is enlightened by the
consistencies of the purposes of TS selection and clustering
and that of scenario matching and NN [24].

3) We test our method using the data from a real system.
The test results validate its effectiveness and thus demonstrate
its practicality.

The proposed method combines the traditional method with
data-driven approaches. It is pragmatic and can be easily
accepted by the operators because it does not change the
process of the traditional method (namely selecting TS’s and
scenario matching). Furthermore, it is reasonable, intelligent,
and suitable for automatic implementation.

The rest of this paper is organized as follows: Section II
models the similarity of power flow, defines the comprehensive
distance based on the numerical and binary distances, and
further elaborates the training procedure. Section III builds a
clustering-based TS selector and a NN-based scenario matcher
to achieve the targets of TS selecting and scenario matching.
Section IV tests the proposed method on a real system and
gives the numerical results. Finally, Section V concludes the
whole paper.
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II. FORMULATION OF POWER SYSTEM SCENARIO
SIMILARITY

This section proposes a similarity index to describe the dis-
tance between two scenarios. A synthesized scenario distance
model is developed considering both the numerical and binary
features of power flow. Weighted vectors are then introduced to
reflect the importance of different impact factors for similarity
measurement.

The distance model lays the theoretical foundation of this
research. It quantitatively evaluates how typical a scenario is,
which will be further used for TS selection, and how similar
two scenarios are, which will be further used in scenario
matching.

The inputs of the model are two scenarios, the output is the
distance, and the weights are the parameters to be trained to
yield a satisfactory similarity measurement.

A. Formulation of the Model

The distance model is designed under the following princi-
ples:

• The definition of the distance must interface with the
TS-IRPFL, i.e., “the closer the TS-IRPFL’s of the two
scenarios, the smaller their distance.”

• The definition of distance is preferable to embody the
important factors influencing the TS-IRPFL.

For a given power system, its scenario is primarily described
by two types of data. The first is numerical data, which consists
of loads, generations, line flows, and node voltages. The
second is binary data describing the on/off states of elements.
By exploring several models of distance in the domain of
distance metric learning, the weighted Euclidean distance [25]
and the weighted Jaccard distance [26] are chosen to evaluate
the scenario distance in this study.

For a power system scenario α, we use two column vectors
to describe it: N(α) and B(α). N(α) represents the numeri-
cal part of α and B(α) represents the binary part. Let Ni(α)
and Bj(α) be the ith and jth element of N(α) and B(α)
(I and J elements in total), respectively. The numerical part
describes the quantity of electrical measurements, while the
binary part describes the on/off states of the critical elements
such as AC-lines and transformers in the power system. The
elements in the numerical part take the values of the numerical
type, while those in the binary part take 0-1. Aiming at the
two components, we introduce two indices that measure the
distance between two scenarios.

1) Distance Measurement for the Numerical Part
The weighted Euclidean distance is employed to measure

the difference between the numerical parts of two scenarios:

DN

(
α, β,wN

)
=

[
I∑
i=1

wNi · |Ni(α)−Ni(β)|2
] 1

2

=
[(
wN

)T · |N(α)−N(β)|◦2
] 1

2

(1)

where wN is the weight column vector for the numerical part,
and the symbol “◦2” stands for the Hadamard square (element-
wise square). Here wN is used to tailor the conventional
Euclidean distance to reflect the importance of each element.
Its determination method is elaborated in Part B of this section.

The numerical features are described in Table II.
To obtain values distributed in approximate ranges, we

substitute the normalized value for Ni(α):

N̄i(α) =
Ni(α)−Nbase

i

∆Nmax
i

(2)

In this paper, percentiles are exploited to avoid the influ-
ences of outliers:

Nbase
i = P (Ni, 50)

∆Nmax
i = P (Ni, (1−a/2)× 100)−P (Ni, (a/2)× 100)

(3)

where Ni is the measured vector of Ni(α)’s, P (Ni, k) stands
for the kth percentile of Ni, and (1 − a) is the confidence
level. For notational ease, we do not distinguish Ni(α) and
N̄i(α) in this paper.
2) Distance Measurement for the Binary Part

For the binary part of the scenarios, the Jaccard distance is
adopted as a distance measurement. Similarly, we introduce
vector wB to embody the importance of each binary element.
Hence transform the standard Jaccard distance to the weighted
form:

DB

(
α, β,wB

)
= 1−

(
wB
)T
fAND(α, β)

(wB)
T
fOR(α, β)

(4)

where fAND(α, β) and fOR(α, β) respectively represent the
element-wise “and” and “or” logical operations for vectors,
and are mathematically defined as:

fAND(α, β) = B(α) AND B(β) = B(α) ◦B(β)

fOR(α, β) = B(α) OR B(β)

= [1−B(α)] ◦ [1−B(β)] (5)

where the symbol “◦” stands for the Hadamard product
(element-wise product).

TABLE II
NUMERICAL FEATURES

Element Type Variable Description
Bus V r

a , V
i
b Real and image part of the voltage of bus a

AC-line (including transformer) Pab, Qab Active and reactive power injection from bus a through AC-line Lab

Qca Capacitive charging power of Lab at the side of bus a
DC-line Pab Active power injection from bus a through DC-line Lab

Generator P g
a , Q

g
a Active and reactive power generation of the generator connected to bus a

Load P l
a , Q

l
a Active and reactive power consumption of the load connected to bus a



134 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 6, NO. 1, MARCH 2020

Without the weights, the Jaccard distance depicts the relative
size of the difference of the two finite sets α and β. Introducing
the weights emphasizes the importance of the on/off states of
some critical elements.

The parameters wN and wB can be leveraged to adjust the
similarity indices to embody the importance of the elements
and cater to the principles proposed in the first place. The
closer the TS-IRPFL’s of the two scenarios are, the smaller
their distance should be.
DN and DB are specifically referred to as numerical

distance and binary distance in this article. The smaller the
values of DN and DB are, the more similar the two scenarios
will be in terms of TS-IRPFL (stability).
3) The Synthesized Distance

The numerical and binary distances are synthesized into a
comprehensive distance D:

D
(
α, β,wN ,wB ,W

)
= DN

(
α, β,wN

)
+B ×DB

(
α, β,wB

)
(6)

where B is the bias coefficient, which weighs the importance
of DN and DB.

The synthesized distance makes it possible to compare
between two scenarios and to quantify their differences. The
coefficients wN , wB , and B determine the fitness of the
model.

B. Determination of Weight Coefficients

Suppose we have several scenarios already labeled by the
TS-IRPFL:

α = {α[t] |t ∈ T },L = {L[t] |t ∈ T },T = {1, 2, . . . , T}
(7)

where L is the set of corresponding labels (TS-IRPFL’s).
For an unlabeled scenario β, if its TS-IRPFL is determined

by its nearest neighbor in α, with the assumption that the
coefficients in the distance model are already determined, then
the determined (forecast) value of TS-IRPFL for β should be:

L̂
(
β,α,L,wN ,wB , B

)
= L

[
nnst

(
β,α,wN ,wB , B

)]
(8)

where nnst is the index of the nearest scenario to β in α:

nnst
(
β,α,wN ,wB , B

)
= arg min

t∈T
D
(
αt, β,w

N ,wB ,W
)
(9)

The coefficients in the distance model are determined by the
following training process. For an arbitrary scenario α[t] in α,
we use scenarios with α[t] excluded (denoted by α[−t] =
α\α[t]) to forecast the TS-IRPFL of α[t]:

L̂t
(
α,L,wN ,wB , B

)
= L̂

(
α[t],α [−t] ,L,wN ,wB , B

)
(10)

The forecast value should be as close as possible to the
actual value L[t], which is already known. Then, the objective
of the training process is to minimize the overall squared error,
with the sum and boundary constraints on the weights:

min
wN ,wB ,B

∑
t∈T

{L̂t
(
α,L,wN ,wB , B

)
− L[t]}2

s.t.

I∑
i=1

wNi = 1,

I∑
i=1

wBi = 1

wN ≥ 0,wB ≥ 0, B ≥ 0 (11)

The optimum measurement of the system scenario distance
is determined by optimizing the decision variables wN , wB ,
and B.

The gradient descent algorithm is used to train the model
and obtain the optimal solutions. To make sure that the
optimization is led by a descent progress, two improvements
are made.

Since the “hardmin” (i.e., argmin) function is not differ-
entiable, so we replace the argmin function with a decay
version of softmax [27], to ensure a good performance of
the gradient descent algorithm. Specifically, we change the
forecast function in (8) into:

L̂t
(
β,α,L,wN ,wB , B

)
=
[
σ
(
−KND

(
α, β,wN ,wB , B

))]T
Lv (12)

where:

D
(
α, β,wN ,wB , B

)
=

D
(
α[1], β,wN ,wB , B

)
...

D
(
α[T ], β,wN ,wB , B

)
 , (13)

Lv =
[
L[1] . . . L[T ]

]T
(14)

and σ : RT → RT is the standard softmax function, defined
by the following formula:

σ (z)k =
ezk∑K
κ=1 e

zκ
, k ∈ {1, . . . ,K}, z = [z1, . . . , zK ]

T

(15)

With this transformation we can circumvent the discon-
tinuity of the original objective function. The amplification
coefficient KN creates a more concentrated output vector
around the positions of the minimum input value.

When the size of α is huge, the calculation of (10) will
impose great computational burden on the training process.
Therefore, a down-sampling technique is adopted as the sec-
ond improvement. We stochastically pick TS samples from
α[−t] to formulate its subset αS [−t], and then use this subset
as a substitute for α[−t]. The ratio RD = TS/(T−1) is called
the down-sampling factor [28].

The values of KN and RD influence the trade-off between
model accuracy and computational efficiency. The detailed
procedure of parameter adjustment is shown in Section IV.

This problem is solved by tensorflow, an efficient software
for machine-learning tasks [29].

III. DETERMINING TS-IRPFL VIA POWER SYSTEM
SCENARIO SIMILARITY

The data-driven counterparts of selecting TS’s and matching
rules are elaborated in this section. Based on the distance
model defined in Section II, we exert clustering and NN to
build the TS selector and scenario matcher.
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A. Clustering-directed TS Selector

Clustering is a classical and widely used data-mining model
used in various topics in power system researches, and is
generally employed for unsupervised learning, which usually
does not have a known index as an objective to follow [30],
[31]. To take advantage of the information of the scenarios
with known TS-IRPFL, which constructs a labeled dataset,
this part designs a supervised mechanism for clustering.

Clustering divides the dataset into several groups, which
reflect the typical features of each group. The aim of clustering
is to maximize the similarity of the data within each group
and dissimilarity between the groups. Power flow fluctuates
with certain factors such as date, hour, weather, etc. [32].
Investigations and researches show apparent patterns of power
flow scenarios [33]. In fact, we can deem the selection of
TS’s in traditional TSA as a simple clustering through manual
statistical analysis. Moreover, the methods and results for
power flow clustering can be different according to the topics
of analysis.

We conduct the clustering using the distance given by (6),
and the result is called an operation pattern:

{C(α, r)}, r ∈ R, R = {1, 2, . . . , R} (16)

where α is the dataset of power flow scenarios, and C(α, r) is
the rth operation pattern. We use C(α, r) to denote the center
of the pattern.

The TS-IRPFL (label) of the cluster is set as the median of
the TS-IRPFL’s of its members, and the scenario correspon-
dent to this value is designated as the representative of the
cluster:

τ(α, r) = arg median
τ∈T

({L[τ ] |α[τ ] ∈ C(α, r)})

L̂C(α, r) = L [τ(α, r)]

T(α, r) = α [τ(α, r)] (17)

where T(α, r) and L̂C(α, r) are representative and the label
for the cluster C(α, r), respectively. The representative is
defined as being out of a center because the center is usually
an imaginary point which may not occur in the physical
system; therefore, a representative that already appeared is
more acceptable as a typical scenario.

The TS selector takes a labeled dataset α as an input and
yields TS’s T(α, r) as output.

B. NN-directed Scenario Matcher

The purpose of scenario matching is to find the “nearest”
TS to the target scenario, which coincides with the purpose of
NN. Therefore, we build a NN-directed scenario matcher to
fulfill the matching step.

Suppose α are labeled scenarios, then the online unlabeled
scenario β is matched to one of the clusters. The representative
which has the maximum D with β is denoted by γNN(β, α),
and it is specified as the matching TS of β:

rNN(β,α) = arg min
r∈R

D [β,T(α, r)]

TNN(β,α) = T
[
α, rNN(β,α)

]
(18)

The forecast value of TS-IRPFL for β is:

LNN(β,α) = µL̂C
[
rNN(β,α)

]
(19)

The reliability coefficient µ is applied in (18) to leave a
margin for TS-IRPFL, a typical value of µ is 0.95.

The scenario matcher takes unlabeled scenario β and TS’s
as inputs and yields LNN as an output (TS-IRPFL).

C. Overall Flowchart

The overall flowchart of the comprehensive model is shown
in Fig. 1.

85%

Labeled
Scenarios

Scenario to be
Analyzed

TS Selector Scenario Matcher

TS’s TSC-IRPFL

Clustering NN

Distance Model

Offline Online

In
p
u
t

D
at

a-
d
ri

v
en

 O
p
er

at
o
r

O
u
tp

u
t

Fig. 1. Overall flowchart of the comprehensive model.

The inputs are the historical labeled scenarios and the real-
time unlabeled scenarios, which are fed into the data-driven
utensils directed by clustering and NN. The clustering and NN
algorithms are all based on the distance model. The selector
then yields TS’s and the matcher yields the forecast value of
TS-IRPFL for the real-time unlabeled scenario.

In the conventional method, the selector and the matcher
are implemented manually by the operators. The clustering-
directed selector and the NN-directed matcher together can
be viewed as a “data-driven operator.” The core technique for
them is the distance model.

IV. TEST RESULTS

A. System Description

The system used in the test case study is a practical regional
power grid in China. It consists of about 3,000 stations, 15,000
AC-lines, 6,300 transformers, 15 DC-lines, 4,000 generators
and 25,000 loads. The total generation capacity of the grid is
about 1,000 GW.

The regional power grid is composed of 22 interconnected
areas. In the case study, we focus on a specific interface that
interconnects two of the above areas E and G. The interface
is denoted as EG, and consists of three AC-lines, as shown in
Fig. 2.

A total of 13,000 scenarios are selected to calculate the real
TS-IRPFL’s of EG. Whereby, 10,000 of them are used as a
training set to train the weights and acquire clusters, and the
rest are used as a testing set.



136 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 6, NO. 1, MARCH 2020

Objective interface

Fig. 2. System structure.

The system structure is presented in Fig. 2. Only elements
with a voltage level higher than 500 kV are reserved. For the
sake of confidentiality, the structure is distorted.

B. Feature Selection
Since the feature number is too large, we need to eliminate

some unimportant features. To achieve this, we conduct a
feature selection procedure in practice. The procedure follows
two steps:

1) First, we roughly eliminate unimportant features by
human experience. We set a threshold for voltages as TV =
500 kV, a capacity threshold for generators as TG = 600 MW,
and a power threshold for loads as TL = 100 MW. The
following elements will be eliminated:

a) Buses, AC-lines with lower voltage levels than TV;
b) Transformers whose voltage levels of the high voltage

sides are lower than TV;
c) Generators with lower capacities than TG;
d) Loads with maximum consumptions lower than TL.
Through the first step we reserve about 5% of the buses,

10% of the AC-lines, 7% of the transformers, 11% of the
generators and 0.8% of the loads. About 4,500 features in
total are reserved during this step.

2) Then we run optimization progress several times. Each
time we only run a few epochs (which consumes only a
few seconds). Then we pick out the features whose weights
are always smaller than a given threshold Tw, and eliminate
them. Tw is set as 0.01 here. This step will stop when the
features are fewer than 1,000. Since the computational cost
is approximately proportional to the square of the feature
number, this step will highly accelerate the following training
procedure.

C. Typical Scenarios
TS’s are selected through the original rules and the proposed

clustering-based method to conduct a benchmark. The original
rules in real operation are shown in Table III.
A and B are two AC-lines and LG is the total load of

area G.

TABLE III
ORIGINAL RULES

Original TS-IRPFL (MW)
A B LG (GW)
On On ≤ 10.5 2,600
On On 10.5 ∼ 12.5 2,800
On On ≥ 12.5 3,000
On Off – 1,600
Off On – 1,800

The scenarios are then matched to the TS’s selected by these
rules to formulate 5 clusters.

The distribution of the TS-IRPFL’s of scenarios in each
cluster is boxplotted in Fig. 3.
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Fig. 3. Distribution of TS-IRPFL under original TS’s.

The dashed red lines show the forecast values of TS-
IRPFLS’s using the original rules. It is shown that the rules are
generally conservative, yet the clusters are not well separated.
This means the rules may sacrifice some economy and that
the typical scenarios are not typical.

TS’s are then selected by the clustering-based selector. For
the sake of comparison, the cluster number is set to be the
same as the original rules. The result is shown in Fig. 4.
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Fig. 4. Distribution of TS-IRPFL under new TS’s.

As we can see, the TS-IRPFL’s are more separated between
clusters and more concentrated within each cluster. This is
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also confirmed by the results of standard deviations listed in
Table IV.

TABLE IV
STANDARD DEVIATION OF THE TS-IRPFL’S OF SCENARIOS MATCHED

WITH EACH TS (MW)

TS Original New
1 233 103
2 195 96
3 197 126
4 185 74
5 212 200
mean 205 120

It is more intelligent to select TS’s by the clustering-based
selector. Scenarios with closer TS-IRPFL’s are more likely to
be grouped into the same cluster, and by further investigation,
more common features of the scenarios within the same cluster
can be excavated.

Note that the reason we choose 5 as the cluster number
is to keep consistent with the traditional method. Generally
speaking, if we increase the cluster number, the accuracy will
increase and the standard deviation of the TS-IRPFL’s will
decrease. However, the comparability will be sacrificed in this
case.

The choosing of the optimal cluster number is a trade-off
between the accuracy of the forecast result and the typicality
of the TS’s, which will be elaborated in the next part.

D. Matching Results

Using the distance model and the TS’s, we match the
scenarios in the testing dataset. A fragment of the results is
chosen and shown in Fig. 5.
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Fig. 5. Real limit vs Forecast limit.

The original forecast values are rough and inaccurate com-
pared to the new ones.

The accuracy can be further illustrated by Fig. 6 and
Table V. We define the forecast error rate E and forecast
accuracy A as:

E =
Lforecast − Lreal

Lreal
× 100%

A = 100%− |E| (20)
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Fig. 6. Cumulative distribution functions of forecast error rates.

TABLE V
ERROR ANALYSIS ON DIFFERENT DATA-DRIVEN METHODS

Methods Ā PL PH ĀL ĀH

SVR 93.0% 89.7% 10.3% 92.5% 97.8%
LASSO 94.6% 89.7% 10.3% 94.4% 96.8%
CART 94.7% 89.8% 10.2% 94.4% 97.7%
ANN 96.5% 89.6% 10.4% 96.2% 98.4%
Traditional 82.9% 96.1% 3.9% 82.4% 96.4%
Proposed 95.3% 89.7% 10.3% 94.9% 98.8%

Furthermore, Ē/Ā is defined as the average forecast error
rate/accuracy, and ĀL/ĀH as the average forecast error ac-
curacy of the scenario whose forecast value is higher/lower
than the real value. We calculate ĀH and ĀL because TSA
is usually required to be conservative. Compared to a higher
Lforecast, which can affect the stability of the system, the
operators would rather accept a lower Lforecast, which only
reduces the economy.

Under this definition of accuracy, we compare our method
with other most recent methods. As mentioned in Section I,
the time-domain simulation is the most accurate method.
However, it is extremely time-consuming and thus not suitable
for on-line estimation of TS-IRPFL. Moreover, most recent re-
searches are focused on data-driven approaches. Therefore, we
pick 4 typical data-driven approaches to make a comparison.

The contrastive methods are Support Vector Regression
(SVR), Least Absolute Shrinkage and Selection Operator
(LASSO), Classification and Regression Tree (CART), and
ANN. The parameter µ is set to a proper value in each method
to guarantee that 90% of the forecast limits are lower than the
real limits.

The cumulative distribution functions (CDF’s) of the fore-
cast error rates of these methods are shown in Fig. 6. The
numerical results are shown in Table V. PL and PH are
proportions of underrated and overrated scenarios in the whole
dataset, respectively.

As we can see, the proposed method is more accurate in
terms of Ā, ĀL, and ĀH. The accuracies of the data-driven
methods are close in terms of Ā. Specifically, the accuracy
of the proposed method is 1.2% lower than that of ANN.
This is caused primarily by ĀL (conservativeness), which is
acceptable in real operations.

The conservativeness of the proposed method is 7.1% lower
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than the traditional method in terms of PL. Therefore, to pro-
mote the conservativeness, the parameter µ can be decreased;
however, this may lower the accuracy.

The trade-off between accuracy and conservativeness is
shown in Fig. 7. Using this figure, a more accurate µ value
can be determined, which maintains the performance of both
accuracy and conservativeness.
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Fig. 7. Accuracy vs conservativeness.

As mentioned in the previous part, there is an optimal value
for the cluster number NC. A large NC yields a more accurate
result, but also decreases the scenario numbers matched with
each TS. If only a few scenarios are matched to each TS,
then the typicality of the TS’s will fade. Besides, if there are
too many TS’s, it will be harder for the operators to analyze
each TS, thus reducing the practicability of the method. So we
need to pick an optimal point regarding the trade-off between
accuracy and typicality. The relationship between the cluster
number and accuracy is shown in Fig. 8.

95.5%

95.0%

94.5%

93.5%

2 3 4 5 6
Cluster number

7 8 9 10

94.0%A
cc

u
ra

cy

Fig. 8. The relationship between cluster number and accuracy.

As we can see, the accuracy hardly changes with NC larger
than 5 (less than 0.1%), thus in terms of accuracy, there is
little difference in choosing 5 ∼ 10 as the cluster number.

E. Critical Elements

Another issue is the critical elements reflected by the
TS’s. 10 scenarios are picked from each cluster. We select
20 consecutive variables and 10 binary variables (by largest
weights) to observe the differences, as shown in Fig. 9.

The color of the consecutive variable reflects its relative
value. The colder (bluer) the color is, the value it represents
is smaller, while the warmer (redder) color suggests a greater
value. And the red spot for the binary variable indicates that
the element is “on” for that point.

In the new TS’s, the influences of critical elements on the
divisions of TS’s are coupled. For example, in TS 3, the
influence of the low power flow on AC-line 5 is counteracted
by the activation of generator B, and so the last three scenarios
have similar TS-IRPFL’s with that of the first seven.

Figure 10 further shows the spatial distribution of the critical
elements under new TS’s.

The results are intuitive and in accordance with the opera-
tors’ experience:
• The critical thermal plants are located in the two areas

connected by the target interface.
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Fig. 9. Differences between new scenarios.
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Fig. 10. Spatial distribution of critical elements.

• The critical buses are pivot buses in those areas.
• The critical hydro plants and the AC-lines are in the same

transmission passages with the target interface.
Compared to other data-driven methods, the proposed

method is process-clear and can provide operators with infor-
mative knowledge. Furthermore, the TS’s and critical elements
help them master the critical links and stability margins of the
system.

F. Computational Efficiency

In this part we discuss the computational efficiency of our
method. The computer we used for the simulation possesses
4 cores, each one is a 2.60 GHz CPU (i7-5600U).

The computational efficiency focuses on both the training
stage and the forecasting stage. As is mentioned, the cluster
number is about 10 and the feature number is about 1,000.
Therefore, the forecasting will calculate about 20,000 sums
and 10,000 squares. The burden is quite small and will be
done within 10 ms. So in this part we focus on the training
stage.

As mentioned in Section-II(B), the values of KN and RD

will influence the accuracy as well as the computational
efficiency. Experiments show that KN has little influence on
the computational efficiency, so we concentrate on the down-
sampling factor RD.

The decrease of RD will accelerate the training time of each
epoch in the gradient descent progress, but it also increases the
error in the gradient computation. To investigate the influence,
we let RD = 5%, 10%, 15%, 20%, and plot the accuracies
under these values with the same figure, as shown in Fig. 11.

The reason that the profiles are initiated from different
positions is that some preparation time is needed to formulate
the optimization problem. The larger is RD, the longer is the
preparation time.

As is shown, when RD is small (5%), the convergence is
not stable. When RD is large (20%), the preparation takes
too long. An eclectic choice will be RD = 10%, where both
accuracy and computational efficiency will be guaranteed.

Under this value of RD, about 200 ∼ 300 seconds of
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Fig. 11. Accuracy vs computational efficiency.

training time will be enough to achieve a training accuracy
of about 96%. Such performance is acceptable.

V. CONCLUSION

The traditional method to estimate TS-IRPFL consists of
two steps, selecting TS’s and scenario matching, which present
disadvantages of low precision and accuracy as well as a
heavy burden on the operators. Attempting to improve methods
commonly suffers from impracticality because they deviate
from the established procedure. This paper proposes a prag-
matic method for determining TS-IRPFL, which inherits the
selecting and matching steps of the traditional method but
implements them with data-driven tools. We built a distance
model for power flow scenarios and provided the training
algorithm. Based on the model, we established a clustering-
directed TS selector and a NN-directed matcher to realize the
two steps.

The numerical results based on real data show that the
method is more scientific and accurate. The analysis of com-
putational efficiency further validates the method’s feasibility
and practicality. Compared to other data-driven methods, the
proposed method is more pragmatic without loss of accuracy.

Future works will concentrate on the following aspects:
• A more feasible and versatile version of the distance

model, for example, one that considers the Mahalanobis
distance as the similarity index.

• Scenario replenishment directed by data-driven methods,
or a “labeler,” to efficiently generate high-information
samples.

The proposed method can also be utilized to forecast indices
other than TS-IRPFL, such as critical clearing time (CCT).
Software guided by the proposed method was developed and
deployed in a real regional grid in China, and has already been
functioning for several months.
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