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Energy Circuit Theory of Integrated Energy System Analysis (I1I):
Steady and Dynamic Energy Flow Calculation
CHEN Binbin, SUN Hongbin, WU Wenchuan, GUO Qinglai, QIAO Zheng
(Department of Electrical Engineering, Tsinghua University, Haidian District, Beijing 100084, China)

ABSTRACT: As a basic application of energy network
analysis, different energy networks have developed
fully-fledged but not unified models and methods for energy
flow calculation. To improve the disciplinary integration of
different energy network research, an energy flow calculation
method based on the energy-circuit theory was proposed for
natural gas networks and heating networks. In addition, an
iteration method for correcting base value was supplemented to
improve accuracy, and an equivalent method from boundary
conditions to initial conditions was employed to set initial
conditions in an implicit manner. The proposed method unifies
not only energy flow calculations in different energy networks,
but the steady and the dynamic energy flow calculations, which
establishes the basis for the multi-time-scale integrated analysis
of heterogeneous energy flows. Furthermore, the proposed
method outperforms the conventional energy flow calculation

methods in terms of computational performance.
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Energy flow calculation is a basic application for
energy network analysis. Nowadays, electricity networks,
natural gas networks, and heating networks have
established and developed but not unified models and
methods for energy flow calculation respectively, which
brings challenges to the development of theory and
applications for integrated energy system analysis. Based
on the energy-circuit theory, a novel energy flow
calculation method is proposed in this paper, aiming at (1)
unifying the models and methods for energy flow
calculation of different energy networks, (2) unifying the
models and methods for steady energy flow calculation
and dynamic energy flow calculation, and (3) improving
computational performance of dynamic energy flow
calculation.

First, 0-frequency network equations derived by the
energy-circuit theory are employed to characterize the
steady energy flows of natural gas networks and heating
networks, which have a unified form for different energy
Like
electricity network, a unified solving method is provided

networks. solving the network equation of
and the singularity of admittance matrices is analyzed.
To improve the solving accuracy, an iterative strategy is
proposed to correct the base value, which is proved to be
equivalent to Newton’s method or damped Newton’s
method under different step sizes.

To expand the energy-circuit method to calculate
dynamic energy flow, the network encourages are all
with
different frequencies by Fourier transform. For each sine

decomposed into multiple sine components
component, the corresponding network equation is
solved to obtain the response, whose solving method is
similar to that of steady energy flow calculation. Finally,
all responses of different components are mapped into
time domain through inverse Fourier transform and then
superposed together to recover the original response, i.c.,
the dynamic energy flow wanted. The above process is
illustrated in Fig. 1.

An equivalent method from boundary conditions to
initial conditions is employed to set initial conditions in
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Fig. 1 Dynamic energy flow calculation based on energy circuit

an implicit manner, as demonstrated in Fig. 2. In addition,
the iterative strategy for correcting the base value is

applied to realize a higher accuracy.
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To verify the above energy-circuit-based energy
flow calculation method, a 7-node natural gas network, a
6-node heating network, an actual natural gas network in
Eastern China, and an actual heating network in
Northern China are tested for both steady and dynamic
energy flow calculation.

Regarding the steady energy flow calculation, the
proposed method converges at the accurate solution after
several iterations, and the mismatch error shows a
characteristic of super-linear convergence. Regarding the
dynamic energy flow calculation, the proposed method
maintains the average error of less than 1% in all cases,
compared to the finite difference method (FDM) with
spatial and temporal step sizes small enough, while the
computational time reduced for more than tens of times

and even hundreds of times.



