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Stability Analysis of PLL Influenced by Control
Loops in Grid-connected Converters Under

Fault Disturbance
Yushuang Liu, Meng Huang, Xiaoming Zha, and Herbert Ho-Ching Iu, Senior Member, IEEE

Abstract—When the power grid suffers from grid faults that
cause phase disturbances, the grid-connected converter becomes
destabilized by the interaction between the phase-locked loop
(PLL) and the control loop. In this paper, the stability of the PLL
affected by the control loop under transient grid faults is studied.
First, the equivalent model of the PLL under the influence of the
control loop is established. Then, different response processes of
PLLs under the ground fault with various control parameters
are qualitatively analyzed. Furthermore, a small-signal model
is proposed to assess the stability of the PLL under different
control loop parameters. The system poles can be calculated to
show the physical origin of the instability. Finally, simulations of
a three-phase 21-level modular multilevel converter (MMC) built
in PSCAD and a down-scale experiment is performed to verify
the parameter influence of the control loop on the PLL.

Index Terms—Control loop, grid-connected MMC, ground
fault, phase-locked loop, transient stability.

I. INTRODUCTION

W ITH the increasing application of power electronic
devices in the power system, operational characteristics

of power systems have changed tremendously due to the
introduction of such devices [1]–[4]. For example, when a
fault occurs in the power grid, the fault may have an adverse
influence on the operation of grid-connected converters, and
then the dynamic behaviors of converters may further exac-
erbate the operation of the whole power system. To ensure
the safe operation of power systems, stability issues of power
electronic-based power systems have received increasing at-
tention during recent years [5]–[8].

Considering that grid faults always bring severe problems
to power electronic-based power systems, such as overcurrent,
overvoltage and some oscillation behaviors [9]–[11], studying
how grid faults impact converters that are connected to weak
AC grids becomes a popular research area [12]–[14]. From
most of this research, the behaviors of phase-locked loops
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(PLLs) have been revealed to analyze the impact on the
stability of converters [15], [16], since the PLL is adopted
to detect the voltage phase at the point of common coupling
(PCC) to synchronize converters to the power grid [17].

A great amount of research has been done investigating the
small-signal stability analysis of PLLs to predict their low-
frequency unstable oscillations in grid-connected converter
systems [18]. During the process of small-signal analysis,
small-signal linearization methods and linear control theories
are utilized to simplify the analysis [19]. For example, a uni-
fied small-signal impedance model of grid-connected voltage-
source converters (VSCs) is established in [20], to predict
the stability impact of the PLL. In [21], the linearized grid-
synchronization loop and the self-synchronization loop are
proposed to explain the interaction of the power grid and
the injection current in a grid-connected VSC. However, the
small-signal analysis can only predict the stability of PLLs
around steady-states and cannot reflect the failure process and
instability mechanism under grid faults.

To study the instability process of the PLL under faults,
transient stability analysis is needed. Some literature uses
power-angle curves or voltage-angle curves to describe the
transient process of PLLs in different scenarios [19], [22]–
[24]. In a grid-connected converter system without current
limitation, phase-portrait analysis is adopted to study the tran-
sient responses of the converter with a power synchronization
control [22], [23]. In a current limited grid-connected converter
system, the converter reaching the current limitation can be
regarded as a current source which is only controlled by the
reference current. The dynamic behavior of PLLs in such
situations has been analyzed in [19]. However, in this research,
the control loops are simplified or ignored. In [25], a current
loop with a voltage feedforward filter is adopted to prevent
instability of the grid-connected system, but the dynamic
responses of the PLL are ignored. In a previous work that
considers both the control loop and the PLL [16], the response
of the PLL influenced by the control loop is neglected. In
practical grid-connected systems, the behaviors of PLLs may
be influenced by the widely-used inner current loop and outer
power/voltage loop. Hence, analyzing the transient stability
of the PLL considering the influence of the dynamics of the
control loop under grid faults is of great significance.

In this paper, the PLL affected by the current loop and the
power loop in a grid-connected modular multilevel converter
(MMC) is taken into consideration. The outline of this paper is
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arranged as follows. In Section II, the equivalent model of the
PLL is established to present the interaction with the control
loop. In Section III, the transient process of how the control
loop influences the PLL under the ground fault is clarified.
In Section IV, a small-signal analysis model is proposed to
assess the stability of the PLL after a ground fault under
different control loop parameters. In Section V, simulations of
a grid-connected three-phase 21-level MMC built in PSCAD
are performed to analyze the parameter influence and verify
the analysis above. Section VI provides our conclusions.

II. EQUIVALENT MODEL OF PLL

In order to study the stability of the PLL influenced by the
control loop under grid faults, a grid-connected MMC system
disturbed by a grid ground fault is presented in this paper. The
system is shown in Fig. 1. The AC grid is a non-ideal power
grid, where Zg, Zline1 and Zline2 are the inner impedances of
the AC grid. Zg represents the equivalent impedance of series
transmission lines in the power grid, while Zline1 and Zline2
represent the impedances of two paralleled transmission lines
(line 1 and line 2). The MMC is connected to the AC grid at
the point of common coupling (PCC), as shown in Fig. 1. Zf is
the impedance of the AC filter. Zgnd is the ground impedance.
The topology of the three-phase MMC is shown in Fig. 2.
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Fig. 1. Grid-connected MMC system.
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Fig. 2. Topology of three-phase MMC.

To analyze the stability of the PLL in the grid-connected
three-phase MMC system under a grid fault, the phasor dia-
gram is shown in Fig. 3. The black arrows represent the voltage
vectors before the fault and the red arrows represent the
voltage vectors after the fault. In the phasor diagram, it can be
seen that the ground fault leads to a phase jump, since the grid

impedance Zs changes from Zs1 to Zs2, where Zs1 = Zg+
(Zline1//Zline2) before the fault and Zs = Zs2 = Zs1//Zgnd after
the fault.

θPCC
d

q

VPCC

VPCCd

VPCCq

Vg1

IgZs2

VPCC(VPCCd)
IgZs1Vg

Fig. 3. Phasor diagram before and after fault.

Before the fault, the voltage drop on the grid inductance
Ls1 can be ignored. Due to the effect of the PLL, the phase
angle of the voltage at PCC θPCC, the output phase angle of
the PLL θPLL and the grid phase θg can be regarded as the
same, i.e., θPCC = θPLL = θg. Thus, the system operates with a
unity power factor before the fault, in which case the voltage
at PCC can be given as:

VPCC∠θPCC = Vg∠θg + IgZs1∠θg (1)

However, when the fault happens, the grid impedance Zs

will become smaller (i.e. Zs2), and the phase angle of the grid
impedance θs2 may change suddenly. The phases θPCC, θPLL
and θg are unable to stay the same any more.

Figure 4 shows the Norton equivalent circuit of the AC
grid after the ground fault. The amplitude ofequivalent grid
voltage would drop to Vg1 = VgZs2/Zs1. Ignoring the phase
variation of the equivalent grid voltage vg1 and assuming the
grid current ig remains unchanged, the amplitude of voltage
at PCC VPCC would decrease, as shown in Fig. 3. The PCC
voltage in d-axis vPCCd may decline with the drop of VPCC,
and the PCC voltage in q-axis vPCCq may slightly increase
with the growth of the phase angle θPCC. The PCC voltage at
the moment of the fault happening can be calculated as:

VPCC∠θPCC = Vg1∠θg + IgZs2∠(θg + θs2) (2)

Zs1 Zs2

PCC
Fault Zgnd

PCC
Ig Ig

Vg∠θg
VPCC∠θPCC

VPCC∠θPCC

Vg1∠θg

Fig. 4. Norton equivalent circuit of the AC grid after ground fault.

After the fault, the PLL and the control loop work to adjust
the operational state of the MMC system which is connected to
a weak power grid. We can establish a two-source equivalent
circuit of this grid-connected system after the fault as shown
in Fig. 5.
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Fig. 5. Two-source equivalent circuit.
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Figure 5 shows that the voltage at PCC vPCC is affected
by both the equivalent grid voltage vg1 and the equivalent
output voltage of the MMC ev. Zs and Zeq represent the
grid impedance and the equivalent impedance of the MMC
respectively, where Zeq = Zf + Z0/2. According to the two-
source equivalent circuit of the MMC system, the voltage at
PCC can be obtained as:

VPCC∠θPCC =
Zeq(ωg)

Zs(ωg) + Zeq(ωg)
Vg1∠(θg + ϕ1)

+
Zs(ωPLL)

Zs(ωPLL) + Zeq(ωPLL)
Ev∠(θv + ϕ2) (3)

K1(ω) =

∣∣∣∣ Zeq(ω)

Zs(ω) + Zeq(ω)

∣∣∣∣
K2(ω) =

∣∣∣∣ Zs(ω)

Zs(ω) + Zeq(ω)

∣∣∣∣ (4)



ϕ1 = phase
(

Zeq

Zs + Zeq

)
= arctan

ωLeqRs − ωLsReq

Req(Req +Rs) + ω2Leq(Leq + Ls)

ϕ2 = phase
(

Zs

Zs + Zeq

)
= arctan

ωLsReq − ωLeqRs

Rs(Req +Rs) + ω2Ls(Leq + Ls)

(5)

where Ev represents the amplitude of the MMC equivalent
output voltage ev. ωg is the angular frequency of the power
grid and ωPLL is the output angular frequency of the PLL.

Transforming vPCC into dq rotating reference frame, the dq-
axis voltage of vPCC can be calculated as:
vPCCd = K1(ωg)Vg1 cos[θg + ϕ1(ωg)− θPLL]

+K2(ωPLL)Ev(ωPLL) cos[θv + ϕ2(ωg)− θPLL]

vPCCq = K1(ωg)Vg1 sin[θg + ϕ1(ωg)− θPLL]

+K2(ωPLL)Ev(ωPLL) sin[θv + ϕ2(ωg)− θPLL]

(6)

Based on the control block of the PLL presented in Fig. 6,
the output phase angle of the PLL is obtained from a PI and an
integral process. Thus, the output phase angle can be written
as:

θPLL =

∫
[ωg + (Kp +Ki ∫)vPCCq] (7)

θPLLPI

vPCCa

vPCCd

vPCCq

vPCCb

vPCCc

abc

dq 1/s

ωPLL

+

+

Fig. 6. Control diagram of PLL.

Substituting (6) into (7), the control equation of the PLL
can be rewritten as:

θPLL =

∫
{ωg + (Kp +Ki ∫)[K1Vg1 sin(θg + ϕ1 − θPLL)

+K2Ev sin(θv + ϕ2 − θPLL)]} (8)

Since the phase angle of the equivalent output voltage θv is
provided by the PLL, θv is regarded as equal to θPLL in this

paper. Considering the voltage drop on the impedance IgZs

is far smaller than the equivalent grid voltage vg1, the phase
angle of the PCC voltage θPCC can be regarded as equal to
the grid phase θg, i.e., θPCC ≈ θg. Define the phase angle
difference between θPLL and θPCC as δ, there is:

δ = θPCC − θPLL ≈ θg − θPLL (9)

Thus, the equivalent model of the PLL can be expressed as:

δ =

∫
{(Kp +Ki ∫)[K1Vg1 sin(ϕ1 + δ) +K2Ev sinϕ2]}

(10)

which reflects the PLL behavior under the influence of the grid
impedance and the output voltage of the control loop. Based on
(10), the control block of the PLL considering the interaction
of the control loop after the grid fault can be plotted, as shown
in Fig. 7.

δ
vPCCq

φ1 1/s
+

+

+

Ev

sin
+ δ

.

K1Vg1

K2sinφ2

Kp+Ki /s

Fig. 7. Control diagram of PLL with the interaction of the control loop.

Assuming that the equivalent output voltage of the MMC is
equal to the output command of the control loop, i.e., ev ≈ e∗v,
the red part in Fig. 7 represents the effect of the control loop
on the PLL. Actually, in many researchers’ previous works,
the output voltage or current of the converter is always given
as a constant, which may not be disturbed by the grid fault
and cannot reflect the influence of the control loop. However,
in this paper, the variation of Ev after the fault, which shows
the dynamic of the control loop, is considered.

III. INFLUENCE OF CONTROL LOOP

From the analysis in Section II, it can be shown that the
d-axis voltage vPCCd would decrease and the q-axis voltage
vPCCq slightly increase when a ground fault happens in line2,
which will lead to the increasing of δ̇ and δ. The variation of
vPCCd and vPCCq will also cause the action of both the inner
current loop and outer power loop.

According to the control diagram of the outer voltage loop
in Fig. 8, the control equation is given as:

idref = (Kp2 +Ki2 ∫)
(
Pref −

3

2
idvPCCd −

3

2
iqvPCCq

)
iqref = (Kp2 +Ki2 ∫)

(
Qref −

3

2
iqvPCCd +

3

2
idvPCCq

)
(11)

where Kp2 and Ki2 are the proportional gain and integral gain
of the power loop.
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Fig. 8. Outer power loop.
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In (11), the decrease of vPCCd from its steady value indicates
the power loss in the AC side of the MMC. Thus, the reference
value of d-aixs current idref may show an increasing trend
under the grid ground fault, and iqref cannot stay at zero.

When the reference currents vary, the output voltage com-
mands may be changed due to the action of the inner current
loop. From the inner current loop shown in Fig. 9, the dq-axis
output voltage commands e∗vd and e∗vq can be given by the
control equation of the current loop as follows:{
e∗vd = vPCCd + ωLeqiq + (Kp1 +Ki1 ∫)(idref − id)

e∗vq = vPCCq − ωLeqid + (Kp1 +Ki1 ∫)(iqref − iq)
(12)

where Kp1 and Ki1 are the proportional gain and the integral
gain of the current loop. The amplitude of the equivalent
output voltage Evthat transfers the influence of the control
loop to the PLL can be given as:

Ev ≈ E∗v =
√
e∗2vd + e∗2vq (13)

where E∗v is the amplitude of the output voltage commands
e∗v. Since the voltage commands in q axis e∗vq varies around
zero and the voltage commands in d axis e∗vd is much higher
than e∗vq, the variation trend of E∗v is primarily determined by
e∗vd.
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Fig. 9. Inner current loop.

From (12), it can be seen that the variation of the voltage
commands e∗vd are primarily affected by vPCCd and idref. Thus,
analyzing whether vPCCd or idref determine the variation trend
of e∗vd is essential. The dominant factor of the variation trend
of e∗vd may be related to the control parameters of the inner
current loop, such as the proportional gain Kp1.

When there is a smaller Kp1 in the current loop, e∗vd may
decline with the decrease of vPCCd. Thus, the amplitude of the
output voltage Ev may drop to a smaller value according to
equation (13). Since ϕ1 and ϕ2 have opposite signs according
to equation (5), we can suppose that the sign of ϕ1 is positive
as an example. Under this assumption, sinϕ2 in Fig. 8 is a
negative value, the q-axis voltage at PCC K1Vg1 sin(ϕ1+δ)+
K2Ev sinϕ2 may show an increasing tendency. The control
loop and the PLL may form a positive feedback. The phase
angle difference δ will continue to grow and diverge to infinity,
in which case the PLL will become unstable.

When there is a larger Kp1 in the current loop, e∗vd may
become higher with the increase of idref. The amplitude of the
output voltage Ev may rise accordingly. With a negative sinϕ2

in Fig. 8, K1Vg1 sin(ϕ1 + δ) +K2Ev sinϕ2 may decline. The

control loop and the PLL may form a negative feedback. The
phase angle difference δ will show a convergent tendency and
recover to its steady value, in which case the PLL can keep
stable.

Similarly, the outer power control loop affects the responses
of the PLL by changing the variation trend of e∗vd. When
there is a larger proportional gain of the power loop Kp2,
the system will become more stable. As the d-axis voltage
vPCCd decreases because of the phase disturbance, the d-axis
reference current idref will increase. The value of Kp2 will
determine the growth degree of idref as shown in (11). If there
is a larger Kp2, idref will grow more, which causes e∗vd to have
an increasing tendency. Then, the control loop and the PLL
will form a negative feedback, and the system can recover to
a stable state. However, if there is a smaller Kp2, the increase
of idref may be slight, and the variation tendency of e∗vd is
determined by the drop of vPCCd. Thus, in this situation, the
control loop and the PLL may form a positive feedback, and
cannot remain stable anymore. The response processes of the
PLL with the interaction of the control loop under grid fault
are presented in Fig. 10.

vPCCq
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Ground
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Zs δ
.

δ

vPCCd vPCCqevd
* Ev

larger 

PLL

Control loop

Positive feedback: unstable

Negative feedback: stable

Control loop

(11) (12) (13) (7)

idref
vPCCd vPCCqevd

* Ev

(11) (12) (13) (7)

larger 

Kp2

Kp2

Kp1

or

smaller
Kp1

smalleror

sinφ2 0

sinφ2 0

Fig. 10. Response process of PLL with interaction of the control loop under
grid fault.

IV. SMALL-SIGNAL STABILITY ANALYSIS OF PLL
CONSIDERING THE INTERACTION WITH THE

CONTROL LOOP

From the qualitative analysis above, how the gains of both
the current loop and the power loop affect the stability of the
PLL is clarified by the block diagram in Fig. 10. However,
to analyze the parameter influence of the system with exact
values, a quantitative calculation is needed. In this section,
a small-signal model of the PLL considering the interaction
of the control loop is established to analyze the small-signal
stability and the parameter influence of the PLL after the fault.

According to (6), the linearized small-signal model can be
obtained around the steady-state operating point, i.e., ω = ωg.

Since the phase angle of the equivalent output voltage θv is
provided by the PLL, θv is regarded as equal to θPLL in this
paper. Considering the PLL is able to follow the grid phase
angle when the system operates in a stable state, the small-
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signal equation of (6) can be written as:{
∆vPCCd = G1(∆θg −∆θPLL) +G2∆ω +G3∆Ev

∆vPCCq = G4(∆θg −∆θPLL) +G5∆ω +G6∆Ev

(14)

where 

G1 = −K1(ωg)Vg1 sin[ϕ1(ωg)]

G2 = {−K2(ωg) sin[ϕ2(ωg)]ϕ′2(ωg)

+K ′2(ωg) cos[ϕ2(ωg)]}Ev(ωg)

G3 = K2(ωg) cos[ϕ2(ωg)]

G4 = K1(ωg)Vg1 cos[ϕ1(ωg)]

G5 = {K2(ωg) cos[ϕ2(ωg)]ϕ′2(ωg)

+K ′2(ωg) sin[ϕ2(ωg)]}Ev(ωg)

G6 = K2(ωg) sin[ϕ2(ωg)]

(15)

In (14), ∆Ev is the small-signal increment of Ev, and
Ev(ωg) is the steady-state value of Ev when the angular
frequency keeps stable at ωg. In previous studies [18], the
output voltage or current of the converter is regarded as the
same as the reference values, without considering the dynamic
behaviors of the control loop. However, the dynamic of the
control loop is taken into consideration in this paper. The
calculation of ∆Ev will reflect the action of the control loop
under the phase disturbance, so it is quite essential to derive
the small-signal increment ∆Ev.

The small-signal linearized expression of Ev can be ob-
tained from (13) when the system operates around the steady-
state point ωg, i.e.,

∆Ev ≈ [e∗vd(ωg) + e∗vq(ωg)](∆e∗vd + ∆e∗vq)/Ev(ωg) (16)

According to the control equation of the current loop (12),
the small-signal items ∆e∗vd and ∆e∗vq in (16) can be expressed
as the linearized inner current control in (17).

∆e∗vd = ∆vPCCd + LeqIq∆ω + ωgLeq∆iq

+Gi(∆idref −∆id)

∆e∗vq = ∆vPCCq − LeqId∆ω − ωgLeq∆id

+Gi(∆iqref −∆iq)

(17)

where Gi = Kp1 +Ki1/s.
Similarly, the dq-axis reference current increment ∆idref and

∆iqref can be given from the control equation of the power loop
(11), i.e.,

∆idref =
3

2
Gp(−Id∆vPCCd − VPCCd∆id

− Iq∆vPCC q − VPCCq ∆iq)

∆iqref =
3

2
Gp(−Iq∆vPCCd − VPCCd∆iq

+ Id∆vPCC q + VPCC q∆id)

(18)

where Gp = Kp2 +Ki2/s.
Combining (16), (17) and (18), the small-signal increment

of Ev can be derived as:

∆Ev ≈ J1∆vPCCd + J2∆vPCCq + J3∆id + J4∆iq + J5∆ω
(19)

where

J1 =

(
1− 3

2
GiGpId −

3

2
GiGpIq

)
[e∗vd(ωg)

+ e∗vq(ωg)]/Ev(ωg)

J2 =

(
1 +

3

2
GiGpId −

3

2
GiGpIq

)
[e∗vd(ωg)

+ e∗vq(ωg)]/Ev(ωg)

J3 =

(
3

2
GiGpVPCCq −

3

2
GiGpVPCCd −Gi − ωgLeq

)
[e∗vd(ωg) + e∗vq(ωg)]/Ev(ωg)

J4 =

(
ωgLeq −

3

2
GiGpVPCCq −

3

2
GiGpVPCCd −Gi

)
[e∗vd(ωg) + e∗vq(ωg)]/Ev(ωg)

J5 = Leq(Iq − Id)[e∗vd(ωg) + e∗vq(ωg)]/Ev(ωg)

(20)

Considering the relationship of the grid voltage and current
in Fig. 5, the grid voltage and current should satisfy the
following equation:

Ig∠θi =
1

Zs(ωPLL)+Zeq(ωPLL)
Ev∠θv

− 1

Zs(ωg)+Zeq(ωg)
Vg1∠θg

= K3(ωPLL)Eve
j[θv+ϕ3(ωPLL)]

−K3(ωg)Vg1e
j[θg+ϕ3(ωg)] (21)

where

K3(ω) =
1

|Zs(ω) + Zeq(ω)|
,

ϕ3(ω) = phase
(

1

Zs(ω) + Zeq(ω)

)
Thus, ∆id and ∆iq in (19) can be given as:{

∆id = H1∆ω +H2∆evm +H3(∆θg −∆θPLL)

∆iq = H4∆ω +H5∆evm +H6(∆θg −∆θPLL)
(22)

where

H1 = K ′3(ωg)Ev(ωg) cos[ϕ3(ωg)]

−K3Ev(ωg)ϕ′3(ωg) sin[ϕ3(ωg)]

H2 = K3(ωg) cos[ϕ3(ωg)]

H3 = K3(ωg)Vg1 sin[ϕ3(ωg)]

H4 = K ′3(ωg)Ev(ωg) sin[ϕ3(ωg)]

+K3(ωg)Ev(ωg)ϕ′3(ωg) cos[ϕ3(ωg)]

H5 = K3(ωg) sin[ϕ3(ωg)]

H6 = −K3(ωg)Vg1 cos[ϕ3(ωg)]

(23)

Combining (22) and (19), there is:

∆Ev =
J3H1 + J4H4 + J5
1− J3H2 − J4H5

∆ω+
J1

1− J3H2 − J4H5
∆vPCCd

+
J2

1− J3H2 − J4H5
∆vPCCq

+
J3H3 + J4H6

1− J3H2 − J4H5
(∆θg −∆θPLL)

= T1∆ω + T2∆vPCCd + T3∆vPCCq + T4(∆θg −∆θPLL)
(24)
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And then substituting (24) into (14), ∆vPCCq can be rewrit-
ten with only three small-signal items that are related to
frequency and angle, i.e., ∆ω, ∆θg and ∆θPLL, as shown in
(25).

∆vPCCq = F1∆ω + F2(∆θg −∆θPLL) (25)

where
F1 =

(G5 +G6T1)(1−G3T2) +G6T2(G2 +G3T1)

(1−G3T2)(1−G6T3)−G6T2G3T3

F2 =
(G4 +G6T4)(1−G3T2) +G6T2(G1 +G3T4)

(1−G3T2)(1−G6T3)−G6T2G3T3
(26)

Then, the small-signal model of the PLL in the grid-
connected MMC system can be established in (27) and the
model around the operating point can be also described in
Fig. 11. The red part of Fig. 11 shows the influence of the
control loop on the PLL. In Fig. 11, the interaction between the
PLL and the control loop is presented clearly. The control loop
affects the PLL by changing the output voltage of the MMC
∆Ev, and the output phase ∆θPLL and angular frequency ∆ω
of the PLL will further affect the output voltage of the control
loop ∆Ev.

∆θPLL = [F1∆ω + F2(∆θg −∆θPLL)]

(
Kp +

Ki

s

)
1

s
(27)

ΔθPLL

ΔvPCCd

ΔvPCCq
1/s

ΔωPLL
G1

G4

G5

G2
+

+

+

−

+
+

T4

G3

G6

T3

T2

T1
++

+

+
ΔEv

ΔEv

Δθg
Kp+Ki /s

Fig. 11. Small-signal model of PLL.

According to (27), the input and output transfer function of
the PLL can be derived as follows:

∆θPLL

∆θg
=

KpF2s+KiF2

(1−KpF1)s2+(KpF2−KiF1)s+KiF2
=
N(s)

D(s)
(28)

Solving the poles of the transfer function (28), the stability
of the PLL can be assessed by analyzing the sign of the real
parts of the poles. When there is no pole in the right half-plane,
the PLL can remain stable after the fault. On the contrary, if
there is any pole staying in the right half-plane, the PLL will
lose stability.

V. VERIFICATION

In this section, a grid-connected three-phase 21-level MMC
simulation model is built in the PSCAD platform to verify the
analysis of the response process in Fig. 10. The simulation
model is shown in Fig. 1 and Fig. 2, and the parameters of
the grid-connected MMC system are listed in Table I.

TABLE I
PARAMETERS OF GRID-CONNECTED MMC SYSTEM

System parameter Value
AC voltage vg (kV) 23
Phase of AC voltage θg (deg) 0
Rated DC voltage Vdc (kV) 40
Number of SMs per arm N 20
SM capacitance C (mF) 10
Reference value of active power Pref (MW) 40
Reference value of reactive power Qref (MVar) 0
Proportional gain of PLL Kp 0.2
Integral gain of PLL Ki 100
AC grid frequency fg (Hz) 50
Arm impedance Z0(L0, R0) (mH, Ω) 16, 0.18
AC filter impedance Zf(Lf , Rf) (mH, Ω) 0.1, 0.1
Series impedance Zg(Lg, Rg) (mH, Ω) 0.1, 0.2
Impedance of line 1 Zline1(Lline1, Rline1) (mH, Ω) 13, 0.2
Impedance of line 2 Zline2(Lline2, Rline2) (mH, Ω) 29, 0.2
Ground impedance Zgnd(Lgnd, Rgnd) (mH, Ω) 25, 0.1

In the MMC system, when a ground fault occurs in line
2, the grid impedance Zs changes from Zg + (Zline1//Zline2)
to (Zg + (Zline1//Zline2))//Zgnd. The equivalent grid voltage
changes from vg to vg1. The amplitude and the phase of
the voltage at PCC may change accordingly, and then induce
some dynamic behaviors of the PLL. To analyze the transient
responses of the PLL influenced by the control loop under the
ground fault, simulations with different control parameters are
presented in this section.

A. Parameter Influence of Kp1

Figure 12 and Fig. 13 show the transient responses of the
grid-connected MMC when the ground fault happens at 6 s
with different proportional gains of the current loop Kp1.

When Kp1 = 10, Ki1 = 0.5, the system presents an
abnormal operating state, as shown in Fig. 12. A divergent
oscillation can be observed in the output angular frequency
of the PLL. The active power shows a slight decrease and
then recovers to its steady value. The reactive power, dq-
axis voltage and current also oscillate and diverge with the
divergency of the PLL output angular frequency. The AC
voltage at PCC and AC grid current shows distortion due to
the oscillations in the dq-axis voltage and current after the
ground fault, which can be shown by the waveforms vPCCa
and iga in Fig. 12 (e)–(f). The waveforms in Fig. 12 verify
the analysis that the PLL may lose stability after the fault with
a smaller Kp1.

When Kp1 = 45, Ki1 = 0.5, the system presents a tendency
to recover to a stable state, as shown in Fig. 13. From Fig. 13
(a), it can be seen that the output angular frequency of the
PLL starts to oscillate after the fault, but the amplitude of
the oscillation is within ± 20 rad/s and shows a convergent
trend. In Fig. 13 (b), the active power drops slightly and then
recovers to its steady state, and the reactive power shows
a slight oscillation. Fig. 13 (c) and (d) present the dq-axis
voltage and current. The d-axis voltage at PCC decreases to
12.7 kV because of the grid fault, while the d-axis current
increases to 2 kA. The q-axis voltage and current still stay at
zero accompanied with slight convergent oscillations, which
almost have no influence on the AC voltage at PCC vPCCa
and AC grid current waveforms iga, as shown in Fig. 13 (e)–
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Fig. 12. Unstable transient responses of MMC when Kp1 = 10. (a) Output
angular frequency of PLL. (b) Active power/reactive power. (c) dq-axis voltage
at PCC. (d) dq-axis grid current. (e) PCC voltage in phase a. (f) Grid current
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(f). The waveforms in Fig. 13 verify the analysis that the PLL
is able to remain stable after the fault when there is a larger
Kp1.

Comparing the above two responses, the stability of the PLL

under the grid fault is changed due to the variation of the
current loop proportional gain. From the simulation results,
it can be shown that a larger proportional gain of the inner
current loop may improve the stability of the PLL in a grid-
connected MMC system under grid faults.

B. Parameter Influence of Kp2

Figure 14 shows the waveform of the MMC system when
the proportional gain of the outer power loop Kp2 is set as
5, and other parameters are the same as the parameters in
Fig. 12, where Kp2 = 0.5. Thus, the comparison of Fig. 14 and
Fig. 12 can show the parameter influence of the outer power
loop. As shown in Fig. 14, there are convergent oscillations in
the waveforms of the output angular frequency of the PLL, the
reactive power, the q-axis voltage and the q-axis current. Thus,
it can be shown that the PLL has a tendency of recovering to
a stable state with a larger Kp2.
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Fig. 14. Stable transient responses of MMC when Kp2 = 5. (a) Output
angular frequency of PLL. (b) Active power/reactive power. (c) dq-axis voltage
at PCC. (d) dq-axis grid current. (e) PCC voltage in phase a. (f) Grid current
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C. Parameter Influence of Kp

As the proportional gain of the PLL Kp is a quite essential
parameter that has a great impact on the stability of the PLL,
the influence of parameter Kp is also analyzed in this section.

When the proportional gain Kp decreases to 0.18 and the
integral gain Ki remains unchanged at 100, the response
waveforms of the grid-connected MMC under the ground fault
with different current loop gains Kp1 are presented in Fig. 15
and Fig. 16.

Figure 15 shows the transient responses of the MMC with
the same current loop parameters as Fig. 13, i.e., Kp1 = 45,
Ki1 = 0.5. With a smaller proportional gain Kp, the PLL can-
not remain stable. The waveforms of the PLL output angular
frequency, the reactive power, the q-axis voltage component
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Fig. 15. Unstable transient responses of MMC when Kp1 = 45. (a) Output
angular frequency of PLL. (b) Active power/reactive power. (c) dq-axis voltage
at PCC. (d) dq-axis grid current. (e) PCC voltage in phase a. (f) Grid current
in phase a.
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Fig. 16. Stable transient responses of MMC when Kp1 = 55. (a) Output
angular frequency of PLL. (b) Active power/reactive power. (c) dq-axis voltage
at PCC. (d) dq-axis grid current. (e) PCC voltage in phase a. (f) Grid current
in phase a.

and the q-axis current component present divergent tendencies
when the ground fault occurs, as shown in Fig. 15 (a)–(d). Due
to the divergent oscillations, there will be waveform distortion
in the PCC voltage and the grid current, as shown in Fig. 15
(e)–(f).

According to the parameter analysis of the current loop
proportional gain Kp1, it can be shown that the increase of

the current loop gain Kp1 is able to improve the stability of
the PLL. In Fig. 16, a larger current loop gain Kp1 is set in
the MMC system, where Kp1 = 55 and Ki1 = 0.5. Under
this parameter condition, convergent oscillations can be seen
in the PLL output angular frequency, the reactive power, the
q-axis voltage and current components, which means that the
MMC system is able to recover to a steady state and these
oscillations will disappear after a finite time.

From the transient responses under a decreased proportional
gain Kp, it can be concluded that a smaller Kp may have an
adverse influence on the stability of the PLL. In addition, the
critical value of Kp1 in this MMC system will become larger
when the proportional gain Kp declines. Thus, with a smaller
PLL gain Kp, a larger current loop gain Kp1 is needed to
improve the stability of the PLL.

D. Verification of Small-signal Stability Analysis

Figure 17 present the pole-zero analysis results of the
transfer function (24) when the system operates within the
parameters in Fig. 12 and Fig. 13. When Kp1 = 10, the pole-
zero map can be seen in Fig. 17 (a). There is a pair of poles
p3 and p4 in the right half plane, which means that PLL loses
its stability. The stability analysis results and the simulation
results shown in Fig. 12 match well. When Kp1 = 45, all the
poles are at the left half plane, confirming that the PLL can
remain stable under such parameters. The pole-zero mapping
of the transfer function is also in agreement with the simulation
results shown in Fig. 13.

−600 −500 −400 −300 −200 −100 0 100
−30

−20

0

20

30

Real Axis

Im
ag

in
ar

y
 A

x
is

p3

p3

p3

p4

p2 p1

p3

p4
p2 p1

p 4

0
−30

−0.4

−0.4 −0.2

−0.2

0

30
10

−10

−600 −500 −400 −300 −200 −100 0 100
−30

−20

0

20

30

Real Axis

Im
ag

in
ar

y
 A

x
is

p 4

0
−30

0

30
10

−10

0.2

0.2

z3

z3 z2 z1

z2 z1

(a)

(b)

Fig. 17. Simulation results and pole-zero maps of the PLL under phase
disturbance. (a) Pole-zero map of the small-signal model when Kp1 = 10.
(b) Pole-zero map of the small-signal model when Kp1 = 45.

From Fig. 17, the effectiveness of the small-signal model
and the stability analysis method presented in Section IV is
verified, which also illustrates that the small-signal stability of
the PLL can be affected by the parameter of the control loop.
With the increase of the proportional gain Kp1, a pair of poles
may cross the imaginary axis to the right half plane. Thus, the
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PLL can be more stable with a higher proportional gain of the
current control loop. The stability analysis of the small-signal
model can be used in the parameter design of grid-connected
systems.

E. Experimental Verification

To further verify the analysis of the control loop’s param-
eter influence on the PLL, down-scale hardware-in-the-loop
(HIL) experiments with a two-level voltage-source inverter
are performed in this section. The topology of the three-
phase voltage-source inverter is shown in Fig. 18. And the
circuit parameters are listed in Table II. The circuit of the
three-phase voltage-source inverter is established in the RT-
LAB platform and the control part is achieved by a practical
controller (STM32F401) with a FPGA (EP4CE115F23C7).

TABLE II
PARAMETERS OF TWO-LEVEL VOLTAGE-SOURCE INVERTER

Parameter Value Parameter Value
Vdc 40 kV Zg 0.1 mH, 0.2 Ω
Rdc 0.01 Ω Zac 2 mH, 1 Ω
C 16 mF Zline1 13 mH, 0.2 Ω
vg 23 kV Zline2 18 mH, 2 Ω
Kp/Ki 0.01/2 Zgnd 29 mH, 0.1 Ω

Rdc

Vdc

vka

vkb

vkc

vk
ik vPCC

Zg

Zac

C

AC Grid

Fault
Zgnd

Zline1

Zline2

Vg∠θg

Fig. 18. Topology of the three-phase voltage-source inverter.

The HIL experimental results of PLL’s output angular
frequency with different control parameters are presented in
Fig. 19. The output angular frequency of the PLL diverges

Time scale (400ms/div)

ωPLL (25π/div)

Time scale (400ms/div)

ωPLL (25π/div)

(a)

(b)

Fig. 19. Experimental results of PLL’s output angular frequency with
different control loop parameters. (a) Unstable response when Kp1 = 1.8.
(b) Stable response when Kp1 = 2.4.

as soon as grid fault occurs when Kp1 = 1.8, as shown in
Fig. 19 (a). However, when there is a larger Kp1, i.e., Kp1 =
2.4, the output angular frequency recovers to the steady-state
operating point (ωPLL = ωg = 314 rad/s) as shown in Fig. 19
(b). From the experimental results, the theory analysis of the
PLL influenced by the dynamics of the control loop can be
further validated.

VI. CONCLUSION

In the practical grid-connected power electronics converter
system, the responses of PLL are not only determined by their
own parameters, but are also related to the control loops.
In this study, the post fault response process of the PLL
considering the influence of the control loop is investigated in
a grid-connected MMC system. By establishing the equivalent
model of the PLL with the interaction of the control loop, the
influence of the control loop on the behaviors of the PLL
can be analyzed. A small-signal model and the corresponding
pole-zero map are proposed to provide a qualitative stability
assessment. It is shown that when the control loops have a
lower proportional gain and form a positive feedback with
the PLL under a certain parameter condition, the system will
lose stability. It can be concluded that the stability of the PLL
can be influenced by the dynamics of the control loop, and
destabilized by the grid-connected system during a transient
fault.
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