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Abstract—Due to increasing complexity, uncertainty and data
dimensions in power systems, conventional methods often meet
bottlenecks when attempting to solve decision and control prob-
lems. Therefore, data-driven methods toward solving such prob-
lems are being extensively studied. Deep reinforcement learning
(DRL) is one of these data-driven methods and is regarded as real
artificial intelligence (AI). DRL is a combination of deep learning
(DL) and reinforcement learning (RL). This field of research
has been applied to solve a wide range of complex sequential
decision-making problems, including those in power systems.
This paper firstly reviews the basic ideas, models, algorithms and
techniques of DRL. Applications in power systems such as energy
management, demand response, electricity market, operational
control, and others are then considered. In addition, recent
advances in DRL including the combination of RL with other
classical methods, and the prospect and challenges of applications
in power systems are also discussed.

Index Terms—Artificial intelligence, deep reinforcement
learning, machine learning, power system, smart grids.
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A2C Advantage actor-critic.
A3C Asynchronous advantage actor-critic.
ACO Ant colony optimization.
AGC Automatic generation control.
AI Artificial intelligence.
ANI Artificial narrow intelligence.
ANN Artificial neural network.
AVC Automatic voltagecontrol.
BFRL Bacteria foraging reinforcement learning.
B-M Bush-Mosteller.
CNN Convolutional neural network.
CTQ Consensus transferQ-learning.
DBN Deep belief network.
DDPG Deep deterministic policy gradient.
DDRQN Deep distributed recurrent Q-networks.
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DL Deep learning.
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DQL Deep Q-learning.
DQN Deep Q-network.
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LSE Load serving entity.
LSTM Long short-term memory.
MCES Multi-carrier energy system.
MEC Multi-access edge computing.
MILP Mixed-integer linear programming.
MDP Markov decision process.
ML Machine learning.
NE Nash Equilibrium.
NLP Natural language processing.
OEM Optimal energy management.
PEV Plug-in electric vehicle.
PHEV Plug-in hybrid electric vehicle.
PPO Proximal policy optimization.
PSO Particle swarm optimization.
PV Photovoltaic.
RBM Restricted Boltzmann machine.
RL Reinforcement learning.
RNN Recurrent neural network.
SDAE Stacked denoising auto-encoders.
SG Smart Grid.
SGC Smart generation control.
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I. INTRODUCTION

A. Background

A power system is a complex, dynamic, large-scale net-
work of electrical components. Power systems have

gone through many decades of development. During this
time, economic, technological, environmental and political
incentives have transformed conventional grids into more
complex, robust, efficient and sustainable smart grids [1]–
[3]. Smart grids use bi-directional energy flow accompanied
by bi-directional information flow among all the participants,
including producers, consumers, transmission and distribution
system operators and demand response aggregators [4], [5].
Such factors have brought problems to the power system
from different aspects. Firstly, a high penetration of renewable
power (such as wind and solar) brings greater uncertainty to a
power system. Furthermore, the deregulation of the electricity
market and active participation of customers makes it more
complex to find solutions that allow the incorporation of
distributed energy resources [6], [7].

To solve these problems, effective methods are required for
planning and operating the grid. This ongoing transformation
of grids results in increased uncertainty and complexity in both
the business transactions and the in physical flows of electric-
ity [8], [9]. Moreover, the explosion of information and the
fluctuation of data makes decision-making problems difficult,
compared to traditional methods [10], [11]. Therefore, future
smart grids need systems that can monitor, predict, schedule,
learn and make decisions regarding energy consumption and
production in real-time. This calls for a more efficient and
intelligent solution, such as deep reinforcement learning [12]–
[14].

Reinforcement learning, derived from neutral stimulus and
response, is a machine learning method. It has become in-
creasingly popular due to its success in addressing challenging
sequential decision-making problems [15], [16]. Its combina-
tion with deep learning, called deep reinforcement learning,
has achieved great success in games [17]–[19], robotics [20],
[21], natural language processing (NLP) [21]–[23], finance and
business management [24], [25]. Many papers have reported
the application of deep reinforcement learning in power sys-
tems, and will be introduced in the following.

B. Methodology
Many problems in the power system can be transformed into

sequential decision-making tasks. Traditional methods mainly
include convex optimization methods, programming methods,
and heuristic methods. Through qualitative comparison with
DRL, the advantages and disadvantages of these methods are
explained as follows [26].

The first is a classical mathematical method, such as the
Lyapunov optimization algorithm [27]. The advantage of this
method is that the mathematics are rigorous and real-time
management can be realized. However, this type of method
relies on explicit objective functional expressions, which are
difficult to abstract from many real-world optimization deci-
sion scenarios. Moreover, the Lyapunov condition (required for
the Lyapunov optimization algorithm), cannot be guaranteed
in complicated, high-dimensional scenarios.

The second is the programming method, such as mixed
integer programming [28], [29], dynamic programming [30],
[31], and stochastic programming [32], [33]. These methods
can solve a variety of optimization problems, especially se-
quence optimization problems. However, each iteration of this
type of method needs to be recalculated from the beginning.
In addition, the calculation cost is too large to realize real-
time decision-making in some scenarios. Some cases using
programming algorithms rely on accurate predictions of re-
newable energy generation and load, which are difficult to
achieve in real scenarios.

Another category is heuristic methods, such as genetic algo-
rithms (GA) [34], [35], ant colony optimization (ACO) [36],
[37], or particle swarm optimization (PSO) [38], [39]. For
the optimization problems, especially non-convex optimization
problems, a heuristic method can achieve the local optimal
solution with a certain probability, which is beneficial to solve
the problem of large data scale and complicated scenarios.
However, these methods are less robust and cannot be proven
rigorously using mathematics.

Compared with convex optimization methods, the exact
objective function is not necessary for DRL. In contrast, DRL
uses the reward function to evaluate decision behavior. DRL
can also handle higher dimensional data than convex optimiza-
tion methods. Against the programming methods, DRL makes
decisions according to the current state and thus makes real-
time and online decisions. In contrast to the heuristic methods,
DRL is more robust with stable convergence results and is
better suited for decision-making problems.

The principles and algorithms of DRL are introduced briefly
in Section II. The applications of DRL in the power system are
classified in Section III. The prospect and challenges of DRL
and its applications in the power system are also discussed in
Section IV.

II. DEEP REINFORCEMENT LEARNING

Deep reinforcement learning combines the perception func-
tion of deep learning with the decision-making ability of
reinforcement learning. It is an artificial intelligence method
closer to human thinking and is regarded as real AI. The basic
framework of DRL is shown in Fig. 1. The deep learning
gets the target observation information from the environment
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Fig. 1. Deep reinforcement learning framework.
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and provides the state information in the current environment.
The reinforcement learning then maps the current state to
the corresponding action and evaluates values based on the
expected return [40], [41]. A continuous interaction process
makes decision-making behavior a step by step process. The
principles and algorithms of reinforcement learning are intro-
duced in the next section.

A. Reinforcement Learning

Reinforcement learning is applied to calculate a behavior
strategy, a policy that maximizes a satisfaction criterion. Mean-
while, a long-term sum of rewardsis obtained by interacting
through trial and error with a given environment. To implement
these functions, a reinforcement learning framework consists
of a decision-maker, called the agent, operating in an envi-
ronment modeled by state st. The agent is capable of taking
certainaction at, as a function of the current state st. After
choosing an action at time t, the agent receives a scalar reward
rt+1 and finds itself in a new state st+1 that depends on the
current state and the chosen action, just as shown in Fig. 1.
The mathematical foundations and concepts of reinforcement
learning are introduced in the following.
1) Markov Decision Process (MDP)

A Markov decision process, as shown in Fig. 2, which
satisfies a Markov property and is a basic formalism of
reinforcement learning. A Markov property is one in which
the future of the process only depends on the current state,
and the agent has no interest in the full history. It can be
described as:

P (st+1|s0, a0, · · · , st, at) = P (st+1|st, at) (1)

where P is state transition probability.

a0

s0 s1 s2

r0

Policy

Transition function

Reward
function

a1 r1

Fig. 2. Illustration of Markov decision process.

At each epoch, the agent takes an action that changes its
state in the environment and provides a reward. To further
process the reward value, value functions and optimal policy
are proposed.
2) Value Function and Optimal Policy

To maximize the long-term cumulative reward after the
current time t, in the case of a finite time horizon that ends at
time T , the return Rt is equal to:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2)

where the discount factor γ ∈ [0, 1], and γ can take 1 only in
episodic MDPs.

In order to find an optimal policy, some algorithms are based
on value function V (s), which represents how beneficial it is

for the agent to reach a given state s. Such a function depends
on the actual policy π followed by the agent:

V π(st) = E[Rt|st = s] = E

[ ∞∑
k=0

γkrt+k+1|st = s

]
(3)

Similarly, the action-value function Q represents the value
of taking action a in state s under a policy π as:

Qπ(st, at) = E[Rt|st = s, at = a]

= E

[ ∞∑
k=0

γkrt+k+1|st = s, at = a

]
(4)

In a Q-learning algorithm [42], the Q function can be
expressed as an iterative form by the Bellman equation:

Qπ(st, at) = E[rt+1 + γQπ(st+1, at+1)|st, at] (5)

An optimal policy π∗ is a policy that achieves the largest
cumulative reward in the long run:

π∗ = argmax
π

V π(s) (6)

At this time, the best value function and action-value
function will be:

V ∗(s) = max
π

V π(s) (7)

Q∗(s, a) = max
π

Qπ(s, a) (8)

B. From RL to DRL

The journey from RL to DRL has gone through a long
development process. In classical tabular RL, e.g. Q-learning,
state and action spaces are small enough for the approxi-
mate value functions to be represented as arrays or tables.
In this case, the methods can often find the exact optimal
value functions and the optimal policies [15]. However, these
previous methods suffer from a difficult design issue when
they come to real-world implementations. To overcome this
problem, the approximate value functions are represented as
a parameterized functional form with a weight vector (similar
todeep neural networks), instead of a table. DRL can complete
complicated tasks with lower prior knowledge thanks to its
ability to learn levels of abstractions from data [43], [44].
Further details about DL and DRL are explained below.

1) High-dimensional and continuous spaces. Although a
variety of real-world problems lead to high-dimensional and
continuous state spaces or action spaces, it is still not possible
to store them in a table or function. This phenomenon is known
as the ‘curse of dimensionality’. To overcome this issue,
function approximation is used to obtain features from models,
value functions or policies and then attempts to generalize
from them to construct an approximation of the entire function
by supervised learning such as deep neural networks [45], [46].

2) Exploration-exploitation dilemma. When an agent starts
accumulating information about the environment, it has to nav-
igate a tradeoff between learning more about the environment
(exploration) or pursuing the most promising strategy with the
experience gathered (exploitation). In tabular RL, uncertainty
about the reward function and transition probabilities can be
quantified as confidence intervals or posterior of environment
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parameters. In DRL, different settings are applied. One is
that the agent explores only when the learning opportunities
are valuable enough so that it can perform well without a
separate training phase. Another is that the agent follows a
training policy during the first phase of interactions with the
environment so as to accumulate training data and hence learn
a test policy [15], [40].

3) Convergence and stability. For RL, only tables and
linearly parameterized approximators can be used to guarantee
convergence. When prior knowledge is not available to guide
the selection of basis functions, a large number of basis
functions must be defined to evenly cover the state-action
space, and this is impractical in high-dimensional problems.
To address this problem, non-linear approximators, such as
convolutional neural networks (CNN), have been applied to
obtain features of certain parts of states with replay buffer
and target networks [16], [43], [45].

C. DRL Algorithms

DRL problems may be formulated as optimization, plan-
ning, management, and control problems. Solution methods
may be model-free or model-based and value-based or policy-
based, just as shown in Fig. 3. Model-based DRL is strongly
influenced by control theory and often is explained in terms
of different disciplines. In contrast, model-free DRL ignores
the model and cares less about the inner workings. Model-
based DRL has the advantage of being simple and efficient.
For example, if it is appropriate to approximate the space as
linear, it will take much fewer samples to learn the model.
However, model-based methods are more complex than model-
free methods by a few orders of magnitude. If sampling can be
done using a computer simulation, model-free methods finish
faster. Also, to simplify the computation, model-based meth-
ods have more assumptions and approximations and therefore,
may limit themselves to specific types of tasks. Most policy-
based, value-based methods are model-free.
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DRL
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Fig. 3. Main DRL algorithms and theirinter-relationship.

Value-based methods learn from any trajectory sampled
from the same environment by improving the value function at
each iteration until the value-function converges. For tabular

RL, e.g. Q-learning, the iteration process of Q function is as
shown in (9), while in DRL it will update as shown in (10).
At this time, the objective function can be defined as (11).

Q(st, at)← Q(st, at) + α[rt+1

+ γmax
a
Q(st+1, a)−Q(st, at)] (9)

θt+1 = θt + α(rt+1 + γmax
a
Q(st+1, a, θ)

−Q(st, at, θ))∇θQ(st, at, θ) (10)
J(θ) = E[(rt+1 + γmax

a
Q(st+1, at+1, θ)

−Q(st, at, θ))
2] (11)

where α is the learning rate, and θ is the collection of the
parameters of function approximator [47], [48].

The policy-based methods directly optimize the quantity of
interest while remaining stable under the function approxima-
tions by re-defining the policy at each step and compute the
value according to this new policy until the policy converges.
At first, the gradient of the objective function is calculated
as policy parameters as shown in (11), and then the weight
matrix will update using (12).

∇θJ(θ) = E

[
T∑
t=0

∇θ log πθ(at|st)
T∑
t=0

r(st, at)

]
θ ← θ + α∇θJ(θ) (12)

III. APPLICATIONS IN POWER SYSTEM

After years of research, many papers have been published
about the applications of DRL in power systems, and most of
them were published since 2018. These applications covera
wide range of decision, control and optimization problems
in the power system, including energy management, demand
response, electricity market, operational control and many
others, as shown in Table I. This section reviews some typical
application fields.

A. Energy Management

In a power system, especially a microgrid, energy manage-
ment problems link source, load, storage system, and utility
grid, as shown in Fig. 4. Energy management plays an essential
role in several ways. Firstly, it can improve the utilization
rate of renewable energy and manage household appliance-
consumption. Furthermore, it can plan a storage scheduling
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Fig. 4. Typical framework of an energy management system.
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TABLE I
SUMMARY OF THE PAPERS

Paper Fields System Learning algorithm Q-function estimator Agent Objectives
[49] Energy management Residential appliances DQN, DPG DNN Single agent Energy cost, load peaks
[50] Energy management Residential appliances Actor-critic, Q-learning DNN (GRU) Single agent Energy cost, electricity balance
[51] Energy management Residential appliances Fitted Q-iteration Randomized trees Single agent Electricity cost
[52] Energy management Hybrid electric bus DQN DNN Single agent Fuel economy
[53] Energy management Electric vehicle (EV) DQN LSTM Single agent Charging/discharging cost
[54] Energy management Hybrid EV (HEV) DQN DNN Single agent Fuel economy
[55] Energy management Plug-in HEV (PHEV) DQN MLP Single agent Fuel economy
[56] Energy management PHEV DQN DDQN DNN Single agent Fuel economy
[57] Energy management PHEV DDPG DNN Single agent Fuel economy
[58] Energy management Stand-alone microgrid DQN CNN Single agent Levelized energy cost (LEC)
[60] Energy management Grid-connected microgrid Fitted Q-iteration Randomized trees Single agent Self-consumption of PV
[61] Energy management Stand-alone microgrid Fuzzy Q-learning Fuzzy inference system Multi-agent Electricity supply, reliability
[62] Energy management Grid-connected microgrid Q-learning Associative memory Multi-agent Operating cost
[63] Energy management Residential microgrid Q-learning Randomized trees Single agent Self-consumption of PV
[64] Energy management Energy Internet A3C RNN Single agent Operating cost
[65] Energy management EH Network DQN DNN Multi-agent Sum throughput
[68] Demand response Smart grid Q-learning DNN Single agent Total profits
[69] Demand response HVAC DQN DNN Single agent Operating cost
[70] Demand response Building energy Q-learning N/A Multi-agent Social cost
[74] Demand response Smart grid N/A N/A Single agent Nash Equilibrium (NE)
[75] Demand response Smart grid Q-learning N/A Single agent Social welfare
[76] Demand response Residential loads Q-learning N/A Single agent Total cost
[71] Demand response Load serving entity N/A N/A Single agent Total cost
[72] Demand response Residential loads Q-learning N/A Single agent Total cost
[77] Demand response Distribution network Q-learning N/A Multi-agent Social welfare
[78] Demand response Smart grid DTQ DBN Multi-agent Total payoff
[73] Demand response Plug-in EV (PEV) Fitted Q-iteration Kernel function Single agent Charging/discharging cost
[79] Electricity market Distribution network DQN DNN Single agent Prosumers’ benefit
[80] Electricity market Distribution network Q-learning N/A Single agent Customers’ benefit
[81] Electricity market Smart grid B-M scheme N/A N/A Own averaged utility
[82] Electricity market Energy storage syatems PPO RNN Single agent Total profit
[83] Electricity market Microgrid Q-learning N/A Multi-agent System cost
[84] Electricity market Smart microgrid Learning automaton N/A N/A Average revenue
[85] Electricity market Microgrid DQN CNN Single agent Nash Equilibrium (NE)
[86] Electricity market Microgrid Q-learning N/A Single agent Nash Equilibrium (NE)
[87] Electricity market Microgrid DQN DNN Single agent Trading profits
[88] Electricity market Microgrid Fuzzy Q-learning N/A Single agent Social welfare
[89] Electricity market Microgrid DDPG DNN Single agent LSE’s profit
[91] Operational control Interconnected grid Policy hill-climbing N/A Multi-agent Utilization of new energy
[92] Operational control Interconnected grid DDRQN DNN Multi-agent Utilization of new energy
[93] Operational control Interconnected grid DQL DNN Multi-agent Smart generation control
[94] Operational control Smart grid DQL RBM Multi-agent Smart generation control
[95] Operational control Interconnected grid Q-learning Deep forest Single agent Smart generation control
[96] Operational control Interconnected grid CTQ N/A Multi-agent Automatic generation control
[97] Operational control Windturbine Q-learning ANN Single agent Optimal yaw control
[101] Operational control HVAC Q-learning N/A Single agent Energy consumption
[102] Operational control HVAC A3C DNN Single agent Energy consumption
[98] Operational control stochastic power system DRL SDAE Single agent Frequency deviation
[99] Operational control Residential appliances Fitted Q-iteration CNN, LSTM Single agent Energy consumption
[100] Operational control Residential appliances Fitted Q-iteration CNN Single agent Electricity cost
[103] Operational control Smart grid DQN, DDQN CNN Single agent Reliability
[104] Operational control IEEE system DQN DNN Single agent Grid security and resiliency
[105] Operational control Power grid Q-learning ANN Single agent Expected profit
[106] Operational control Distribution grid DQN DNN Single agent Voltage stability
[107] Operational control IEEE system DQN DNN Single agent Voltage stability
[108] Cyber security Smart grid Q-learning N/A Single agent Transmission line outages
[109] Cyber security Smart grid Q-learning N/A Single agent Generationloss
[110] Cyber security AVC system Q-learning N/A Single agent Security
[111] Economic dispatch DG units, ES devices Q-learning DNN Single agent Operating cost
[112] Economic dispatch IEEE system Q-learning N/A Multi-agent Multi-objective
[113] System optimization Smart grid DQN, DPG DNN Single agent Total profits
[114] Edge computing Microgrid DQN DNN Single agent Energy consumption
[115] Energy routing Energy internet Q-learning ANN Single agent Efficiency, operating cost

strategy and respond to real-time electricity prices. Note that
most energy management problems can be transformed into
sequential decision-making problems and can be solved well
by using DRL.

Residential appliances need optimal energy management
strategies, all of which DRL is capable of doing. Refer-

ence [49] proposes the use of DRL in conceiving an on-
line optimization for the scheduling of electricity consump-
tion in residential load and aggregations of buildings. This
energy management strategy can be used to provide real-time
feedback to consumers to use electricity more efficiently. An
optimal strategy based on DRL is proposed in [50] to min-
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imize total electricity cost of residential energy management
problems without knowledge about real-time household load
and electricity price. In reference [51], a residential multi-
carrier energy system (MCES) including a PV array, battery,
heat pump and gas boiler is built, and DRL is used to develop
a control strategy using real-world data to plan optimal battery
scheduling.

Electric vehicle energy management problems have grown
rapidly in recent years, and have caught the attention of
DRL researchers. For electric vehicles, to maximize fuel
economy over a specific time horizon and keep battery state
of charge (SoC) stable, an energy management strategy based
on deep Q-learning (DQL) is proposed in [52], with the
DQL showing better performance than Q-learning in training
time and convergence rate. Similarly, reference [53] proposes
a model-free DRL approach to determine an optimal strat-
egy for real-time electric vehicle (EV) charging/discharging
scheduling without any system model information. A DRL-
based data-driven control approach is developed in [54]–[56],
and has a real-time learning architecture for a hybrid electric
vehicle without any prediction or predefined rules. For the
most part, it achieves substantial energy savings compared to
traditional control methods. A continuous control strategy for
PHEV is proposed in [57] based on DDPG and the algorithm
exhibits performance close to the global optimal for dynamic
programming.

Energy management is one of the main issues of a micro-
grid, and DRL has achieved great success in solving such
problems. Some workers apply DRL to address the task of
efficiently operating a hybrid storage system in a microgrid
featuring photovoltaics (PV), batteries and hydrogen [58],
[59]. Mbuwir, et al. [60] propose a batch reinforcement
learning application in microgrid energy management by using
state-action value functions to plan optimal scheduling for
batteries. Kofinas, et al. [61] contribute to the application of
a multi-agent reinforcement learning system to control stand-
alone microgrids in order to guarantee electricity supply and
operation reliability. A two-layer optimization is proposed
in [62] for real-time optimal energy management (OEM) of a
grid-connected microgrid. The top-layer is a model-free Q-
learning for decision making and knowledge learning, the
bottom-layer is a conventional convex optimization (interior
point method). To maximize the self-consumption of PV pro-
duction, a data-driven RL method is applied in [63] for battery
energy management in a residential microgrid, by planning
battery operation scheduling. In a paper by Hua et al. [64],
an energy management problem of an Energy Internet is
formulated as an optimal control problem and is solved using a
DRL approach with better performance than the optimal flow
method. A mean-field multi-agent DRL framework is proposed
in [65] to obtain online energy control policies in large energy
harvesting networks. It does not require the state information
of other nodes and can achieve a performance close to the
state-of-the-art centralized policies.

As mentioned above, DRL has many advantages for the
problem against traditional methods: 1) DRL can achieve
online optimization as well as real-time control and feedback
of energy management. 2) DRL can improve efficiency of

energy utilization, reduce operating costs, and increase profits.
3) DRL can complete complicated tasks with lower prior
knowledge thanks to its ability to learn different levels of
abstractions from data. However, energy management still
has the following difficulties: 1) Wind power generation and
PV have large fluctuations and many uncertainties. When
considering energy storage systems and curtailable loads, the
model is complex with high data dimensions. 2) Different
energy storage systems have different generations, capac-
ity, efficiency and costs, so coordinated control is difficult.
3) The charging and discharging status of electric vehicles
and residential appliances is random and the information is
incomplete. 4) Energy management communicates multiple
energy circulations including power generation, transmission,
substation, distribution and load.

Due to the above problems, DRL should focus on the
following issues: 1) Transforming problems in real-world
scenarios into sequence decision problems based on historical
data and physical models. 2) Constructing appropriate reward
functions according to the objectives and constraint conditions
of the real-world issues. 3) Considering classical models and
methods while using data-driven techniques.

B. Demand Response

Demand response (DR) is a typical problem in a smart
grid, which keeps the balance between the electricity demand
of customers and supply of utility companies by price or
incentive. To improve grid stability and shift peak demand,
demand response needs to incorporate consumer feedback and
consumption in the control loop. DRL is thus an effective
optimal control approach with data-driven support models to
solve such problems [66], [67].

For power customers, minimizing costs is the primary objec-
tive, while for utility companies, it is maximizing profits. To
solve a real-time incentive-based demand response problem,
a DRL approach is proposed in [68] by assisting the service
provider in purchasing electricity from various consumers to
balance power fluctuations and keep grid reliability. This is an
alogous to that by Zhang [69], which puts forward a DRL
approach to make sequential optimal decisions in heating,
ventilation and air conditioning (HVAC) systems under de-
mand response. In [70], an autonomous and optimal HVAC
electricity consumption scheduling is planned by multi-agent
RL to minimize the social cost of a game-theoretic method-
ology. An optimal pricing scheme for a demand response
program based on RL is developed in [71], and the balance
between exploration and exploitation in learning processes
leads to better performance in load serving entity (LSE).
An optimal model of residential load scheduling solving by
RL is presented in [72] and considers consumer satisfaction,
stochastic renewable energy and cost. Furthermore, the model
can be made more general. Reference [73] proposes a novel
demand response approach to reduce the long-term charging/
discharging cost of plug-in electric vehicles by batch RL and
a Bayesian neural network.

It is possible for DRL to build a game model between power
companies and customers considering demand response. A
two-stage game model between power companies and cus-
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tomers is proposed in [74] and solved by RL. At the first
stage, the customers’ optimal power consumption is obtained
and at the second stage, the power companies’ prices are
determined. A dynamic pricing demand response model is
proposed in [75], considering the service provider’s profit
and customers’ costs. The retail price is determined by RL
according to electricity demand and wholesale electricity
prices. A multi-agent RL is used for a decentralized control
method in [76] to determine an optimal bidding strategy
between power companies and customers considering demand
response. Similarly, Babar et al. [77] propose an applied
data-driven RL methodology by complex bidding rules for
agile demand response in an unbundled electricity market. A
virtual leader-follower Stackelberg game model based on deep
transfer Q-learning (DTQ) is proposed in [78] to maximize the
total payoff of smart grid agents.

From the above references it is clear that DRL has advan-
tages since: 1) DRL can make decisions based on incomplete
information, and such decisions can be online. 2) Through
game theory, DRL can achieve maximum system benefits
and reduce transaction costs. 3) DRL has a stronger transfer
capability and can be applied to many different scenarios. At
the same time, the challenges of demand response are reflected
in the following aspects: 1) Incentivemeasures are diverse
in form and include economic, technological, environmental
and political incentives (different users respond differently to
incentives.) 2) Demand response is usually accompanied by
changes in various factors such as load and electricity price,
and different factors change the results differently. 3) The
control methods and constraint conditions of the electrical
equipment involved in the response are different, thus making
the model more complicated. 4) The process of demand
response is often accompanied by the game process between
consumers, service providers and power companies, so that
the optimization objectives are different.

To overcome the above challenges, DRL approaches need
to considerthe following issues: 1) Using DNN and other
methods to extract consumers’ behavior characteristics and
predicting their behavior as the basis for optimal control. 2)
Choosing the appropriate state space, including price, load,
SoC of the storage system, etc. 3) Making full use of historical
data and consumers’ feedback to compensate for the lack of
models.

C. Electricity Market

A hierarchical electricity market can be divided into a
wholesale electricity market and a retail electricity market.
It combines service providers with power companies and
customers by information and power, as shown in Fig. 5.
The wholesale electricity market exists when competing power
companies offer their electricity to retailers which then sell
the electricity to the service provider. Meanwhile, the retail
electricity market exists when customers choose their suppliers
from competing electricity retailers. Trading among these
elements is a complex game problem and DRL can be used
to obtain optimal strategies under incomplete information.

For service providers, power companies or customers, an
optimal bidding strategy means more benefit and lower cost.
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Fig. 5. Hierarchical electricity market model.

An event-driven electricity market is proposed in [79] for
energy trading in local distribution networks, and prosumers’
trading strategies are determined by DRL to maximize their
benefit. Chen and Su [79], [80] study an indirect customer-to-
customer electricity market in a distribution network, and RL
is used to determine energy trading strategies. A constrained
energy trading game among end-consumers is proposed in [81]
by adaptive RL with incomplete information, and finally,
bidding strategy converges to Nash equilibrium. A DRL based
algorithm is proposed in [82] for ESSs to arbitrage in real-
time electricity markets under price uncertainty, and electricity
price information is extracted by EMA filter and RNN. An
electricity market model with dynamic pricing and energy
consumption in a microgrid is studied in [83], and in the
model, RL is applied to reduce system cost for the service
provider.

For the whole system, equilibrium and social welfare are
objectives in game theory. Amulti-leaders and multi-followers
Stackelberg game model for energy trading is developed
in [84], and RL is used to obtain equilibrium under a privacy
policy. Xiao et al. [85], [86] propose a microgrid energy
trading game model considering renewable energy generation
and demand, battery level and trading history, and the Nash
equilibrium is obtained by DRL approach. Furthermore, a
continuous real-time electricity market in a microgrid is built
in [87], and a DRL approach with discrete high-level actions
of action spaces is applied to obtain optimal trading cost. An
hour-ahead electricity market model in continuous renewable
power penetration is proposed in [88], and an IEEE 30-bus test
system is implemented by fuzzy Q-learning. A hierarchical
electricity market with bidding and pricing of load serving
entity (LSE) is proposed in [89], dynamical bid and price
response functions are learned by DNN and state transition
samples are generated by a deep deterministic policy gradient
(DDPG) algorithm.

To sum up, compared to conventional methods, DRL has
the following strengths: 1) Most DRL algorithms are model-
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free and suitable for scenarios that cannot be formulated into
models. 2) Function approximators such as neural networks
can extract more data features that are not considered by
the models. 3) Nash equilibrium can be achieved by DRL
between supply and demand sides in electricity markets. On
the other hand, the electricity market has the following major
difficulties: 1) There are multiple entities in the hierarchical
electricity market, and their objectives are different, making
reward functions difficult. 2) In addition to the energy flow,
there is also incomplete information between the entities,
so data-driven methods are needed. 3) Energy trading is a
continuous decision problem, unlike typical discrete decision
problems and requires real-time decision making.

Facing these problems, the following aspects should be the
research objectives of DRL: 1) Using game theory models to
construct different market entities as different game entities. 2)
Using multi-agent RL, and agents corresponding to different
game entities. 3) Due to the complexity of the game process,
research should start from small-scale scenarios and gradually
expand the scale of the scenarios. 4) Improving the ability to
integrate and extract information such as price and energy.

D. Operational Control

The operational control problem is a classical power system
problem. As renewable energysource become more prevalent,
operational control becomes more complex and challenging.
Control strategies and optimization decisions can be online
learning by DRL under large-scale scenarios and with limited
information [90].

Power generation side control is an essential aspect of
operational control. A smart generation control scheme of
multi-area interconnected grids is proposed in [91], [92]. DRL
can obtain an optimal strategy facing complex operating envi-
ronments, which cannot be solved by conventional centralized
automatic generation control (AGC). Reference [93] and [94]
present a new architecture DQL algorithm for the first time
and use the proposed algorithm to design a smart generation
controller for multi-agent systems with high-level robustness.
Similarly, a preventive strategy for smart generation control
(SGC) under large continuous disturbances is proposed in [95].
Deep forest reinforcement learning (DFRL) proves more effec-
tive than traditional AGC. Reference [96] develops a two-layer
decentralized generation commanddispatch (GCD) scheme of
automatic generation control (AGC). The first layer is to
obtain generation command and the second layer is to exploit
prior knowledge for optimal control by consensus transfer Q-
learning (CTQ). A novel optimal yaw control method based
on RL is proposed in [97], and ANN is used to avoid large
matrix quantification problem. In order to achieve the quan-
tity of instant wind turbine power and orientation variation,
this method also considers the constraints of the mechanical
limitations in the yawing system and the mechanical loads.

Load control is another critical aspect of operational con-
trol. A model-free load frequency control (LFC) approach
in continuous action space by DRL is proposed in [98].
Faster response speed and stronger adaptability are obtained
to minimize frequency deviation. While in reference [99], a
load near-optimal control problem under sparse observations

is proposed. The problem is solved by DRL with function
approximators CNN and LSTM, with LSTM having a higher
performance than CNN. Similarly, Claessens et al. [100] use
CNN as a function approximator to extract hidden state fea-
tures of the residential load. The high-dimensional load control
problem is solved by fitted Q-iteration to reduce electricity
cost.

Apart from generation and load control, appliances and
system control are also complex decision-making problems.
To utilize natural ventilation for an HVAC system, Chen et
al. [101] introduce an RL control approach which works
better than conventional rule-based heuristic control. Similarly,
Zhang et al. [102] develop building a HVAC system optimal
control model for energy efficiency and thermal comfort. A3C
algorithmis applied for DRL training under high-dimension
data and continuous space. A smart grid emergency control
strategy is proposed in [103] during the transient process,
DQN and double DQN are applied under a limited informa-
tion scenario. Similarly, Huang et al. [104] present a DRL-
based emergency control scheme. Grid security and resiliency
are improved online with the non-linear generalization and
high-dimensional feature extraction abilities. A power grid’s
operation and maintenance problemsare developed in [105].
ANN is used to replace the tabular representation of value
function and RL exploits the information about the state and
components of the grid. A real-time two-timescale voltage
control strategy is proposed in [106]. Active power generation
dynamic and load consumption are modeled as MDPs and
optimized by DRL to minimize bus voltage deviations. Diao
et al. [107] propose a novel Grid Mind framework to mitigate
voltage issues effectively. Autonomous grid operational control
policies can be learned by DRL through interactions with
offline simulations.

In conclusion, DRL has the following advantages on opera-
tional control: 1) Continuous control can be achieved by DRL
under continuous state and action spaces. 2) DRL can make the
control system more automated with incomplete information.
3) DRL can handle some unpredictable emergencies, which
is beyond the competence of most traditional methods. There
remain however some problems of operational control in the
following respects: 1) Device control needs to be combined
with the device’s physical structure and operating conditions.
2) Operational control should consider both steady state and
transient stability, so different time scales need to be consid-
ered. 3) For the power generation system, it is necessary to
consider the synchronous operation state of the unit. For the
power generation system and the power consumption system,
it is also necessary to consider the voltage and frequency
stability.

To solve these problems, the following directions should be
considered: 1) Combining DRL with classic control methods
and strategies to avoid system failures. 2) Adoptinga hierar-
chical strategy, with one layer using control strategy and one
layer using optimization strategies. 3) Convergence of grid
data features and device model features for more intelligent
and flexible control.
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E. Others

As research continues, DRL is also being increasingly
applied in other areas of power systems, such as cyber security,
economic dispatch and system optimization etc. When solving
these problems, the DRL method is highly suitable for ana-
lyzing dynamic behaviors, complicated scenariosand uncertain
constraints.

A multi-stage game between cyber attacker and defender
based on RL is proposed in [108]. To identify the optimal
attack sequences, the attacker learns the sequence of attackac-
tions and the defenderlearns to defend against it. Meanwhile,
Paul and Ni [109] compare RL and linear programming for
smart grid security problems. Linear programming determines
the attacker’s and defender’s mixed action strategies and
probability, while RL obtains the optimal attack action in the
presence of a static defender’s action for the one-shot game.
In reference [110], RL is used to obtain the optimal attack
strategy for the attacker with incomplete information, which
can help maintain the security of an automatic voltage control
(AVC) system.

Furthermore, a cooperative RL approach which can avoid
the complexity of model and dimensionality is utilized in [111]
to solve a distributed economic dispatch problem. This ap-
proach minimizes operation cost while considering power
balance, capacity, and operational constraints. Similarly, a
bacteria foraging RL method is proposed in [112] to deal with
economic dispatch problems under system uncertainties and
knowledge transfer is implied to increase efficiency. A smart
grid system optimization problem with arigorous physical
model is solved in [113] by DQN, DPG and mixed-integer
linear programming (MILP). Furthermore, a multi-access edge
computing (MEC) problem of a microgrid in [114] is divided
into an energy-efficient assignment problem and energy supply
plan problem. Model-based DRL is used to solve the second
subproblem with the input of the first subproblem. An optimal
routing problem in an Energy Internet is proposed in [115],
and a DRL algorithm is used to improve energy efficiency and
reduce the operating and environmental cost.

According to the previous discussion, DRL has following
characteristics: 1) DRL can be combined with many traditional
methods to achieve better results. 2) DRL is suitable for
scenarios that are not easy to model, such as cyber security and
emergency control. 3) DRL can deal with data with larger scale
and higher dimension under a complicated system. In addition,
the optimization and control problems of a power system are
omnifarious and have at least the following difficulties: 1) The
situation facing cyber security is complex, and the attacks
received by the power grid are diverse and unpredictable.
2) Economic dispatch and unit commitment problems need
to be considered in parallel with planning and operation,
making the optimization process more complicated. 3) In
system optimization and edge calculation problems, variables
and constraints are complex and calculation is large, so the
algorithms are more demanding.

To solve the problems, the following points need atten-
tion: 1) Combining model-driven approaches with data-driven
approaches, extracting features from historical data, and de-

termining state space and action space through models. 2)
Studying the basic principles and generalization performance
of DRL and updating and improving the algorithms’ ability
to adapt and solve problems. 3) Starting from smaller scale
optimization and control issues, gradually studying more com-
plex scenarios and developing into a smart grid. 4) Integrating
domain knowledge such as cybernetics, game theory, mathe-
matical optimization, computer science and further abstracting
specific problems into general mathematical and engineering
problems.

IV. CONCLUSION

Over the past few years, DRL has achieved rapid de-
velopment in solving sequential decision-making problems,
around theoretical, methodological and experimental fields.
In particular, DL obtains the object’s attributes, categories,
or characteristics from the environment, while RL makes
decisions to control strategies according to the information.
Therefore, DRL can solve problems in large, high-dimensional
states and action spaces.

With further research and the development of smart grids,
power systems evolve and face new challenges with the inte-
gration of renewable energy and deepening of marketization.
Traditional methods face many difficulties in solving these
problems in the power system, so there is an increasing
need for AI methods such as DRL. This paper reviews the
principle, development, algorithms, and characteristics of DRL
and its applications in the power system, including energy
management, demand response, electricity market, and op-
erational control. It also briefly summarizes the implements
and processes of application in different scenarios and makes
statistics and comparisons on the key information of the
papers. There are still many issues to be discussed.

A. Application Landing Problem

So far, the application of DRL in the power system has
rarely been ractical or commercially viable. On the one hand,
DRL theory is still not perfect and is still in the exploration
and verification stage. On the other hand, the power system
has higher requirements for the reliability and stability of the
control method, but the current machine learning method is
still based on probability and statistical law.

In order to promote the practical applications of DRL in
the power system, firstly the theory and modelling of DRL
algorithmsneed to be perfected to improve DRL reliability
and robustness. It is then vital to run related models in
small-scale scenarios to accumulate data and experience, and
gradually expand to large-scale scenarios. In addition, relevant
research and industry developments require the support of
market policy and promotion.

B. Main Issues and Key Technologies

Despite its successful models and applications, DRL still
suffers problems and challenges when it comes to real-world
implementation. This is especially the case in power systems
where there are still many problems to be solved.
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A Go game has strict rules, and the return of each action can
be accurately calculated and evaluated. However, when com-
pared to the Go game, a power system is more complicated,
and has many uncertainties. For example, renewable energy
generation cannot be described and predicted with accurate
models; equipment failure usually occurs suddenly; electricity
market trading behaviors and strategies are also diverse. In
view of the above situation, DRL requires multiple designs
and modifications to adapt to different scenarios.

Firstly, the reward function needs to be designed according
to practical problems and will determine the direction and
efficiency of learning. Secondly, function approximators need
to be chosen carefully, especially for complicated scenarios.
Thirdly, state and action spaces represent the scale and com-
plexity of the system model, so they require thoughtful plan-
ning. Finally, the tradeoff between exploration and exploitation
cannot be ignored, so initialization and parameters need to be
set carefully.

C. Future Development of DRL

In terms of theory and applications, current DRL is at
the first stage of artificial intelligence, or artificial narrow
intelligence (ANI). It still faces theoretical, technological,
economic, societal and ethical challenges, even though it has
achieved success in some cases. With the development of
information and communications technologies, DRL will be
further developed and applied.

Regarding the future development of DRL, at least the
following aspects need to be considered. The first is the
generalization ability. DRL will develop popular trends of
taking explicit algorithms into a specific form of the neural
network so that it can be trained end-to-end and be more
suitable for reasoning on an abstract level. The second is the
transfer learning ability. This would allow DRL to learn com-
plicated decision-making problems in simulations and then
apply the learned information in real-world environments. The
third is meta-learning and lifelong learning ability. This would
improve performance and shorten training time with previous
knowledge and information. Besides, multi-agent methods are
also significant. This would allow DRL to deal with multiple
subjects, which is closer to the real world.

In conclusion, DRL and its applications in the power system
still face many opportunities and challenges. These will cause
more attention and research, and there will inevitably be more
surprising developments in the future.
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