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Abstract—With the rapid growth of power systems measure-
ments in terms of size and complexity, discovering statistical
patterns for a large variety of real-world applications such as
renewable energy prediction, demand response, energy disaggre-
gation, and state estimation is considered a crucial challenge.
In recent years, deep learning has emerged as a novel class of
machine learning algorithms that represents power systems data
via a large hypothesis space that leads to the state-of-the-art
performance compared to most recent data-driven algorithms.
This study explores the theoretical advantages of deep repre-
sentation learning in power systems research. We review deep
learning methodologies presented and applied in a wide range
of supervised, unsupervised, and semi-supervised applications as
well as reinforcement learning tasks. We discuss various settings
of problems solved by discriminative deep models including
stacked autoencoders and convolutional neural networks as well
as generative deep architectures such as deep belief networks
and variational autoencoders. The theoretical and experimental
analysis of deep neural networks in this study motivates long-
term research on optimizing this cutting-edge class of models
to achieve significant improvements in the future power systems
research.

Index Terms—Autoencoder, convolution neural network, deep
learning, discriminative model, deep belief network, generative
architecture, variational inference.

I. INTRODUCTION

THE reliability and accuracy of data-driven models in
power systems operation and analysis closely rely on the

selection of data representation (i.e., features extracted from
the underlying data) [1]. As a result, most of the concerns re-
garding the application of classic data-driven models in power
systems is focused on the design of preprocessing techniques
using unsupervised dimensionality reduction algorithms in-
cluding the principal component analysis (PCA) [2], linear
discriminant analysis (LDA) [3], and t-distributed stochastic
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neighbor embedding (t-SNE) [4]. Such feature extraction tech-
niques dramatically increase the time and memory complexity
of data-driven algorithms and lead to insufficient accuracy
as they mainly cannot capture highly nonlinear and highly
varying patterns inside the ambient space of the data [1].

Recent machine learning studies on wind forecasting [5]–
[8], photovoltaic (PV) power prediction [9]–[12], state es-
timation [13], [14], power grid synthesis [15], and energy
disaggregation [16]–[18] show that developing data-driven
models with less dependencies on explicit preprocessing meth-
ods (e.g., PCA) leads to dramatically better performance in
terms of classification and regression accuracy. Instead of
having an explicit preprocessing approach, the deep learning
studies form a composition of multiple nonlinear latent layers
in a multi-layer artificial neural network (ANN). The ANN
parameters (i.e., weights and biases) are generally trained in a
greedy unsupervised layer-by-layer fashion [19], where each
layer performs a nonlinear feature extraction on the features
computed by its previous layer.

Based on the theoretical aspects, deep learning algorithms
proposed in power engineering applications are generally
categorized into three major classes:

1) Discriminative deep ANNs aim to directly learn a highly
nonlinear decision boundary between different classes and
regression regions of the power system data [20]–[22]. In
this category, the rectified linear unit (ReLU) ANN is pre-
sented for real-time reliability management response [23],
online small signal stability assessment [24], and faulted line
localization [25]. Moreover, the stacked autoencoder (SAE) is
developed as a highly nonlinear version of the PCA for unsu-
pervised pattern recognition for wind energy prediction [7],
[26], PV power forecasting [27], and fault diagnosis [28].
In addition, the long short-term memory (LSTM) ANN is
presented as a supervised temporal feature extractor with a
deep recurrent formulation to model the sequential behavior
of the time-dependent power systems measurements [17], [29].
Convolutional neural network (CNN) is another major class
of discriminative models that captures coherent structures in
power system measurements using convolutional and pooling
operations [30]. The mixture of these operations incorporates
the spatial charactristics of measurements into their temporal
features to solve spatiotemporal tasks in the area of renewable
energy forecasting [9], transient stability analysis [31], and
fault detection [32].

2) Probabilistic deep ANNs consider feature learning as a
procedure to find a parsimonious set of hidden variables that
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best describe the probability density function (PDF) of the
data. The PDF is further mapped to the target class/value of the
problem. Deep belief network (DBN) is a well-known proba-
bilistic graphical model that learns the PDF of the data given
its conditionally independent latent features. The features are
learned by Gibbs sampling in order to provide an accurate
estimation of the probabilistic behavior of the input data for
probabilistic applications that need to address large uncertainty
factors in the data. DBN is mainly applied to wind and solar
power prediction [33], [34], transient stability assessment [35],
day-ahead and week-ahead load prediction [36], as well as
probabilistic state estimation [37]. Moreover, the Generative
Adversarial Network (GAN) is presented that compares its
generated data samples with the actual dataset to increase the
accuracy of its learned PDF. As this model efficiently learns
the major characteristics of the PDF, it is recently introduced
to important outlier and fault detection problems for small-
sample wind turbines [38] and smart grid cyber attack de-
tection [39]. Furthermore, GANs are recently employed for
model-free renewable scenario generation [40]. The variational
autoencoders (VAEs) are presented as a novel version of deep
generative ANNs that learn the PDF of the data by learning
a high dimensional latent variable which is mapped to the
original data samples. VAE is shown to create accurate data
samples used for power grid synthesis [15], unsupervised
anomaly detection in energy time series [41], [42], and electric
vehicle load generation [43].

3) Deep Reinforcement Learning (DRL) algorithms are a
major class of machine learning approaches that seek to learn
an optimal policy based on the feedback from the environment
computed by a reward function. This function reflects how
much the problem’s objective is satisfied based on the current
state of the system. In contrast to the conventional deep
learning that merely estimates a discrete target function for
classification and continuous target function for regression,
DRL aims to decline a general error function defined by
the experience in a fully observable or partially observable
environment. Hence, this method solves more general classes
of problems compared to the classic deep learning. Due to its
feedback-based nature, DRL is widely employed for control
problems including voltage control [44], adaptive emergency
control [45], as well as self-learning control for energy effi-
cient transportation [46]. Also, DRL is applied to optimiza-
tion problems for learning the optimal bidding strategies in
electricity markets [47], [48], demand response strategies for
energy management [49]–[51], as well as finding the optimal
wind and storage cooperative schedule to decrease the effect
of the uncertainty in renewable generation in smart grids [52].
Moreover, this class of methodologies are recently introduced
to cyber attack detection and recovery [53], dynamic power
allocation [54], and power system data integrity defense [55].

This paper reviews the three major categories of deep neural
networks in the domain of power systems research. First,
the deep discriminative approach is introduced in Section II.
Various variations of this class of models are explained, and
compared both mathematically and experimentally using sev-
eral real-world power system datasets. Section III introduces
probabilistic deep learning methods such as DBN and its

Gaussian variation as well as the recently proposed GANs
and VAEs. The applications and theoretical advantages of
these techniques are discussed in this section. Then, in Section
IV, the paper reviews DRL algorithms and their vast area
of applications in power systems optimization and control.
Finally, the conclusions are provided in Section V.

II. DISCRIMINATIVE DEEP LEARNING

Discriminative modeling is one of the major areas in
machine learning that tends to estimate a function fθ pa-
rameterized by θ ∈ Rp that directly maps an input to
the true output of the problem. Let us consider a training
dataset Dtr = {(x1, y1), (x2, y2), . . . , (xn, yn)} that contains
n training samples (xi, yi) with input xi corresponding to
the true output/label yi, and a test dataset Dts = {(xn+1,
yn+1), (xn+2, yn+2), . . . , (xn+m, yn+m)} with m unobserved
test samples. The goal is to learn the optimal parameter θ∗

where the average distance between fθ∗(x) and y is the lowest
for all samples (x, y) ∈ Dtr. The test error is the average error
between the trained fθ∗(x) and y for all (x, y) ∈ Dts.

To obtain a nonlinear mapping between the inputs and out-
puts, the classic multilayer perceptron (MLP) defines an input
layer h0 ∈ Rd0 and L computational layers {h1, h2, . . . , hL}
where each layer hi ∈ Rdi (i ∈ [1, L]) is a nonlinear function
of previous layer defined by hi = gi(W ihi−1 + bi) where gi

is a nonlinear transformation function usually computed by a
sigmoid or hyperbolic tangent function, W i ∈ Rdi ×Rdi−1 is
the weight matrix and bi ∈ Rdi is the bias of the activation
function in layer hi. Using the hidden layers, the MLP
provides a nonlinear transformation between the input h0 = x
and output hL = y in the dataset.

To train each layer hi, the gradient descent (GD) method
moves parameters W i and bi in the opposite direction of
the gradient of the training error with respect to W i and
bi, respectively. As the gradients dramatically decline with
the increase in L, there is a trade-off between the number
of computational layers L and the strength of GD to update
the model. As L becomes larger to address more complex
problems, GD becomes ineffective due to the vanishing gra-
dients. Hence, the classic MLP does not provide sufficient
generalization capability to accurately solve complex real-
world problems. As a result, discriminative deep learning is
proposed to efficiently train deep ANNs with L > 1 in order to
have a high capacity mapping fθ while providing an effective
training procedure to update the parameters.

A. Rectified Linear Unit ANN

ReLU ANN defines a rectified linear unit activation function
ReLU(x) = max(0, x) at the computational layers of MLP
rather than using the classic nonlinear activation functions.
Since the gradient of ReLU(x) with respect to a positive input
x is always 1 regardless of x, this function solves the vanishing
gradient problem of the MLP. Hence, this model is applied
to power systems applications that require highly nonlinear
feature extraction.

Table I summarizes the applications of discriminative mod-
eling in the power systems area. As shown in this table, a
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TABLE I
DISCRIMINATIVE DEEP LEARNING IN POWER SYSTEMS APPLICATIONS

Applications Dataset Model Performance Metric Result
Reliability Management
Response [23] IEEE-RTS96 ReLU Coefficient of determination

(R2 Score)
0.964

SAE 0.951
Stability Assessment
[24], [56], [30],
[31], [57]

IEEE 39-bus
ReLU

Classification Accuracy
94.1%

SAE 92.6%
CNN 97.8%

Fault Detection
[24], [28],
[58], [32]

IEEE 39-bus
ReLU Detection Accuracy,

Location Accuracy
Rate

93.20%, 91.12%
SAE 94.18%, 91.71%
CNN 96.09%, 94.31%

PMU Event
Classification [59]

16-machine 68-bus
Test System

ReLU
Classification
Accuracy

94.11%
SAE 95.07%
LSTM 96.34%
CNN 98.17%

Hourly Wind
Power Prediction
[7], [26],
[29], [60]

Western Wind Dataset

ReLU

RMSE, MAPE

1,38%, 1.74%
SAE 1.24%, 1.68%
LSTM 1.13%, 1.53%
CNN 1.07%, 1.26%

Hourly PV Power
Prediction [9],
[27], [29]

National Solar Radiation Database

ReLU

RMSE, MAPE

1.29%, 1.54%
SAE 1.09%, 1.37%
LSTM 0.97%, 1.10%
CNN 0.85%, 0.92%

Load Modeling [61] 16-machine 68-bus Test System ReLU RMSE, MAPE 0.0435, 0.0120
LSTM 0.008, 0.0071

Hourly Load Forecasting [62] Industrial Power Demand Dataset
ReLU

Normalized RMSE
0.069

SAE 0.051
LSTM 0.032

Power Fluctuation
Identification [63] Market Trading Reports ReLU MAE, MAPE 0.042, 107.91%

LSTM 0.038, 105.72%
Energy Disaggregation
[16], [17] Reference Energy Disaggregation Dataset SAE Precision, Recall, F-score 84.63%, 61.04%, 70.62%

LSTM 89.83%, 65.72%, 75.93%

ReLU ANN is implemented in [23] to estimate the cost of
real-time resource allocations decisions in operation planning
of the modified IEEE-RTS96 single area network [64]. Also,
in [24], various ReLU ANN architectures are trained to learn
the small signal stability assessment of the classic 16-machine
68-bus test system [65]. As shown in [24], when the number
of layers increases from 2 to 6, the assessment accuracy
is significantly increased since the ReLU ANN’s hypothesis
space becomes larger. In addition, the ReLU ANN is applied
to real-time faulted line localization in IEEE 39-bus and 68-
bus power systems which resulted in 98% and 93% location
accuracy rate for line-to-ground and double line-to-ground
faults, respectively. Furthermore, in [59], ReLU ANNs are
shown to yield 98.17% accuracy for the classification of 6
events including generation loss, load loss, as well as line-to-
ground faults in the IEEE 68-bus system.

B. Stacked Autoencoder

To train a deep ANN with input h0 and L computational
layers hi (i = 1, 2, . . . , L), the SAE trains L AEs {AEi}Li=1.
Each AEi is a MLP ANN with one hidden layer with an
encoding activation function fenc where a high-dimensional
input hi−1 ∈ Rdi−1 is encoded into a lower dimensional latent
feature vector hi = fenc(h

i−1) ∈ Rdi which is further mapped
back (decoded) to the original input hi−1 in the output layer
oi = fdec(h

i) using the decoding function fdec. Hence, the GD
error of AEi is computed by ‖oi−hi−1‖22 to train the weight
W i

enc and bias bienc of its encoding layer as well as the weight
W i

dec and bias bidec of its decoder. To update the parameters
of the SAE, starting from i = 1, each AEi is trained and the
trained encoder parameters W i

enc and bienc are used to initialize

W i and bi of the layer i, respectively. Finally, the whole SAE
ANN is trained using GD on the training data Dtr.

Due to the unsupervised feature learning at each AE,
the SAE model is suitable for situations where the training
data is limited or contains remarkable uncertainty and noise
factors. Hence, this method respectively outperforms the MLP,
nonlinear autoregressive exogenous (NARX) ANN, and time
delay ANN (TDANN) by 23.66%, 21.54%, and 14.81% in
terms of the mean absolute percentage error (MAPE) for short-
term wind speed prediction [7], [26]. Moreover, as shown in
Table I, the SAE outperforms ReLU in both classification
tasks (e.g., stability assessment [24] and PMU event clas-
sification [59]) as well as regression tasks with large data
variations (e.g., wind and PV power prediction [26], [27]
and load forecasting [62]). Furthermore, due to its powerful
greedy layer-wise training process, the SAE yields an average
transformer fault diagnosis accuracy of 95.4% in the IEC
60599 and IEC TC 10 databases [66]. In addition, SAE
improves the transient stability analysis accuracy of extreme
learning machines (ELMs) by 6.59% in the IEEE 39-bus
system [56].

C. Long Short-term Memory Network

LSTM is a widely used deep recurrent ANN that extracts
powerful temporal features from a time series x1, x2, . . . , xT .
At each time step, 0 6 t 6 T , LSTM observes a sample xt
and updates its temporal memory Ct that describes the state
of the time series at t, and produces a temporal feature vector
ht that summarizes LSTM’s temporal information after the
observation xt. The recursive structure of LSTM features is
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defined by: 

it = σ(Wi.[ht−1, xt] + bi)

ft = σ(Wf .[ht−1, xt] + bf )

ot = σ(Wo.[ht−1, xt] + bo)

C̃t = tanh(WC .[ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t
ht = ot ∗ tanh(Ct)

(1)

where it is the input gate that decides the magnitude of
information flow into the time-dependent memory Ct using
the sigmoid activation σ with weight Wi and bias bi. ft is the
forget gate that determines how much information needs to
be removed from Ct using weight Wf and bias bf . ot is the
LSTM’s output at time t using weight Wo and bias bo while
ht is the extracted tempoal feature at time t. At each time
step t, the memory is updated by C̃t as a nonlinear function
parameterized by WC and bC .

In contrast to the classic recurrent MLPs, the LSTM does
not encounter the vanishing gradient problem; hence, can
be efficiently trained using GD. As a result, as shown in
Table I, this method is applied to a large variety of time-
dependent applications such as wind, PV, and load predic-
tion [26], [27], [36] as well as load modeling [61] and power
fluctuation identification [63]. As Table I shows, the LSTM
generally outperforms both ReLU and SAE in the domain
of time-dependent applications due to its recurrent structure
and powerful temporal memory. In [29], a novel attention
mechanism-based LSTM is developed to improve the hourly
solar energy prediction of MLP by 6.17% and 0.27 in terms
of MAPE and root mean squared error (RMSE), respectively.
Also, the LSTMs in [67] and [60] have shown the state-of-the-
art performance in wind prediction tasks. Moreover, in [61],
a LSTM is defined in a multimodal neural architecture to
simultaneously capture the temporal characteristics of dynamic
load parameters as well as the voltage and power changes in
the IEEE 68-bus test system [65]. It is shown that the LSTM
captures real-time dynamic behaviors of load parameters with
38.42% and 25.64% better RMSE and MAPE, respectively,
compared to the TDNN method due to its larger hypoth-
esis space and overcoming the overfitting problem. Similar
accuracy improvements are recently reported in other time-
dependent applications including power fluctuation identifi-
cation [63], data-based line trip fault prediction [58], and
industrial load forecasting [62].

D. Convolutional Neural Network

CNNs contain a two dimensional input layer I , a set of
hidden convolution and pooling layers, and a fully connected
output layer. Each neuron in the convolution layer is a non-
linear kernel that divides the input into small slices called
receptive fields. The output of convolution operation at the
k-th kernel in the l-th convolution layer is computed by:

fkl (p, q) =
∑
c

∑
x,y

ic(x, y).e
k
l (u, v) (2)

where ic(x, y) is the (x, y) element of the c-th channel of input
I , and ekl (u, v) is the (u, v) element of the k-th kernel of layer

l. The pooling layer sweeps an average or maximum function
over small patches of the convolution output in (2) to further
reduce the dimension of the extracted features which enhances
the sparsity of the kernel parameters and avoids overfitting
on the training set. Finally, the fully connected layer maps
the extracted features to the target label of the underlying
classification or regression task.

As the convolution and pooling layers process their local
input patches simultaneously, the CNN yields the state-of-the-
art performance in tasks where the local spatial and temporal
correlations of the data play a crucial role. Therefore, this
model outperforms ReLU ANNs as well as SAE and LSTM
in applications where the data has a strong spatiotemporal
structure such as the wind and PV power prediction [26],
[27] as well as PMU event classification [59]. In [9], this
model is applied to 6-hr ahead spatiotemporal solar irradiance
prediction which obtains 21.62% and 16.78% better RMSE
and MAPE, respectively, compared to the LSTM due to
modeling the correlation between the radiation at neighboring
solar sites by the convolution operation in (2). In addition,
in [31], CNN is applied to the transient stability assessment
of the IEEE 39-bus system. In a short period of time after a
disturbance, the bus voltage phasors sampled from PMUs from
various points of the system are given to the CNN to judge if
the system is stable, aperiodic unstable or oscillatory unstable.
CNN’s classification accuracy is 98.7% while recent variations
of support vector machines and decision trees lead to 95.2%
and 92.1% accuracies. Furthermore, CNN is shown to yield
promising results in fault diagnosis [32], harmonic power grid
analysis [30], and voltage stability assessment [57].

Besides the kernel-based CNN in (2), recent studies pro-
posed spectral graph convolutions to capture spatial patterns
of the graph-structured power system datasets [15]. Given
an N -node graph with D-dimensional features X ∈ RN×D,
adjacency matrix A, and degree matrix D, the convolution
operation of the graph CNN is computed by:

f(X,A) = σ(D−1/2AD−1/2XW ) (3)

where W is the trainable convolution weight matrix. The
graph CNN is recently employed for short-term wind speed
prediction [68] in Northern US. Due to capturing spatial
characteristics of the wind data, this model provides 11.61%
and 17.98% better RMSE and MAPE compared to the DBN,
respectively. Moreover, this model yields 20.04% better relia-
bility for probabilistic solar energy prediction compared to the
LSTM [9].

E. Advantages and Restrictions of Deep Discriminative
Modeling

Table II summarizes the advantages and restrictions of
various deep discriminative models in power engineering
research. As shown in this table, the ReLU ANN has a simple
implementation with low training time complexity and fast
feed-forward approach. However, this supervised model does
not explicitly model the time-dependent or spatial features
in the datasets. Similar to the ReLU ANN, the SAE cannot
directly capture the spatial and temporal patterns. However,
SAE is an unsupervised feature learner which is more suitable
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TABLE II
ADVANTAGES AND RESTRICTIONS OF DEEP DISCRIMINATIVE MODELS

Models Advantages Restrictions

ReLU
1- Simple implementation 1- Lack of temporal and spatial feature extraction
2- Fast feed-forward process 2- Lack of the feature coherence
3- Low training time complexity 3- Limited to supervised applications

SAE
1- Simple Implementation
2- Fast feed-forward process
3- Unsupervised feature extraction

1- Large estimation bias
2- Lack of temporal and spatial feature extraction
3- Lack of feature coherence
4- High chance of overfitting

LSTM

1- High chance of overfitting
1- Extracting accurate temporal features 2- Lack of spatial data modeling
2- Flexible input dimensions 3- High sensitivity to the initial state

4- Limited to supervised applications

CNN

1- Accurate spatial feature extraction 1- Lack of temporal data modeling
2- Sparse data representation 2- High training time complexity
3- Simple training process using gradient descent 3- High training memory complexity
4- Distributed implementation 4- Limited to supervised applications

for applications with limited number of training samples such
as cyber attack detection. In addition, SAE is suitable for
problems with large amounts of uncertain data points including
wind speed prediction, solar energy forecasting, and dynamic
load modeling.

Due to its recurrent structure, the LSTM can model temporal
dependencies between time-dependent observations and work
with variable input lengths. However, since the number of
LSTM parameters is generally larger than classic recurrent
ANNs, this supervised model has a higher chance of overfitting
and high sensitivity to the observation noise.

Using filtering and pooling layers, the CNN is able to
provide powerful sparse representations from spatial datasets
using simple gradient-based techniques. As the filters can be
trained in a distributed manner, the CNN is a very efficient
method for pattern recognition in large-scale systems. How-
ever, since this supervised model does not contain a recursive
structure, it cannot accurately capture time-dependent struc-
tures of the data.

III. PROBABILISTIC DEEP LEARNING

In contrast to discriminative deep learning where an explicit
function maps x to y where (x, y) ∈ Dtr, the objective of
probabilistic deep neural architectures [69] is to capture the
PDF P (x) for all samples in the dataset Dtr. Then, an explicit
function is learned to map P (x) to P (y|x), hence learning the
true output y for all samples (x, y) ∈ Dtr.

A. Deep Belief Network

The DBN is a deep MLP with input h0 and L computational
layers hi (i = 1, 2, . . . , L). Each layer hi is a Restricted
Boltzmann Machine (RBM) RBM i, a generative graphical
model that encodes the PDF of its input layer hi−1 into its
latent feature vector hi. At each RBM i i = 1, 2, . . . , L, the
conditional PDF of the j-th neurons in the visible layer hi−1

and hidden layer hi is computed by:
P (hij = 1|hi−1) = σ

(∑
kW

i
kj .h

i−1
k + bij

)

P (hi−1j = 1|hi) = σ

(∑
kW

i
jk.h

i
k + bi−1j

) (4)

To train W i, the Contrastive Divergence method [8] is em-
ployed that adds the gradient of P (hi−1) with respect to W i

to increase the likelihood of observing the visible vector hi−1

given the latent vector hi. Similar approach is used to train bi

and bi−1 in an unsupervised fashion. When the unsupervised
training is done for all layers, a dense layer o = hL+1 is added
on top of the last layer hL and the whole neural network is
trained by the supervised GD similar to the SAE.

Table III shows the large variety of DBN’s applications
in power systems area. As shown in this table, the DBN
leads to accurate wind and PV power prediction results due to
capturing uncertainties in the energy time series [8]. Moreover,
DBN shows a promising performance in transient stability
classification with 94.69% accuracy in the Central China
Regional Power Grid [35]. Furthermore, in [37], this method
is recently applied to the state estimation of the US PG&E69
distribution network that led to a remarkably small MAPE of
0.091% which shows the large hypothesis space and low bias
of this probabilistic model.

B. Generative Adverserial Network

Assuming a training set Dtr, GAN is an unsupervised deep
ANN that learns P (x) s.t. x ∈ Dtr using a generator ANN
G(z) that observes some input noise z ∼ P (z) and outputs a
sample x′ drawn from the generators PDF Pg . The produced
sample x′ as well as the training samples x ∈ Dtr are given
to a discriminator ANN D, a binary classifier which decides
if the generated sample x′ comes from the true PDF P (x)
or the PDF of generated samples Pg . Training the generator
and discriminator simultaneously, we improve the generator
to create realistic samples by decreasing the distance between
the real PDF P (x) and the generated PDF Pg . To train
the discriminator D, the following unsupervised objective is
applied:

max
D

Ex∼P (x)[log D(x)] + Ex′∼Pg [log(1−D(x′))] (5)

Here, D(x) is trained to differentiate between the samples
generated from G(z) and the true samples x ∼ P (x).
Using (5), to simultaneously optimize ANNs G(z) and D,
the following min-max objective is optimized using the GD
method:
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TABLE III
PROBABILISTIC DEEP LEARNING IN POWER SYSTEMS APPLICATIONS

Applications Dataset Model Performance Metric Result
Wind Speed
Prediction [33] Shangchuan Island Wind Farm DBN RMSE, MAPE 0.5494, 6.39%

VAE 0.4832, 4.81%
PV Power
Prediction [9], [34] North China Baoding Dataset DBN RMSE, MAPE 17.55 kW, 3.76%

VAE 15.48 kW, 3.63%
Transient Stability
Assessment [35] Central China Regional Power Grid DBN Classification Accuracy 94.69%

VAE 98.14%
Hourly Load
Forecasting [41], [42] Texas Urbanized Area Dataset DBN RMSE, MAPE 0.4851, 5.81%

VAE 0.4032, 5.02%

State Estimation [37] US PG&E69 Distribution Network DBN MAPE, Maximum Absolute Error 0.091, 0.073
VAE 0.084, 0.069

Fault Detection
[38], [41],
[42]

Northern China Wind Farm (SCADA)
DBN

Classification Accuracy
79.11%

VAE 84.85%
GAN 87.32%

Cyber Attack
Detection [39] 5-bus Smart Grid GAN Classification Accuracy 95.34%

VAE 92.18%
Renewable Scenario
Generation [40] Wind & Solar Integration Dataset GAN Kullback–Leibler Divergence 0.61

VAE 0.52
Power Grid
Synthesis [15]

Columbia University Synthetic
Power Grid (CUSPG)

GAN Topological Distance,
Power Flow Distance

0.678, 3.41 MW
VAE 0.0512, 3.06 MW

min
G

max
D

JD,G = Ex∼P (x)[log D(x)]+

Ez∼P (z)[log(1−D(G(z)))] (6)

To test the model on a testing set Dts, the Kullback-Leibler
(KL) divergence is used as a distance metric between the
estimate PDF and the true PDF of samples x ∈ Dts.

As shown in Table III, GAN leads to a promising perfor-
mance in a diverse set of complex classification problems in-
cluding fault detection [41] and cyber attack classification [39],
as well as regression problems such as scenario generation
for the wind and solar power [40]. Compared to the classic
DBN, GAN has a larger hypothesis space which leads to
higher generalization capacity. Hence, as Table III shows,
GAN outperforms DBN in both fault detection and cyber
attack classification. Moreover, since GAN explicitly models
the joint PDF of the data, it can be directly applied to realistic
data synthesis problems such as power grid synthesis [15],
[38] while DBN does not have such a capability.

C. Variational Autoencoder

Similar to GANs, the objective of VAE is to learn the PDF
P (x) s.t. x ∈ Dtr in an unsupervised fashion. The VAE
consists of an encoder ANN qθ(z|x) parametrized by θ and a
decoder ANN pφ(x|z) with parameters (weights and biases)
φ. The encoder maps x into the latent representation z which
has a Gaussian distribution estimated by qθ(z|x). Then, to find
the optimal z that is powerful enough to best reconstruct x,
the decoder maps z into the actual input x. Hence, training
the VAE consists of maximizing the likelihood of x as well
as minimizing the KL divergence KL of the distribution of
z (i.e. qθ(z|x)) and its actual distribution N(0, I) where I is
the identity matrix. Therefore, the loss function of the VAE is
computed by:

JVAE =
∑
x∈Dtr

[
KL[qθ(z|x)‖N(0, I)]−Eqθ(z|x)[log pφ(x|z)]

]
(7)

Training the VAE using GD, the decoder pφ(x|z) provides

an accurate estimation of the data PDF P (x) when marginal-
ized over all valid z.

As shown in Table III, the VAE is applied to learn the
conditional PDF of future wind speed/power given its previous
measurements for short-term wind prediction [33]. Moreover,
similar technique is applied in [15] and [34] to hourly and 6-
hour ahead prediction of PV power with 2.07kW and 6.53kW
better RMSE compared to the DBN, respectively. In addition
to regression, VAE outperforms DBN in complex classifi-
cation tasks with 3.45% accuracy improvement in transient
stability assessment [35] and 5.74% better fault detection
accuracy [38]. Moreover, VAE is utilized to learn the PDF of
the physical and topological characteristics of power networks
for power network synthesis. As shown in Table III, VAE
generates realistic power networks that accurately imitate not
only the topological properties (e.g., diameter and density) but
also the power flow statistics (maximum, minimum, and me-
dian flow) of the large-scale transmission network in CUSPG
dataset [70].

D. Advantages and Restrictions of Deep Generative Modeling

Table IV presents the advantages and restrictions of deep
generative modeling in power system research. As shown in
this table, DBN, GAN, and VAE can handle measurement
uncertainties while providing a powerful unsupervised data
representation. Compared to GAN and VAE, the DBN has
smaller sample complexity which leads to less number of
training examples required for feature extraction. However,
since this model employs Gibbs sampling in its training
process, it has a large training time complexity. Also, DBN
has a strong independence assumption on its latent variables
which makes it less suitable for pattern recognition in highly
nonlinear datasets.

In contrast to DBN, the GAN and VAE directly learn the
data distributions with no prior assumptions. Thus, these mod-
els can be effectively applied to power system data synthesis.
Due to its larger architecture, GAN requires more number
of training examples compared to the DBN. Also, GAN
has limited feature diversity and lacks parameter convergence
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TABLE IV
ADVANTAGES AND RESTRICTIONS OF DEEP GENERATIVE MODELS

Models Advantages Restrictions

DBN
1- Modeling uncertainties 1- Large training time complexity
2- Unsupervised feature extraction 2- Strong prior knowledge (conditional independence)
3- Small sample complexity 3- Lack of parameter convergence guarantee

GAN

1- Large sample complexity
1- Modeling uncertainties 2- Lack of parameter convergence guarantee
2- Unsupervised feature extraction 3- Limited diversity
3- Data Synthesis 4- Diminished gradient

5- Sharp but unreliable estimations

VAE

1- Modeling uncertainties
2- Unsupervised feature extraction 1- Large sample complexity
3- Data Synthesis 2- Low sharpness of estimated distribution
4- Providing probabilistic classification and regression 3- Large testing time complexity
5- Reliable estimation of the actual probability distribution

guarantees. While VAE has similar sample complexity com-
pared to GAN, it provides a more reliable distribution esti-
mation. However, the smaller sharpness of VAE compared to
GAN makes GAN a better choice for probabilistic applica-
tions.

IV. DEEP REINFORCEMENT LEARNING

Besides classification and regression, deep ANNs are em-
ployed in reinforcement learning settings where the problem is
modeled as a Markov decision process (MDP) (S,A, Pa, Ra)
with the state set S, action domain A, and state transition
probability Pa(s, s

′) = P (st+1 = s′|st = s, at = a) to
model the likelihood of going from state st at time t to
state st+1 at time t + 1. This transition leads to observing
the immediate reward Ra(st = s, st+1 = s′) from the
problem’s environment. The goal is find the optimal policy
π∗(st) that determines action at to maximize the expected
discounted reward sum Ravg = E

[∑∞
t=o γ

tRa(st, st+1)
]
. The

discounting factor 0 6 γ 6 1 decides the contribution of the
historical rewards to Ravg. The optimal policy π∗(s) for a state
s ∈ S is computed by:

π∗(s) = argmax
a

Q(s, a) (8)

where Q(s, a) is the optimal state-action value function that
estimates the reward of taking action a in state s.

A. Deep Q-network (DQN)

DQN [44] directly learns Q(s, a) and employs (8) to find the
optimal policy. To provide high generalization power and low
estimation bias, the DQN implements Q(s, a) by a deep neural
network QANN that observes an input 〈s, a〉 and outputs
Q(s, a). To train QANN , the Temporal Difference (TD) error
δ is defined as the difference between the current Q(s, a) and
the value function after the transition to s′ computed by:

δ = Q(s, a)− (Ra(st = s, st+1 = s′) + γmax
a

Q(s′, a)) (9)

To train the DQN (i.e., minimize δ), the Huber loss is
computed by J(δ) = 1

2δ
2 if |δ| 6 1 and J(δ) = |δ| − 1

2
otherwise. Applying GD, one can minimize J(δ) with respect
to the weights and biases of QANN .

Table V shows the applications of DLR in the power
engineering domain. As shown in this table, DQN is recently
applied for optimal voltage control of a 200-bus system [44].

Moreover, this model shows a promising load shedding result
of 26 MW for optimal emergency control of the IEEE 39-
bus system [45]. Furthermore, DQN is employed for power
grid cost efficiency with transportation energy optimization,
and showed 14.1% improvement compared to the classic
binary control method [46]. The high generalization power
of this method has encouraged the researcher to apply DQN
for various real-world applications ranging from electricity
marketing [47] and demand-response learning [49] to smart
grid scheduling [52] and cyber attck detection [53].

B. Double DQN (DDQN)

To reduce the overestimation effect of the state-action value
Q(s, a) in (9), the DDQN uses a target deep ANN parameter-
ized by θ′ to compute the update value maxaQ(s′, a) while
the state-action Q(s, a) is computed by a deep ANN with
the original DQN parameters θ. As shown in Table V, this
method improves the classic DQN with 2.2% improvement
in cost efficiency for transportation energy optimization [46]
and £43 ∗ 103 improvement in electricity market bidding
profit [47].

C. Deep Deterministic Policy Gradient (DDPG)

DDPG is an actor-critic DRL algorithm. The actor µ(s)
models the policy as a deep ANN that observes a states s and
generates the corresponding continuous action a. The critic Q
is a deep ANN that estimates Q(s, a) for the state-action input
< s, a >. To compute the state’s value, the actor’s output is
given to the critic to calculate Q(s, a). Similar to DQN, The
critic’s TD-error function JQ is computed using the Bellman
equation:

JQ =
(
Q(s, µ(s))− (Ra(s, s

′) + γQ′(s′, µ′(s′)))
)2

(10)

where Q′ and µ′ are the target critic and actor deep ANNs,
respectively. The target ANNs Q′ and µ′ are time delayed
copies of Q and µ that slowly track the learned state-action
values. The actor’s loss function Jµ is computed by Q(s, µ(s))
which is maximized to increase the DDPG’s return while JQ
is minimized. To learn Q and µ using GD, the gradients
of JQ and Jµ with respect to their weights and biases are
computed, respectively. Moreover, the target networks Q′ and
µ′ are updated by respectively adding a small fraction of
their corresponding parameters in the original networks Q
and µ at each DRL episode. Table V shows the significant
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TABLE V
DEEP REINFORCEMENT LEARNING APPLICATIONS IN POWER SYSTEMS

Applications Dataset Model Performance Metric Result

Voltage Control [44] Realistic 200-bus System (SCADA) DQN Average Control Reward 161.54
DDPG 124.83

Emergency Control [46] IEEE 39-bus DQN Load Shedding 26 MW
DDPG 23 MW

Transportation Energy
Optimization [46]

California Freeway Performance
Measurement System (PeMS)

DQN Cost Efficiency
(compared to binary control)

14.1%
DDQN 16.3%

Electricity Market [47], [48] Synthetic Market Dataset
DQN

Profit(£)
5.2 * 10ˆ5

DDQN 5.63 * 10ˆ5
DDPG 5.86 * 10ˆ5

Demand-Response Strategy
Learning [49]–[51] Steel Powder Manufacturing Dataset

DQN
Operation Cost($) 161.93

134.85TD-based
Actor-Critic DRL

Power Scheduling [52] Shaanix Wind Farm Dataset DQN Average Income($) $ 4268.17
Improved DQN $ 4730.21

Cyber Attack Detection [53], [55] IEEE 9-bus System DQN Transient Energy 0.120 p.u.
DDPG 0.056 p.u.

experimental advantage of DDPG compared to DQN-based
methods. While DQN cannot handle high-dimensional action
spaces, the DDPG learns policies in these conditions. Thus,
DDPG is shown to generally provide better accuracy in both
regression problems such as autonomous voltage control [44],
emergency control [45], strategic bidding [47] as well as
classification tasks including cyber attack detection [53] and
data integrity protection [55].

D. Advantages and Restrictions of Deep Reinforcement
Learning

Table VI provides a summary of DRL advantages and re-
strictions in power system applications. As shown in this table,
both DQN and DDQN have stable and robust training proce-
dures. Therefore, they are very suitable for datasets with high
uncertainty factors. However, these methods cannot guarantee
their parameter convergence. Also, DQN and DDQN mainly
optimize deterministic policies in discrete action spaces. Thus,
compared to the DDPG, they are less suitable for real-world
applications with continuous actions. Although DDPG may
suffer from parameter instability during training, it provides
a fast and guaranteed convergence to a promising stochastic
local policy.

V. FUTURE RESEARCH DIRECTIONS

The future research on deep learning algorithms in the
area of power engineering is summarized in Fig. 1. As

shown in this diagram, the combination of sparse coding and
dictionary learning methods with discriminative models is one
of the significant future domains that require further study.
The sparse models can decrease the sample complexity of
deep learning algorithms and help deep neural networks to
better decompose, compress, and reconstruct the input data.
Hence, this approach would lead to a remarkable accuracy
improvement in Behind-The-Meter net load disaggregation,
deep nonintrusive load monitoring, PMU data compression
and noise reduction, customer behavior estimation, and the
Internet of Things data analytic. The graph knowledge repre-
sentation in discriminative learning is another major area of
future research. In this class of approaches, the deep neural
network captures highly nonlinear and highly varying charac-
teristics of graph-structured datasets. This category of models
is very effective to improve the accuracy of spatiotemporal
renewable energy and load forecasting techniques. Also, it
can be effectively employed for real-time state estimation,
load and system parameter identification, as well as topology
detection. The last class of future works in the domain of
discriminative models is the deep Bayesian learner. This model
incorporates the Bayes rule into ReLU ANNs to create robust
probabilistic deep learning solutions that can effectively handle
the uncertainties in the datasets. The future applications of
this method include probabilistic dynamic load modeling,
probabilistic pattern recognition of Behind-The-Meter sensor
data, as well as power quality disturbance detection and

TABLE VI
ADVANTAGES AND RESTRICTIONS OF DEEP REINFORCEMENT LEARNING MODELS

Models Advantages Restrictions

DQN 1- Stability of the learning algorithm
2- Robustness to measurement uncertainties

1- Lack of policy convergence guarantee
2- Slow policy convergence
3- Assuming deterministic policies
4- Lack of compatibility with continuous action spaces
5- Overestimating the state-action values

DDQN
1- Stability of learning algorithm
2- Robustness to measurement uncertainties
3- Realistic estimation of state-action values

1- Lack of policy convergence guarantee
2- Slow policy convergence
3- Assuming deterministic policies
4- Lack of compatibility with continuous action spaces

DDPG

1- Fast convergence to the optimal policy
2- Guaranteed convergence in complicated state-action spaces 1- Instability of the learning algorithm
3- Learning stochastic policies 2- High sensitivity of parameters to noise
4- Compatibility with continuous action spaces
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Future Research Directions

Generative ModelingDiscriminative Modeling Reingorcement Learning

Multi-stage and
Cooperative

Games

Operational
Control

Multi-agent
DRL

Network PDF
estimation

Conditional
PDF

learning

Generative
graph

representation

Bayesian
Discriminative

Modeling

Graph
knowledge

representation
Sparse coding

1) Behind-The-Meter Net Load Disaggregation
2) Deep Nonintrusive load monitoring
3) PMU data compression and noise reduction
4) Customer Behavior Estimation

1) Behind-The-Meter Net Load Disaggregation
2) Deep Nonintrusive load monitoring
3) PMU data compression and noise reduction
4) Customer Behavior Estimation
5) Internet of Things

1) Power grid synthesis
2) Probabilistic state estimation
3) Topology detection

1) Anomaly Detection
2) Cyber threat and vulnerability analysis
3) False data injection detection
4) Probabilistic system-wide load parameter
identification

1) Spatiotemporal probabilistic state estimation
2) Spatiotemporal probabilistic load forecasting
3) Spatiotemporal probabilistic wind and PV
power forecasting

1) Game modeling for dynamic demand response
2) Decentralized control for optimal bidding
3) Optimal energy trade strategies
4) Blockchain and smart contracts
5) Transaction energy

1) Smart generation control schemes
2) Model-free load frequency control
3) Appliances and system control

1) Multi-stage game modeling for cybersecurity
2) Cooperative DRL for distributed economic dispatch
3) Electric power market modeling

1) Spatiotemporal renewable energy forecasting
2) Spatiotemporal load forecasting
3) State estimation
4) Load and system parameter identification
5) Topology detection

Fig. 1. Future research directions in the area of deep representation learning.

classification.

One of the major future works in the area of genera-
tive modeling is the generative graph representation model.
This approach combines graph CNNs with GANs and VAEs
to provide accurate probabilistic representations of graph-
structured energy datasets and power grids. The future appli-
cations of this approach include spatiotemporal probabilistic
state estimation, spatiotemporal probabilistic load forecasting,
as well as the spatiotemporal probabilistic wind and solar
energy forecasting. Another major class of future generative
models is the conditional PDF learners. In contrast to the
classic GAN and VAE, this category of models can learn the
conditional PDF of an observation given another observation.
Thus, it is able to remarkably improve the accuracy of machine
learning algorithms in various power system applications such
as anomaly detection, cyber threat detection and classification,
false data injection detection, and probabilistic load parameter
identification. In addition to this class of models, the network
PDF estimation models are another category of future works
that compute the joint PDF of node and edge features of large-
scale power networks. This class of algorithms improves future
generative solutions for power network synthesis, probabilistic
state estimation, and power grid topology detection.

In the area of DRL, the multi-agent DRL can significantly
improve the game modeling solutions between power compa-
nies and customers for dynamic demand response. Also, this
technique can provide decentralized control strategies for opti-
mal bidding between the companies and customers. Moreover,
the multi-agent DRL can improve energy market strategies and
establish smart contracts in peer-to-peer electricity trades with
Blockchain. Future DRL works can also advance operational
control strategies. These models can be applied to smart gen-
eration control in multi-area interconnected grids, model-free
load frequency control, as well as the appliances and system
control (e.g., smart grid emergency control and autonomous
grid operational control). Moreover, future DRL techniques

can be combined with multi-stage games to provide reliable
solutions for modeling the interactions between cyber attackers
and cyber defenders. Also, cooperative DRL can be utilized
for distributed economic dispatch while satisfying the power
balance and other operational constraints.

VI. CONCLUSION

With the growing time and memory complexity of power
system applications, the need for advanced statistical pat-
tern recognition tools has lead to the use of deep learning
methodologies. This novel class of methods can be mainly
categorized into discriminative, generative, and reinforcement
learning approaches. This review studies the deep discrimi-
native models that provide an explicit method to map their
complex input directly to the problem’s solution. Due to their
high generalization capacity, these models are widely applied
to stability assessment, fault detection, as well as renewable
generation prediction. Then, deep generative approaches are
reviewed that provide a probabilistic approximation of data
PDFs; hence, learning complex probabilistic structures for
a wide range of power engineering applications including
state estimation, renewable scenario generation, and power
grid synthesis. Finally, deep reinforcement learning algorithms
are discussed that seek to optimize an objective using the
observed rewards captured from the problem’s environment.
The theoretical and experimental analysis of the employed
method motivates future research in the area of deep learning
to further extend the applications of this powerful class of
models in new perspectives of power engineering.
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