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Abstract—With dramatic breakthroughs in recent years, ma-
chine learning is showing great potential to upgrade the toolbox
for power system optimization. Understanding the strength and
limitation of machine learning approaches is crucial to decide
when and how to deploy them to boost the optimization per-
formance. This paper pays special attention to the coordination
between machine learning approaches and optimization models,
and carefully evaluates how such data-driven analysis may
improve the rule-based optimization. The typical references
are selected and categorized into four groups: the boundary
parameter improvement, the optimization option selection, the
surrogate model, and the hybrid model. This taxonomy provides
a novel perspective to elaborate the latest research progress
and development. We further compare the design patterns of
different categories, and discuss several key challenges and
opportunities as well. Deep integration between machine learning
approaches and optimization models is expected to become the
most promising technical trend.

Index Terms—Artificial intelligence, data-driven, deep
learning, machine learning, neural network, smart grid.

I. INTRODUCTION

W ITH the advanced computing systems and big data,
machine learning has successfully entered a booming

period in recent years [1]. Machines are proven to outperform
humans in more and more applications, but most experts claim
that machine learning is still fast developing and has not yet
reached its peak.

Optimization is popular in tremendous applications of power
system, and the typical optimization tasks include: optimal
dispatch, planning, system identification, dynamic security,
and electricity market operations. For these applications, the
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major challenge is how to design an efficient and reliable
method to meet the increasing requirements for optimization
performance. Conventional optimization methods have shown
their limitations in complicated and volatile environments,
such as future power grids with a high penetration of renew-
able energy [2]. These conventional methods tend to repeatedly
solve similar problems without accumulating any experience.
Machine learning, in contrast, is powerful to gain experience
from historical data and previous decisions [3]. Empirical
studies have shown that the integration of machine learning
and power system optimization is able to offer significant
benefits [4].

A. Bibliometric Analysis

We conduct a bibliometric analysis on the publications that
are indexed in the well-known “Web of Science” database.
This is helpful to provide an overview of the research trend.
Here, the searching query is formulated as follows:
TS=(("power system" OR "smart grid")
AND ("optimization" OR "optimal")
AND ("data-driven" OR "artificial
intelligence" OR "machine learning"
OR "deep learning" OR "reinforcement
learning" OR "neural network" OR
"support vector machine" OR "decision
tree")).

Within the topics of interest, Fig. 1 shows the number of
publications as well as the proportion among all publications.
To derive this proportion, the number of publications on
learning-assisted power system optimization is divided by
the number of all power system optimization publications.
To count the total number, the query expressions behind the
second keyword “AND” are accordingly dropped.

As shown in Fig. 1, the publications of interest only account
for a small proportion from 2012 to 2017, but in the next
two years, the proportion grows rapidly to 6.93% and 8.61%,
respectively. This observation indicates that, in recent years,
increasing attention is given to machine learning applications
in power system optimization, and the great potential of
learning-assisted power system optimization is still under
exploration.

Early researches made some preliminary attempts at Hop-
field network [5], radial basis network [6], and self-organizing
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network [7], but after 2010, deep learning [8] attracted con-
siderable attentions and gradually became the mainstream
method.

This paper pays special attention to the latest developments,
and we carefully select a few articles that are the most
representative work in the latest three years—24 articles are
published in the first half of 2020, and 38 articles are published
in either 2018 or 2019. Moreover, these articles are mainly
chosen from several prestigious journals in power system
domain, including IEEE Transactions on Power System, IEEE
Transactions on Smart Grid, and Applied Energy.

B. Comparison with Related Review Articles

This paper shows two essential differences from the existing
review articles. First, a different taxonomy is developed in this
paper to demonstrate and highlight the methodological features
of existing literature. In comparison, existing reviews are more
focused on different applications [9]–[14] or different learning
methods [15].

Second, this paper limits the scope of references within
power system optimization rather than a wide range of ma-
chine learning applications. More technical details and dis-
cussions are therefore provided in this paper to understand the
most typical methodologies.

In summary, this paper intends to provide a novel taxonomy
to understand how machine learning approaches may benefit
the power system optimization. The selected references will
be divided into different categories according to different
methodological features. We further discuss the key challenges
in practical applications, and recommend some potential solu-
tions as well.

C. Contributions and Paper Structure

The major contributions are summarized as follows.
1) We propose a novel and well-designed taxonomy accord-

ing to different methodological features. This taxonomy
helps elaborate the coordination between machine learn-
ing approaches and power system optimization models.
We also summarize the key technologies for each cate-
gory from a number of recent publications.
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Fig. 1. Research trend of learning-assisted power system optimization in
recent years. The number of publications is shown with a bar chart, and the
associated proportion of all publications is plotted by a line chart. A significant
increase can be observed in 2018 and 2019, indicating a promising research
direction. Data Source: Web of Science.

2) Major challenges and opportunities in learning-assisted
power system optimization are fully discussed, and the
latest academic explorations are summarized to provide
some possible solutions.

In the rest of this paper, Section II proposes a well-designed
taxonomy, and the key technologies for each category are
studied in Section III. We further discuss the major challenges
and future opportunities in Section IV. At last, Section V
concludes this paper.

II. TAXONOMY

This section provides a novel and well-designed taxonomy
according to different methodological features. We intend to
answer a key question that how the machine learning ap-
proaches may change the power system optimization. Here, the
potential benefits and risks are both taken into consideration.

Specifically, we focus on the coordination between the
machine learning approaches and the optimization models,
and make four categories to extract valuable insights from
the existing literature. Fig. 2 shows an overview of these four
categories: a) boundary parameter improvement, b) opti-
mization option selection, c) surrogate model, and d) hybrid
model.

Let us revisit the power system optimization models from
a full-cycle perspective. Generally, an optimization model
contains an objective function and several constraints, whose
coefficients (boundary parameters) are important for a high-
quality solution. Classical optimization methods are widely
used, and some optimization options, e.g., initial value or
iterative step size, need to be effectively configured in advance.
Additionally, the surrogate machine learning model and well-
designed hybrid model are two alternative solvers which can
boost the optimization performance by the experience learned
from historical data.

Based on these discussions, the basic ideas of the pro-
posed four categories are quite straightforward. The first
category, boundary parameter improvement, uses machine
learning approaches to improve coefficient estimation. The
second category is focused on selecting better optimization
options. The reinforcement learning and other special machine
learning approaches are working as the surrogate models or the
third category. The last category, the hybrid models, includes
various hybrid analytical and data-driven frameworks. Note
that the last two categories are technically different from
the previous two—the coordination pattern changes from a
tandem structure to some iterative, coupled or other complex
structures. These new structures are more likely to perform
better than using optimization or machine learning model
alone.

We next analyze an example of demand response from the
perspectives of different categories. Reference [16] (Category
I) focused on the uncertainty issue of effective participation
period, which was one of the critical boundary parameters.
Reference [17] (Category II) estimated a better initial ON/OFF
status of responsive appliances. While [18] (Category III)
applied reinforcement learning for optimal control, [19] de-
signed a hybrid framework to integrate neural network and
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Fig. 2. Overview of the proposed taxonomy. This taxonomy is focused on the methodological features of existing literature, and the main ideas of each
category is graphically illustrated. This novel taxonomy contributes to understanding the coordination between machine learning approaches and optimization
models.

optimization models together. Both [18] and [19] achieved a
significant algorithmic speedup.

Beyond forecasting, machine learning approaches are show-
ing an attractive prospect for potential applications in power
system optimization. The taxonomy of this paper clearly
demonstrates the current academic progress, and becomes
useful to design new-style models.

III. KEY TECHNOLOGIES

According to the proposed taxonomy, this section summa-
rizes the latest research progress as well as key technologies.
A list with all reference details can be downloaded from [20].
Fig. 3 gives an overview of the selected references. Here,
different colors are assigned according to the application
scenarios, and the height of each slice is proportional to the
number of selected references. We will next dive into the
technical details of each category.

A. Category 1. Boundary Parameter Improvement

This category uses machine learning approaches to improve
the estimations of boundary parameters, and thus formulates
more accurate feasible regions and better optimal solutions.
There are many factors that may deteriorate the accuracy
of boundary parameters, including natural variability, human
behaviors, and partial observability of power systems.
1) Impact of Natural Variability

With high penetration of renewable energy, power systems
are meeting the challenges of increasing uncertainty. Ref-
erence [21] applied the generative adversarial networks to

create scenarios of renewable energy, and this method was also
applicable to other highly uncertain environments. Conditional
generative adversarial networks performed better than classical
methods to account for wind power uncertainty [22]. In [23], a
deep learning approach was proposed to identify the fault types
of transmission lines, and the features could be automatically
learned from raw data. Reference [24] considered a wind and
storage power plant that took part in a pool market. The
authors combined the multivariate clustering technique and
a recurrent neural network in order to model the uncertain
electricity prices and wind power. Considering the socio-
technical complexities in the planing stage, [25] developed
a data-driven framework to analyze the distributed energy
resources. In [26], the natural variability is captured by joint
chance constraints, and the bounds are estimated using support
vector machines.
2) Impact of Human Behaviors

Existing literature has used machine learning approaches
to eliminate the randomness caused by human behaviors and
obtain a better solution. Reference [27] proposed a long
short-term memory neural network to adequately consider the
uncertain prices in electricity markets. Neural networks played
a significant role in balancing between the thermal comfort
and energy use in buildings [28], achieving optimal dispatch
in ancillary services market [29] and reduced load curtail-
ments [16]. In [30], a data-driven model was used to increase
the learning ability for price responsive behaviors. A game
theory-based market strategy was designed to increase profit of
each market participant with operational security guarantees.
Reference [31] designed several local control strategies in
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distribution networks by learning historical control schemes.
3) Impact of Partial Observability

Partial observability may result in inaccurate models and
decisions. Deep learning models were deployed to identify
time-varying parameter for composite load model [32], pha-
sor measurement unit data manipulation attacks [33], phase
detection in power distribution systems [34], and feature
extraction for security rules [35]. To enhance the observability
of distribution systems, [36] presented a data-driven method
to estimate the daily consumption patterns of the customers
without smart meters. In addition, [37] showed that generative
adversarial networks could quickly assess the dynamic security
with missing data.

B. Category 2. Optimization Option Selection

This category intends to boost the optimization performance
by selecting better optimization options, e.g., initial values.
Practice shows that some options have significant impacts on
the convergence feature and speed, but the default settings
are sometimes unsatisfactory. Machine learning approaches,
in this context, can provide effective guidance from the past
experiences.

Many researches use machine learning approaches to es-
timate a good initial value, which is beneficial for a warm-
start algorithm. Reference [38] proposed a “learn to initialize”
strategy to improve the Gauss-Newton algorithm. The authors
achieved this with a neural network, and designed a special
loss function (only penalizing the maximized errors) to im-
prove the overall performance. Reference [39] established a
predict-and-reconstruct approach to predicting the generation
states (part of the decision variables), and reconstructed the
phase angles (other part of the decision variables) using power
flow equations. A deep neural network was developed for this
task, and the network size was properly configured according
to approximation accuracy. In [40], a data-driven approach
to reconstructing the solution of a centralized optimal power
flow was proposed. The idea was that local controllers could
find a near-optimal solution by learning the limited but locally
available data.

Some other extensions were discussed in [41]–[43]. The
supervised and transfer learning were applied in [41] to
estimate the Pareto front that is made up with a series of initial
values. This task was indeed more difficult than [38]–[40].
The numerical tests indicated that such estimation might cause
large errors under specific conditions, so further validation
and fine-tuning were extremely important. Reference [42] pro-
posed a linear power flow model to accelerate and approximate
the power flow calculation. This work was further extended
in [43] to tackle the challenge of hidden measurement noises.
The authors formulated three quadratic programming models
with several Jacobian-matrix-guided constraints to achieve this
goal.

The potential advantages in discrete optimization are more
attractive than expected. An early work [44] introduced a com-
bined approach for unit commitment problems. This approach
first used a neural network to determine the discrete variables,
and after that, applied the simulated annealing method to
optimize the continuous variables. Case studies showed that

the neural network found near-optimal commitment results,
and achieved a roughly 50x computing speedup. A recent
work [45] made further progress in security-constrained unit
commitment. Different machine learning approaches have
been adopted to study previously solved instances, and ac-
celerate the computation by predicting redundant constraints,
good initial feasible solutions, and active affine subspaces.
On average, the authors achieved a 4.3x speedup with op-
timality guarantees and a 10.2x speedup without optimality
guarantees (but with no discernible solution difference). It
provided a valuable insight that predicting warm start states or
active hyper-planes were significantly harder than estimating
redundant constraints. Similar technique was also applicable
in demand response. Reference [17] used a neural network
to estimate the optimal ON/OFF status of home appliances,
which could be regarded as an efficient warm start setting.

Machine learning approaches were also useful to configure
other optimization options. Reference [46] created an effective
algorithm selector by machine learning approaches and found
less overloads in power flow management. Similar method
was also adopted in a unit commitment problem [47] where
a learning model was trained to assign weights according to
some heuristic rules. Reference [48] formulated a three-stage
framework (mid-term, short-term, and real-time) for outage
scheduling, and a nearest neighboring classifier was trained to
approximate the intermediate results to speed up the mid-term
decision-making.

C. Category 3. Surrogate Model

This category seeks to completely replace optimization
models by other data-driven models. These surrogate models
are extremely powerful when analytical models are unavailable
or too computationally expensive. We study the most prevalent
method, reinforcement learning, as well as other specific
methods in the following paragraphs.

Reinforcement learning is developed for sequential decision
making that can be formulated as Markov decision process. It
becomes more and more popular as a surrogate method for
various complex optimization or control tasks. The basic idea
is to construct an agent that takes actions to maximize the
cumulative rewards, and the objective is to design an optimal
policy for action selection. Many reinforcement learning algo-
rithms have been developed with diverse reward estimations
and policy designs. Additionally, deep reinforcement learning
further enhanced the intelligent ability of agents to adapt to
different applications. Fig. 4 shows the basic structure of
(deep) reinforcement learning.

A major advantage of reinforcement learning is the
model-free formulation that is independent of prior knowl-
edge.Reference [3] used deep reinforcement learning to study
the responsive behaviors of the microgrids in a distribution
network. Reference [49] applied fitted Q-iteration to control a
cluster of electro-thermal loads with unknown characteristics.
A convolutional neural network was constructed to process
the high-dimensional inputs and capture the hidden patterns.
Reference [50] applied reinforcement learning to control a
group of heterogeneous batteries, and their diverse physical
characteristics were exploited to improve the overall efficiency.
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A coordinated wide-area voltage controller was designed in
[51] to optimize the transient process of an electric grid,
showing a better dynamic stability than conventional methods.
Reference [52] formulated an empirical model to approximate
the degradation probabilities of grid components, and applied
reinforcement learning to make maintenance decisions. Ref-
erence [53] used deep reinforcement learning to navigate the
electric vehicles that need recharging, and the total travel time
and cost were greatly minimized.

Another advantage of reinforcement learning is its online
learning ability to make immediate response to the fluctua-
tions of exogenous factors. For example, [54] solved online
optimization to minimize energy cost and users’ dissatisfaction
with regard to the electricity prices and solar output. Refer-
ence [18] used an artificial neural network to predict day-ahead
prices, and combined it with a Q-learning model for optimal
dispatch of home energy system. Similar methods were also
applied to microgrid scheduling, e.g., [55], [56].

Reinforcement learning is also useful in distributed opera-
tion or under information asymmetry. Reference [57] designed
a multi-agent system to represent independent generation
companies. A policy gradient method was applied to make
decisions with limited market information. For current and
voltage control, [58] integrate the consensus method and deep
reinforcement learning to coordinate distributed generators
in an island microgrid. The distributed reactive power op-
timization was solved by the collaborative equilibrium Q-
learning to minimize operating cost and carbon emission [59].
Reference [60] proposed a multi-agent architecture to schedule
electric vehicle charging based on Q-learning and W-learning.

A major concern of reinforcement learning is that the black
box formulation can hardly consider physical characteristics
or constraints. Large decision errors may happen in some

Reinforcement
Learning
Algorithm

States

Rewards

Actions

Agent
Update

Environment

Policy
Function

Fig. 4. Basic structure of reinforcement learning. The agent can observe
the states of the environment, and take actions in response. After that, the
environment gives back a reward according to the actions. The major objective
of the agent is maximizing its total reward during a decision period.

unexpected cases because the performance of reinforcement
learning heavily depends on the training data.

To solve this problem, safe reinforcement learning was
developed to guarantee certain security constraints. The basic
idea is to introduce some penalty terms corresponding to the
security constraints, and minimize them in priority during the
learning process. Reference [61] adopted this idea to consider
charging constraints of electric vehicle batteries.Reference [62]
optimized voltage and reactive power by a safe off-policy deep
reinforcement learning algorithm to avoid voltage violations.

Some studies have also explored embedding physical char-
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acteristics within deep learning methods. A physics-guided
neural network approach was proposed in [63] to calculate
probabilistic power flow. The training process was improved
by the grid characteristics, and the case study showed a great
computation speedup. Similar applications were completed by
[64], [65] with a fully connected neural network and extreme
learning machine, respectively. A graph convolutional network
was trained in [66] to capture the topology information,
and calculate the optimal load-shedding under contingency.
Reference [67] used a convex neural network to approximate
the electrothermal characteristics of a building, and then solve
a convex optimization to minimize the electricity consumption.
In the online control of plug-in electric bus [68], the trip
information was represented by the length ratio, and this
mapping relationship was learned by a neural network. Refer-
ence [69] studied the pump speed control to optimize the waste
heat recovery of internal-combustion engines.The authors used
the dynamic programming and supervised learning methods,
whose inputs were specially designed according to several
physical differential equations.

D. Category 4. Hybrid Model

This category combines the machine learning approaches
and optimization models together to boost the overall perfor-
mance. There are two hybrid types shown in Fig. 2(d), and
more details are provided in Fig. 5 as well. Here, one type is
an iterative structure with machine learning and optimization
steps, and the other is a coupled structure that embeds machine
learning models into optimization models to replace some
inefficient parts. Such combinations are expected to provide
a deep integration between two kinds of models, and fully ex-
plore their hidden potentials. Some case studies have achieved
higher modeling accuracy and optimality property at the same
time, e.g., [19], [70].

x
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Transformation
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Fig. 5. Structure details of two typical hybrid models. An iterative structure
takes learning steps and optimization steps alternately, while a coupled
structure replaces certain inaccurate parts in an optimization model with
machine learning formulations.

1) Iterative Structure

This structure is very popular in many optimization and
optimal control tasks, and the typical flowchart is shown in
Fig. 5. Reference [19] proposed an accelerated algorithm for
distributed demand response, which applied a neural network
to iteratively predict the consumers’ price responses. The
authors further developed a transformation model to search
for better step sizes. The most promising feature of this
algorithm was that it could cut off 60-80% iterations but still
guarantee optimality property. In addition to step sizes, [71]
showed that neural network was also able to improve searching
directions of a sequential linear programming model. This
paper considered an information asymmetric situation where
a retailer company needed to make decisions with limited
knowledge of its consumers. The dual neural networks were
designed and one network was working to transform and
derive searching directions.

Other intelligent optimization algorithms were also imple-
mented in existing researches. Reference [72], [73] formulated
a similar optimal dynamic pricing model for retailers but
solved the model by the genetic algorithm and mean-variance
mapping optimization, respectively. Here, the consumer re-
sponsive features were learned and coordinated with the intel-
ligent optimization algorithms later. Reference [74] established
a three-stage model predictive control where neural networks
were predicting the energy demand and renewable energy
supply to construct the optimal decisions. In [75], a hybrid
model and data-driven simulation platform was operating in
real-time for selecting the power system security features.
Within this platform, the analytical models generated the
samples, and they were then analyzed to extract several fine-
tuned security rules.

2) Coupled Structure

This structure is more complex than the iterative structure
mentioned above. As shown in Fig. 5, current researches made
effort on embedding machine learning models in the objective
function or constraints, and the key technical difficulty is
how to design the optimization algorithms and transformation
process. Reference [76] extracted a mapping function from
the neural network formulation and included it as a constraint
in an optimal power flow model. This hybrid model was then
solved by a nonlinear programming optimizer. Reference [77],
[78] integrated the machine learning models in the constraints
of a building energy optimization model. To solve this model,
[77] applied particle swarm optimization, while [79] applied a
hybrid approach of exhaustive search method and subsequent
quadratic programming. Similarly, the particle swarm opti-
mization was also conducted in [80] to solve an optimization
whose constraints were modeled by a radial basis function
neural network. Reference [81] formulated a preventive control
model with a Bayesian neural network that could predict
the steady-states. This model was later solved by Bayesian
optimization.

We next talk about some typical transformation measures. A
piece-wise linear approximation transformed neural networks
in [82] to finally derive a mixed integer programming model.
Reference [70], [83] chose different machine learning ap-
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proaches as an alternative. In [70], the sparse oblique decision
tree was applied to learn some accurate, understandable, and
linear security rules for economic dispatch. These rules could
be embedded in an optimization as several mixed integer
linear constraints. In [83], the authors conducted an extreme
learning machine to enhance the hydrostatic tidal turbine
control. This model was basically a linear model and can
be easily transformed to linear constraints. Another special
technique was introduced in [84], where the authors designed
a sequential approximation method with dynamically trained
neural networks. With the consideration of running time, such
dynamic training might be more suitable for small networks.

Many researches have formulated objective functions with
machine learning elements. Reference [85] trained a neural
network to learn the combined heat and power simulation
results, and formulated the objective function with this neural
network integrated. The dispatch schedule was optimized by
genetic algorithm. Reference [86] designed a convolutional-
neural-network-based classifier for faulted line localization.
The placement problem of phasor measurement units was a
hybrid model, and the objective function contained the loss
function of convolutional neural network. This problem was
actually a special hyperparameter optimization, and was later
solved by greedy algorithm.

E. Comparison and Comments

Overall, the selected references have very diverse ideas
and features. We will compare all above categories and make
further comments on their applications.
1) Difficulty of the Learning Tasks

Considering the same data dimension and precision require-
ment, the Category 3 contains the most difficult learning tasks.
Here, the so-called “difficulty” can be measured by how large
a machine learning model is needed to finish the task. The
Category 2 usually takes the second place, but the situations
for the remaining two categories are uncertain.

Regardless of some exceptions, the surrogate models (Cat-
egory 3), especially those reinforcement learning models, are
usually very complicated to calibrate, so a large amount of
data and computing resources are needed. These models might
meet great difficulty if the simulation data are not available or
effective. Furthermore, the boundary parameter improvement
(Category 1) is often easier to achieve, but its potential benefits
are strongly related to the specific cases. As for the remaining
two categories, some physical knowledge may be relatively
helpful to boost the overall performance.
2) Difficulty of the Model Designs

For a similar task, the Category 4 or Category 2 methods
are often in need of more efforts or even case-by-case designs.
In contrast, the Category 3 is more likely to have some off-
the-shelf tools, and little manual processing is needed.

There are two significant features in power system
optimization—highly sensitive to decision errors, and depen-
dent on extensive physical knowledge. However, leveraging
these physical knowledge to design a dedicated framework
or machine learning model is still under exploration. In this
aspect, the hybrid model (Category 4) and other variants

in other categories deserve more exploration although more
design efforts are needed.

IV. CHALLENGES AND OPPORTUNITIES

Power system optimization always has high requirements
for the algorithm reliability because a potential failure could
lead to a significant financial loss. However, machine learning
is still having troubles in real-world power system applications,
and the major concerns should be carefully analyzed and
handled [87]. With this purpose, this section points out three
major challenges, and shares some possible solutions as well.

A. Data Bottleneck
Collecting clean and reliable data is essential to every

machine learning application, and the requirement for modern
deep learning models is even higher. Two special features
of power system data should be noted here: First, due to
privacy concerns or confidentiality requirements [15], very few
real-world data sets are public available, simulation data are
therefore widely applied as an alternative [88]. Second, real-
world data are often imbalanced, and the rare part may be
extremely important, e.g., unstable system conditions [11].

Data issues show adverse impacts on all four categories, and
thus become the major bottleneck for real-world applications.
Apparently, it will bring more risks to those data-intensive
models In addition to expanding data sets with policy support,
there are also some emerging technologies that could help
tackle these data issues—data augmentation and few-shot
learning.

Data augmentation is a strategy that significantly increases
data volume by a series of transform operations. Refer-
ence [89] collected a list of useful resources, including classi-
cal techniques, papers and Github repositories. For example,
the mainstream techniques for time-series data augmentation
can be classified into simple operations (warping, jittering and
perturbing) and advanced operations (embedding space and
generative approaches).

Few-shot learning intends to feed machine learning models
with limited amount of data. The basic idea is to use prior
knowledge to avoid the unreliable performance of empirical
risk minimizer. In this aspect, the authors of [90] reviewed
some model-based methods (constrain the model complexity)
and algorithm-based methods (constrain the search strategy for
optimal parameters).

B. Robustness and Prediction Errors
Power system optimization imposes high requirements on

accuracy as well as robustness. In this context, it is crucial
to take care of the robust vulnerability—In extreme cases, a
small input change may lead to a significant drop in accuracy.

There are two perspectives to analyze and understand the
robustness issue:

• What is the output change of machine learning models
with a fluctuation in model inputs?

• What is the change of optimal solution with a fluctuation
in machine learning model outputs?

For Category 3, these two perspectives merge into one,
while for other categories, the second perspective is important
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but seldom discussed. We will next introduce some latest
research explorations in the two perspectives.

From the first perspective, adversarial examples are fairly
helpful to examine the robustness of machine learning ap-
proaches. Reference [91] studied the worst-case adversarial
perturbations and found the robustness might be badly harmed.
A recent work [92] argued that, in fact, these adversarial
examples were features rather than bugs. The authors further
demonstrated the robust and non-robust features, and the non-
robust ones were the main cause for robust vulnerability.

The second perspective is highly related to the specific
characteristics of optimization model. We can divide the model
parameters and optimization options into two parts: error-
tolerant parameters and error-sensitive parameters. Fig. 6 gives
an illustrative example to show the difference. Our main focus
is on the overall optimization performance when machine
learning models make positive and negative prediction errors.
It is shown that an error-tolerant parameter can robustly guar-
antee a shorter running time for optimization. For Category 1,
2 and 4, choosing error-tolerant parameters to coordinate be-
tween machine learning approaches and optimization models
could improve the robustness of the whole system.

Prediction Output
Distribution of the
Machine Learning
Model

Optimal Setting / Ground Truth
Positive ErrorsNegative Errors

Shortest
Running

Time

Longest
Running

Time

Parameter 1

Sensitive to Errors

Parameter 2

Tolerant to Errors

Fig. 6. Comparison between error-tolerant parameters and error-sensitive
parameters. In this example, error-tolerant parameters can robustly ensure a
shorter running time than error-sensitive parameters, even though their best
performances are nearly the same.

C. Interpretability

Interpretability describes how much people can understand
the decisions made by machine learning approaches. Many
machine learning models, e.g., neural networks, are widely re-
garded as “black box” models [15]. Ensemble learning makes
the interpretability even worse by combining several black
box models together. As a consequence, low interpretability
severely hinders the wide applications of machine learning
approaches in the power industry.

There are two perspectives of the interpretability:
• How are the optimal weights found by machine learning

models?
• How can machine learning model outputs improve the

optimization performance?

Human

Black Box Model

Interpretability
Processing

Interpretable Model

Data

Intrinsic
Interpretability

Post Hoc
Interpretability

Option 1 Option 2

abstract

hard to
understand

easy to
understand

Fig. 7. Two options to achieve machine learning interpretability. These two
options, applying an interpretable model or making further processing on a
black box model, are illustrated to translate the original data to some easy-
to-understand explanations.

Similar as the previous subsection, for Category 3, these two
perspectives merge into one, while for Category 1, the second
perspective is very intuitive—closer to the ground truth is
better. In the remaining two categories, both two perspectives
are important and should be carefully discussed.

The first perspective is a conventional topic that have
been discussed for years in machine learning community.
Reference [93] introduced most of the important progresses
in this domain which are also shown in Fig. 7. Basically,
there are two options to achieve interpretability: applying an
interpretable model or making further processing on a black
box model. Model-agnostic interpretation methods, with rapid
advances in recent years, are able to extract many human-
friendly features and visualization results.

The second perspective is dedicated for learning-assisted
optimization, and can be probably demonstrated with the help
of optimization theory. There often exist a set of optimal
configurations to boost the optimization performance, but
they may be computing-intensive or even intractable. Machine
learning approaches, however, can approximate these configu-
rations efficiently. A typical example is the selection of near-
optimal step sizes in [19].

V. CONCLUSION

This paper conducts a comprehensive review of learning-
assisted power system optimization. A novel and well-
designed taxonomy is proposed in this paper to categorize the
existing articles by their methodological features. The latest
research progress and key technologies are thoroughly sum-
marized, along with further comments on the key challenges
in real-world applications.
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We strongly realize that the deep integration of machine
learning and power system optimization is a promising future
trend. This review is expected to offer some useful information
and new insights in this domain.
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