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Abstract—In power systems, there are two different types of
oscillation mechanisms–natural and forced oscillations. Natural
oscillations are caused by system disturbance when the damping
of the system is not sufficient. Forced oscillations are typically
caused by external input driving the system into a sustained
oscillation. Distinguishing low-frequency oscillations is a prereq-
uisite to dealing with oscillation events in power systems. This
paper attempts to distinguish between natural oscillations and
forced oscillations using machine learning technologies. Decision
tree, support vector machine, neural network, and convolutional
neural network algorithms are evaluated. Transfer learning is
applied to overcome the lack of training data.

Index Terms—Oscillation Mechanism Classification, Neural
Networks, Convolutional Neural Networks, Support Vector Ma-
chine, Decision Tree, Transfer Learning

I. INTRODUCTION

W ITH the growth in size of interconnected power sys-
tems and the participation of unsynchronized dis-

tributed energy resources, the phenomenon of oscillation has
become common and widespread [1], [2]. Insufficient damped
oscillations reduce the system margin and increase the risk
of instability and cascading failure. Thus timely and precise
control response is crucial.
Oscillations are typically classified as either natural or

forced, based on their initial causes. Natural oscillation is
caused by a lack of system damping and is triggered by
disturbance. Forced oscillation is due to periodic energy
injection into the system and can occur even when system
damping is sufficient. The most common control strategy for
natural oscillations is to adjust the power system stabilizer.
The most effective control for forced oscillations is to locate
the disturbance source. Thus distinguishing the two types
of oscillations is a prerequisite for the effective damping of
oscillations.
Oscillation classifications have been attracting more atten-

tion in the past decade. Envelope based approaches have been
proposed in [3] and [4], in which an increase in amplitude
is used to distinguish natural oscillations from forced ones.
However, the accuracy of the classification depends on the size
of the envelope, since the algorithm is found failing when the
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oscillation is lightly damped [5], [6]. The performance of the
spectral method proposed in [5] is shown to degrade when
the forced oscillation has a frequency close to a system mode
frequency. In [7], a power spectral density and kurtosis based
approach is proposed, which is simple and accurate when there
is a long time period of data. However, the long time data
requirement limits the method as an off-line application.
As described here, the state of the art in oscillation clas-

sification methods typically tends to extract some features of
different mechanisms and then summarize them to a given
index. This is followed by application of simple (linear)
logic rules for the classification of oscillation events. This
approach usually is complicated and considerable oscillation
event information is lost in the process. Moreover, the rules are
typically linear and over-simplified. In some studies, machine
learning approaches have been applied in the area of oscillation
detection, analysis, and damping control [4], [8]–[10] that
demonstrate the advantages of dealing with highly nonlinear
systems. In this paper, we apply machine learning techniques
to identify oscillation mechanisms that are capable of keeping
in tact as much information as possible of the system while
simultaneously addressing the common problem of lack of
data in the system.

A. Summary of results
The three major contributions of this work are as follows:

first, mainstream machine learning approaches are applied
to distinguish natural and forced oscillations using simple
features that keep as much information of the system as
possible. Second, to overcome the impact of detection of
starting points of oscillations, a time augmentation approach
is proposed. Third, a transfer learning approach is applied
to transfer models between different systems, which helps to
resolve the problem of lack of training data.

II. REVIEW OF ALGORITHMS

In this work, making the distinction between natural and
forced oscillations is formulated as a supervised learning
problem, by which oscillation data is collected. Features are
extracted, and oscillation types are labeled in terms by domain
experts. Features and labels are fed to supervised learning
algorithms to train a classifier model. The trained classifier can



be used online to distinguish oscillation mechanisms. The key
points during this process are feature extraction and classifier
model selection. Accurate extraction is needed to ensure that
all information is available to train classifier models and to
remove noise information. Another requirement of feature
extraction is that it must reduce the volume of data, i.e., the
size of the features should be as small as possible.

A. Classification Tree
A classification tree is used to divide samples into distinct

and non-overlapping regions. Specifically, in this instance
the classification tree divides the predictor space into high-
dimensional rectangles or boxes. Any new sample is classified
as the most commonly occurring class of training observations
in the region to which it belongs. The classification tree is
intuitive and easy to explain. However, its predictive accuracy
is usually not at the same level of other approaches.

B. Support Vector Classifier
Given a feature vector x ∈ R

P , a support vector classifier
seeks to find a hyper plane w0 + w1x1 + · · ·+ wPxP = 0 to
divide samples into the corresponding hyperplane. A typical
support vector classifier (SVC) model is formulated as follows:

maxwp,εi,M M

subject to
∑P

p=1
w2

p = 1,

yi(w0 + w1xi,1 + · · ·+ wPxi,P ) ≥ M(1− εi),
εi ≥ 0,

∑n

i=1
εi ≤ C.

(1)

where w � (w0, . . . , wP )
ᵀ is the parameter that defines the

hyper-plane, xi,k the kth element of the ith sample, yi ∈ {0, 1}
the label of the ith sample,M the width of the margin between
two regions, εi are slack variables that allow observations to
be on the wrong side of the hyper-plane, n the number of
training samples, and C is the non-negative tuning parameter
defining the “budget” that allows the margin that can be
violated. After solving Equation (1), the set of parameter
w defines a classifier. For a new sample x, the sign of
f(x) = w0 +

∑P

i=1
wixi indicates its category.

It can be shown that the linear support vector classifier
w, which is the optimum solution of Equation (1), can be
represented as w =

∑n

i=1
αiyixi. αi’s are the optimum

solution of the dual problem of Equation (1) and the classifier
can be stated as f(x) = w0 +

∑n

i=1
αiyix

ᵀ

i x.
The support vector machine (SVM) is an extension of

the support vector classifier [11], [12]. For an SVC, the
classifier is represented by the inner product of features,
< xi,xj >= x

ᵀ

i xj , which defines a linear boundary between
classes. For an SVM, the inner product is replaced by a
kernel function, K(Xi, Xj), which quantifies the similarity
of two observations. Commonly used kernel functions include
polynomial kernels and radial kernels.

C. Feedforward Neural Networks
A feedforward neural network (FNN) is typically composed

of three components, e.g., input, hidden, and output layers.
Each layer is composed by processing units, so called “nodes”

or “neurons”. Figure 1 shows an example of an FNN with a
3 dimension input and a 2 dimension output. The input layer
usually does not have any special form other than simply input
features. As shown in Figure 1, the input feature vector x ∈ R

3

is passed to each neuron in the hidden layer.

Hidden Layer

ŷ

x

Output Layer

Input Layer

Fig. 1. An example of the structure of feedforward neural network.

A neuron in a hidden layer takes the result vector from the
previous layer, either the input layer or another hidden layer,
and applies a nonlinear transform to the vector. It then passes
the processed results to the next layer. A simple example of
the nonlinear transform can be stated as follows.

h(x) = g(f(x))
f(x) = W ᵀ

x+ b

g(x) = max{0, x}

where f(x) is a linear transform with weight W and bias
b, and g(x) is an activation function or rectified linear unit
(ReLU). Other activation functions include softplus, radial
basis function, and hard tanh.
The neurons in the output layer of a two-class classification

problem is usually formulated as sigmoid units. Given the
result vector h from the previous hidden layer, a sigmoid unit
is defined as follows.

ŷ = σ(z) = 1/(1 + exp(−w
ᵀ
h− c))

where σ(z) is the logistic sigmoid function, and z = w
ᵀ
h+ c

is a linear transform of the outputs h from previous layers.
Given a network structure like the one in Figure 1, a

feedforward neural network looks for an optimal set of pa-
rameters to maximize the likelihood with training samples
x, or an equivalent, to minimize the loss function defined
as the negative log-likelihood. The log-likelihood for such
a two-class classification problem is usually formulated as a
linear function of label y’s and the output of the final layer
z’s, i.e., logP (y) ∝ yz. Then the loss function for maximum
likelihood learning of a Bernoulli distribution is stated as

− logPθ(y|x) = − log σ((2y − 1)z)



where θ = [W, b,w, c] are the parameters. Thus the training
process of the feedforward neural network can be formulated
as follows.

minθ J(θ) = −E logPθ(y|x) (2)

Unfortunately, solving Equation (2) is not trivial due to the
nonlinearity. Gradient based algorithms are usually applied to
look for local optimums.

D. Convolutional Neural Networks

The convolutional neural network (CNN) is a popular
approach in image processing. Its applications include face
recognition, item detection, and video processing. A typical
CNN model can be found in Figure 2. It takes in an image,
represented by a sum of multiple matrices, as the input.
Usually, there are three matrices indicating three channels of
RGB colors, and the image can be viewed as the sum of these
three matrices. However, there can be more channels of signals
that do not change the fundamentals. The signal is passed
through an input layer similar to that in neural networks.
The signal then goes through several convolution layers and
pooling layers, which is the most important architecture of
CNN.
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Fig. 2. A typical CNN model

As shown in Figure 3(a), a convolution layer defines a
mask/filter (the orange one) and convolutes it with each input
matrix. This process will result in a feature matrix smaller or
equal to the original matrix. The purpose of this process is
to extract the feature in the signal. The size of this filter is
a critical design of the CNN model. A default choice would
be to choose a mask with an odd number of pixels in each
dimension. The value of the elements in the filter is adjusted
during the learning process.
After the convolution layer, a pooling layer is constructed

to reduce the dimension. Typical pooling includes maximum
pooling and mean pooling. As shown in Figure 3(b), the max-
imum pooling moves a mask through a matrix and calculates
the maximum within the mask. This process is intended to
reduce the computational cost and de-noise the signal.
After several convolution and pooling layers, the result is

passed to a fully connected layer and a classification layer
similar to those in other neural networks.
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Fig. 3. Convolution and pooling layers

E. Transfer Learning

A critical uncertainty in application of machine learning
approaches in power system studies is that there is not enough
labeled data. To address this point, this work employs transfer
learning techniques across different system data to evaluate
the performance. The basic idea is to take a pre-trained neural
network and use samples from other systems or scenarios to
retrain (part of) the network and complete other tasks.
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Fig. 4. An example of transfer learning

As shown in Figure 4, one CNN model is trained using
data from the WECC 179-bus system [13]. The pre-trained
convolutional layers and pooling layers are taken out to test
in a 2-Area-4-Machine system [14]. An input layer, a fully
connected layer, and a classification layer are added to the
front and back of the pre-trained networks to adjust the
input and output dimensions properly. Then a small number
of samples from the 2-Area-4Machine system is fed into
the newly constructed network to retrain. During the retrain
process, the inherited part of the network is kept frozen, while
the number of samples are far less than usual cases. In this
way, the information of the WECC 179-bus system is utilized
and helps to develop a model that performs well in the 2-Area-
4-Machine system.



III. NUMERICAL RESULTS

A. Sample Generation
In this work, the Kundur 2-Area-4-Machine (2A4M) and

WECC 179-Bus (179Bus) test systems are simulated using
the Transient Security Assessment Tool (TSAT) [15]. For
natural oscillation cases, the damping factor of each generator
is set to a random value uniformly distributed among [0, 4].
Further, loads at each bus are multiplied by factors uniformly
distributed among [.9, 1.1] to mimic the randomness in op-
eration conditions. A three-phase fault is added to a random
bus and cleared after 0.5 seconds to trigger oscillations. Other
parameters are kept unchanged.
For forced oscillation cases, a sinusoid signal is added to

the exciter of a randomly picked generator, and the damping
factor of the chosen generator is set to 0 to mimic the injected
oscillation source. Loads at different buses are multiplied by
factors uniformly distributed among [.9, 1.1]. Other parameters
are kept unchanged.
Four hundred natural oscillations and 400 forced oscilla-

tions are generated for the 2A4M system, and 900 natural
oscillations and 1400 forced oscillations are generated for
the 179Bus system. After the generation of raw data, a
Gaussian distributed factor is multiplied to each measurement
to simulate the measurement noise.

B. Feature Selection
In this work, we select the nonlinear phase of oscillations

as the input signal, i.e., the beginning period of oscillations.
Considering that it is hard to detect precisely the beginning
point of oscillations, a sliding window with a 5 second width
is applied to samples. In this way, multiple sample clips with
different beginning points are generated using one piece of
data. Furthermore, each clip of sample is normalized to its
z-score1 to eliminate the impact of different magnitude of
signals.
For a CNN model, the feature extraction process is mainly

dealt by the convolution process, which simplifies the pro-
cedure. Three time variant matrices are constructed using
generator angle, voltage, and speed matrices.

Xang �

⎡
⎢⎢⎣

Xang,1[1] Xang,1[2] . . . Xang,1[T ]
Xang,2[1] Xang,2[2] . . . Xang,2[T ]

. . .
Xang,N [1] Xang,N [2] . . . Xang,N [T ]

⎤
⎥⎥⎦

(3)
In Equation (3), a matrix of generator angle is constructed,
where N is the number of generators and T is the number
of time instances. The same process is carried out to generate
generator voltage and speed matrices.
Of the decision tree, SVC, and FNN models, the features

selection is performed manually. In this work, the distribution

1Z-score is defined as follows.

z[t] = (x[t]− μ(x))/σ(x)

, where μ(x) and σ(x) are the mean and standard deviation of time series x

of generator voltages and the standard statistic features in-
cluding kurtosis and skewness are chosen as the features after
experiments [16].

C. Classification Results
Monte Carlo simulations are carried out to validate the

performance of different approaches. In each Monte Carlo run,
the labeled data set is separated to a training set and a testing
set randomly with a ratio of 0.8/0.2. Furthermore, for each clip
of training data, 10 samples are generated by sliding a window
with width of 5 seconds and a step size of 0.2 second, i.e., the
10th sample is 1.8 seconds later than the first one. To generate
a clip of test data, a starting point uniformly distributed among
[0, 2] is first generated. Then a clip of data with the randomly
generated starting point and window width of 5 seconds is
sampled from the simulation data.
Various models are trained using the training set and tested

on the test set. A kurtosis-based method is adopted as a
benchmark [7], which uses a threshold of data kurtosis to
distinguish oscillation classes. The threshold of kurtosis is
set to -0.5. The accuracy is averaged over all Monte Carlo
simulations and shown in Table I. All machine learning models
perform well, which indicates the efficiency of the features in
identification of the oscillation types. On the other hand, the
kurtosis method is not the desirable method in this case due
to the short period of data.

TABLE I
AVERAGE ACCURACY OF MODELS OVER TEST SET

System Decision Tree SVM FNN CNN Kurtosis
2A4M 99.97% 99.31% 100% 93.04% 56.06%
179Bus 99.60% 95.43% 100% 100% 68.60%

Next, the trained model using one system is directly applied
to the other system to test the transfer performance without
retraining. The result is shown in Table II. For example, a
decision tree model is trained using all samples of the 2A4M
system and tested directly using the samples of the 179Bus
system and listed in the first cell of the table. Note that the
input dimension of the CNN model is different for two test
systems, thus the CNN model is not tested here. It is illustrated
that the performance is not desirable if the model is directly
applied to a different system.

TABLE II
ACCURACY OF MODELS TESTED USING SAMPLES FROM THE OTHER

SYSTEM

System Decision Tree SVM FNN
2A4M to 179Bus 72.54% 39.13% 39.35%
179Bus to 2A4M 78.85% 96.16% 55.2%

D. Transfer Learning Results
In this subsection, the FNN model is first trained using all

labeled data from one system. Then it is retrained using 1%
data, and tested using the remaining data from the second
system. In the retraining process, the learning rate is limited



to 0.01 and the number of epochs is limited to 5 so that
the retrained model is kept frozen as much as possible. The
result of the retrained model is summarized in Table III
and IV. In Table III, an FNN model is trained using data
from the 2A4M system and tested in the 179Bus system.
After retraining using 1% data from 179Bus, the accuracy
of the FNN model increases from 39.57% to 90.2% using
179Bus samples. Then the retrained model is tested again
using samples from the 2A4M system, and the accuracy
decreases from 100% to 84.28%. These results suggest that
the retrained model performs well in the test (179Bus) system
even with small number of retraining data. Meanwhile, the
accuracy of the retrained model remains high for the original
training (2A4M) system, which suggests that most structures
of the model are inherited. The reverse process is carried out,
and a similar result is obtained and shown in Table IV.

TABLE III
ACCURACY OF TRANSFER LEARNING OF FNN MODELS: TRANSFER FROM

2A4M TO 179BUS SYSTEM

System Before retraining After retraining
2A4M 100% 84.28%
179Bus 39.57% 90.2%

TABLE IV
ACCURACY OF TRANSFER LEARNING OF FNN MODELS: TRANSFER FROM

179BUS TO 2A4M SYSTEM

System Before retraining After retraining
179Bus 100% 94.64%
2A4M 55.2% 81.51%

A similar transfer learning process is applied to the CNN
models. One difference of CNN models is that the input
dimension is different for two simulation systems. Thus,
the input layers need to be replaced and retrained, and the
retrained CNN model cannot be applied directly back to the
original training system. During the retraining process, the
learning rate of the inherited network is set to 0.001 and the
maximum number of epochs is set to 5 so that the inherited
network is frozen. The learning rate of other parts is set 20
times larger.

TABLE V
ACCURACY OF TRANSFER LEARNING OF CNN MODELS

Training System Retraining System Accuracy
2A4M 179Bus 99.87%
179Bus 2A4M 98.57%

The result of the CNN models is summarized in Table V.
The high accuracy demonstrates the outstanding performance
of retrained CNN models.

IV. CONCLUSION

Machine learning techniques are applied to the area of os-
cillation classification, including decision tree, support vector
classification, feedforward neural networks, and convolutional

neural networks. Augmentation is adopted to deal with the
problem of identification of the beginning point of oscillation
events. To overcome the problem of lack of data, a transfer
learning approach is proposed to reduce the need for samples.
Future research includes to test the proposed approaches in

real systems and extend them to other applications, including
forced oscillation source locating.
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