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Preventive Control for Power System Transient
Security Based on XGBoost and DCOPF with

Consideration of Model Interpretability
Songtao Zhang, Dongxia Zhang, Ji Qiao, Xinying Wang, and Zhijian Zhang

Abstract—This paper proposes a new approach for online
power system transient security assessment (TSA) and preventive
control based on XGBoost and DC optimal power flow (DCOPF).
The novelty of this proposal is that it applies the XGBoost and
data selection method based on the 1-norm distance in local
feature importance evaluation which can provide a certain model
interpretability. The method of SMOTE+ENN is adopted for
data rebalancing. The contingency-oriented XGBoost model is
trained with databases generated by time domain simulations to
represent the transient security constraint in the DCOPF model,
which has a relatively fast speed of calculation. The transient
security constrained generation rescheduling is implemented with
the differential evolution algorithm, which is utilized to optimize
the rescheduled generation in the preventive control. Feasibility
and effectiveness of the proposed approach are demonstrated on
an IEEE 39-bus test system and a 500-bus operational model for
South Carolina, USA.

Index Terms—DC optimal power flow (DCOPF), model
interpretability, preventive control, transient security assessment
(TSA), XGBoost.

NOMENCLATURE

CPP Central power plant.
PTS Power transformer substation.
OP Operating point.
DT Decision tree.
TSA Transient security assessment.
DCOPF Direct-current optimal power flow.
TSC- Transient security constrained
DCOPF direct-current optimal power flow.
CS Contingency set.
OB, PB Overall database and prepared database.
G CPPx MW-output of CPP x.
PGi MW-output of generator i.
P x y MW-only power flow from bus x to bus y.
P A B MW-only power flow from A to B.
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SG Set of generators participating in the preven-
tive control.

I. INTRODUCTION

W ITH the increase in scale and complication of power
systems as well as the continuously growing demand

for electricity, power systems are forced to operate closer to
their stable operational limits. Preventive control for transient
security is an important part of the three-defense lines to
ensure the safe and stable operation of power systems [1],
[2]. In the preventive control, the transient stability of power
systems is enhanced by adopting a variety of measures to
adjust the operating point (OP), e.g. adjusting the MW-output
of the generators, to ensure that the power system can maintain
stable operations under N − 1 contingencies. Currently, most
dispatch operations of power systems are still based on the of-
fline operation state calculation. With the construction of pha-
sor measurement units (PMUs) and wide-area measurement
systems (WAMSs), an opportunity is provided for utilizing
data-driven approaches and machine learning (ML) methods
in online power system transient security assessment (TSA)
and preventive control.

Preventive control for power system transient security is
essentially a problem of transient security constrained optimal
power flow (TSCOPF). Mathematically, it is solving a large-
scale nonlinear dynamic programming problem with differ-
ential algebraic equations. Compared with the conventional
optimal power flow (OPF), the difficulty of the TSCOPF lies
in the additional transient stability constraints. In [4], the
original semi-infinite TSCOPF problem is transformed into a
conventional nonlinear optimization problem by converting the
differential equations into difference equations, which can lead
to dimensional disaster. As an improvement to this approach,
a complicated power system with multiple generators can
be reduced to a one-machine infinite-bus (OMIB) equivalent
system [5]–[8]. In [9] and [10], constraints of transient energy
margin based on controlling the unstable equilibrium point
(CUEP) are incorporated into the TSCOPF model. In [11],
the method of extended equal area criterion (EEAC) is adopted
for the TSCOPF. However, the aforementioned methods have
performed an equivalent process on the power system, thus
the results are not always the same as that of the original
system. On the other hand, the preventive control can also
be implemented based on several sensitivities without an
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optimization calculation [12]–[14], but these types of methods
are simplistic and usually cannot achieve reasonable results in
a realistic complicated power system.

With the rapid development of artificial intelligence (AI)
technology in recent years [15], more and more AI algorithms
have been applied in preventive control. Intelligent optimiza-
tion algorithms, e.g. particle swarm optimization (PSO) [16],
and the differential evolution (DE) algorithm [15], have been
used in TSCOPF. In [18]–[20], artificial neural networks
(ANN) are adopted to implement the transient security con-
straints. In [21], a systematic approach for dynamic security
assessment and preventive control is proposed based on a
decision tree (DT). Various methods for preventive control
have been proposed based on other AI algorithms, e.g. pattern
discovery (PD) [22], and support vector machine (SVM) [23].
XGBoost [24] has been widely used to achieve state-of-the-
art results on many machine learning challenges. At present,
XGBoost already has several applications in the field of
power systems. The study in [25] applies XGBoost in the
fault detection of wind turbines. In [26], XGBoost is utilized
for malicious synchrophasor detection based on historical
operational data. In [27] and [28], methods for TSA based on
XGBoost are proposed. These applications show the potential
of applying XGBoost in the prevention control for power
system transient security.

Although black-box AI methods, e.g. SVM, ANN, and
XGBoost, have achieved encouraging results in various ar-
eas, the lack of transparency has limited their applications
under safety-critical scenarios, e.g. operation control of power
system. Explainable artificial intelligence (XAI) tries to solve
this problem by providing human understandable explana-
tions [29], the research of which are generally carried out in
terms of similar classification examples [30], [31], human-
friendly concepts [32], or local feature importance [33], [34].
The last term is considered in this paper, which can provide
a local explanation of the black-box AI model by conducting
feature importance evaluation in the neighborhood of a test
sample.

An approximate calculation of the MW-only power flow can
be performed by the direct-current power flow (DCPF) [35].
Due to its fast calculation speed with no convergence problem,
the direct-current optimal power flow (DCOPF) has been
widely used in many areas of power systems [36]–[38]. The
conventional DCOPF ignores the branch resistance, thus the
network loss cannot be taken into account. However, for a
large-scale power system, the network loss must be consi-
dered [39]. In [40], a modified DCOPF algorithm based on the
network loss equivalent load model is introduced, which can
achieve adequate accuracy while retaining the fast calculation
speed of the conventional DCOPF method.

Based on the aforementioned researches, this paper pro-
poses an XGBoost and DCOPF based approach for online
TSA and preventive control. The OPs in the database are
randomly generated based on historical generation scheduling
data and the transient security results of the OPs are labeled
by time domain (T-D) simulations. A data selection technique
with 1-norm distance is adopted to reduce the number of
training samples and help provide model interpretability, and

method of SMOTE+ENN is applied for data rebalance. The
DCOPF model is adopted with a fast calculation speed. The
XGBoost model is introduced, which is utilized to evaluate
the importance of features and represent the transient security
constraint in the TSC-DCOPF model. Combined with steady-
state constraints, the feasible region of the TSC-DCOPF model
can be described. Then, the optimal OP is optimized by using
DE and adjusted by generation rescheduling.

The remainder of this paper is organized as follows. In
Section II, principles of XGBoost and formulations of the
proposed TSC-DCOPF model are introduced. Section III
describes the method for database preparation. Section IV
presents the strategy and optimization scheme of the proposed
method. Then, the proposed approach is demonstrated in
Section V on an IEEE 39-bus test system and a 500-bus
operational model for South Carolina, USA. The concluding
remarks are provided in Section VI.

II. METHODOLOGY DESCRIPTION

A. Principles of XGBoost

XGBoost is an end-to-end machine learning system for tree
boosting developed by Chen and Guestrin [24]. XGBoost is
an ensemble learning method which conducts learning tasks
by combining multiple decision trees (DTs). The DTs in
XGBoost are classification and regression trees (CART) [41].
The ensemble learning methods can be roughly divided into
two categories: bagging (i.e. parallel generation method of
the learners) and boosting (i.e. serial generation method of
the learners). A representative method of bagging is random
forest (RF), while the commonly-used boosting methods are
AdaBoost, GBDT, lightGBM, and XGBoost. At present, XG-
Boost is among the best-performing algorithms of supervised
machine learning.

For a given data set D = {(xi, yi) | xi ∈ Rm, yi ∈ R}
which has n samples and m features, the ensemble model of
K DTs constructed by XGBoost is shown in Fig. 1.
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Fig. 1. The ensemble model of K DTs constructed by XGBoost. The
diamonds are branch nodes and the rectangles are leaf nodes. The meaning
of the branch condition “if?” is “if xj < Mj (Mj is a real number),” e.g.
“if x2 < 0.35.”

According to the branch conditions, the corresponding leaf
node value for a sample can be obtained in a DT. The final
output value for each input sample xi is predicted by the
ensemble model of K DTs as follows:
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ŷi =
K∑

k=1

fk(xi), fk ∈ F (1)

where F is the space of the DTs, fk(xi) is the leaf score
(i.e. the prediction value) of the k-th DT for the i-th sample.
The final prediction value ŷi is provided by summing up
the corresponding leaf values of the K DTs. The structures
and parameters of the K DTs are learned by minimizing the
objective function L as follows:

L =
n∑

i=1

l(ŷi, yi) +
K∑

k=1

Ω(fk) (2)

where l is the loss function for the prediction value ŷi and the
target value yi, the Ω is adopted to penalize the complexity of
the DTs. The formula of Ω is as follows:

Ω(f) = γT +
1

2
λ

T∑
j=1

ω2
j (3)

where T is the number of leaves in the DT, ωj is the score
value of the leaf j, γ and λ are constants to present the
degrees of regularization. The regularization term Ω can help
smooth the ω to avoid over-fitting. It is worth mentioning that
the shrinkage and column subsampling techniques are also
adopted for the prevention of over-fitting in XGBoost.

The ensemble model of K DTs is trained through the
gradient boosting process in XGBoost, as shown in Fig. 2.

database

+ + + learn
ft (xi)

learn
f2 (xi)

learn
f1 (xi)

DT 1 DT 2 DT t

Forest 1 Forest 2 Forest t

database database

Fig. 2. Schematic diagram of the gradient boosting process in XGBoost.

In the t-th iteration of the cumulative training, the ft is
learned and added to the current forest (i.e. the ensemble
model of DTs). The formula of the final prediction value in
the t-th iteration is as follows:

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi) (4)

The ft is learned to minimize the current objective function
L(t) as follows:

L(t) =
n∑

i=1

l(ŷ
(t−1)
i + ft(xi), yi) + Ω(ft) (5)

By the second order Taylors expansion, an approximate
expression of L(t) is as follows:

L(t) '
n∑

i=1

[
l(ŷ

(t−1)
i , yi) + gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft)

(6)

gi =
∂l(ŷ

(t−1)
i , yi)

∂ŷ
(t−1)
i

, hi =
∂2l(ŷ

(t−1)
i , yi)

∂(ŷ
(t−1)
i )2

(7)

The constant terms can be removed to obtain the simplified
objective function as follows:

L̃(t) =
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ γT +

1

2
λ

T∑
j=1

ω2
j

=
T∑

j=1

∑
i∈Ij

gi

ωj +
1

2

∑
i∈Ij

hi + λ

ω2
j

+ γT

(8)

where Ij is the index set of the samples mapping to leaf j.
For a fixed DT structure, the optimal ωj is as follows:

ω∗j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(9)

The corresponding optimal value of the current objective
function is as follows:

L̃(t),∗ = −1

2

T∑
j=1

(∑
i∈Ij

gi

)2

∑
i∈Ij

hi + λ
+ γT (10)

Equation (9) can be utilized to quantify the quality of a tree
structure. However, it is normally impossible to check all the
possible tree structures for the best one. A greedy algorithm
which iteratively splits one leaf into two is used instead. For
the newly generated node, all features should be tested. For
each feature, a linear scan of the metric gain from the splitting
is performed to obtain the best splitting position. The new
node is then constructed with the best feature (i.e. feature with
the largest metric gain) and the corresponding best splitting
position. The formula of the metric gain is as follows:

G =
1

2


(∑

i∈IL
gi

)2
∑

i∈IL
hi + λ

+

(∑
i∈IR

gi

)2
∑

i∈IR
hi + λ

−

(∑
i∈I

gi

)2
∑

i∈I
hi + λ

− γ (11)

where I = IL ∪ IR, IL and IR are the index sets of the
samples mapping to the newly generated left and right nodes
respectively. In addition, besides the greedy algorithm, several
approximation and variants can also be adopted to improve
the effectiveness of the splitting in XGBoost.

The importance of the features can be evaluated and ranked
according to the trained XGBoost model. There are three
commonly-used measurements for the calculation of feature
importance scores: Gain, Cover, and Frequency, among which
Gain is the most relevant attribute that explains the relative
importance of each feature. In this paper, the metric of total



282 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 7, NO. 2, MARCH 2021

Gain is adopted to calculate the feature importance score,
which is as follows:

Si = Gsum,i (12)

where Gsum,i is the total Gain across all the split nodes of
the forest in which the i-th feature is used, and Si is the
importance score of the i-th feature. The higher value of this
metric means that the corresponding feature is more important
for generating prediction results than other features.

B. Proposed TSC-DCOPF Model

In this paper, a transient security constrained generation
rescheduling method, based on DCOPF, is proposed to im-
plement the online preventive control approach when the
current OP of the power system is predicted to be insecure
by the trained XGBoost model. The proposed TSC-DCOPF
model, which includes an objective function with equality and
inequality constraints, can be formulated as follows:

min f(u,v)

s.t. h(u,v) = 0

g(u,v) 6 0

FTS(u,v) < 0

(13)

where u represents the controllable variables which are the
MW-output of the generators, v represents the dependent
variables which are constrained by power flow equations, e.g.
the MW-only power flow of the branches, and f(u,v) is the
objective function, which is as follows:

f(u) =
∑
i∈SG

∣∣PG,i − P 0
G,i

∣∣ (14)

where P 0
G,i and PG,i are the MW-output of the i-th generator

before and after generation rescheduling, and SG is the set of
generators participating in the preventive control.

The equalities h(u,v) = 0 represent the power flow equa-
tions. Practically, under the realistic scenario of online op-
erations, the to-be-adjusted objects, which require the most
attention of the operators, are the MW-only power flow of
transmission lines or sections. Due to the advantages of
DCOPF mentioned before, the DCPF equations are adopted
as follows [39]:

P = Pgen − Pload − Pshunt − Ploss − Phvdc = Bθ (15)

where Pgen is the MW-only power vector of the generators,
Pload is the MW-only power vector of the loads, Pshunt is the
bus shunt loss vector, Ploss is the branch loss vector, Phvdc
is the HVDC power infeed vector of the nodes with HVDC
lines, P is the node injected MW-only power vector, θ is the
node voltage phase angle vector except the slack node, and
B is the node susceptance matrix which is implemented with
sparse matrix technique. The θ can be obtained by solving
this linear equation. Among them, the Pshunt and Ploss need
to be estimated. The approximate Pshunt,i can be calculated as
follows:

Pshunt,i = gi,0 (16)

where gi,0 is the total shunt conductance of bus i. The formula
to estimate the Ploss,i is as follows [38]:

Ploss,i =
∑
j∈i
j 6=i

Ploss,ij

2
(17)

Ploss,ij = |I ′ij |2rij = (αijP
′
ij)

2rij (18)

P ′ij =
θi − θj
xij

(19)

where θi and θj are the voltage phase angles of node i and j,
rij , xij , I ′ij and P ′ij are the resistance, reactance, current and
the MW-only power flow of the branch ij, respectively. The
unit of phase angle is radians. It should be noted that the per-
unit values are adopted in this paper, except the units for time
or phase angle. For the unit of power, 1.0 p.u. is equivalent to
100 MW. The αij is a scale factor to estimate I ′ij with P ′ij .
The Ploss should be calculated iteratively with (15)–(19), until
the following formula is satisfied:

‖Ploss,k − Ploss,k−1‖ 6 ε (20)

where Ploss,k, Ploss,k−1 are the branch loss vector at the k-
th and (k − 1)-th iterations respectively, ε is the maximum
allowable error value of the branch loss, which is taken as
10−4.

The inequalities g(u,v) 6 0 represent the basic operational
constraints of the power system, which are as follows:

PG,i,min 6 PG,i 6 PG,i,max (21)
−PP,k,max 6 PP,k 6 PP,k,max (22)

where PG,i,max and PG,i,min are the maximum and minimum
MW-output of the i-th generator, PP,k and PP,k,max are the
MW-only power flow and the maximum MW-only power flow
of the k-th transmission line or section.

The inequality FTS(u,v) < 0 represents the operational
constraint for transient security formed by the XGBoost model,
which is trained with a large number of operation samples.
The system for each sample should be tested whether it can
or cannot maintain transient stability under each contingency
of the contingency set (CS) by applying T-D simulations. To
ensure the reliability of the results, the time length of the T-D
simulation is set to be 20 s. The employed evaluation criteria
for transient stability are as follows:
• Transient angle stability: The system is considered to be

transient angle unstable if the maximum angle separation
of any two rotor angles in degree ∆δmax > 360◦ [22].

• Transient voltage stability: The system is considered to
be transient voltage unstable if any bus voltage amplitude
is unable to recover to be above 0.8 p.u. within 10 s [42].

For each sample, the controllable variables u and the depen-
dent variables v , i.e. the MW-output of the generators or CPPs
(G CPPx) and MW-only power flow of the transmission lines
or sections (P A B), are combined to form the corresponding
sample input data x as follows:

x = [x1, x2, x3, . . . , xM ]

= [G CPP1,G CPP2, . . . ,P A B,P C D, . . .] (23)
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where xi is the i-th feature of sample input data x , and M
is the number of features. It can be seen that FTS(u,v) =
FTS(x).

Classification of secure or insecure samples is a two-class
classification problem in which the cross-entropy loss function
is generally adopted as follows:

Loss = − [y · log(p) + (1− y) · log(1− p)] (24)

where log(·) is the natural logarithm function, y is the label
of a sample, y = 0 or 1, 0 represents secure, 1 represents
insecure, and p is the predicted probability that the sample
is insecure, which is calculated by the Logistic function as
follows:

p = Logistic(ŷ) =
1

1 + e−ŷ
(25)

ŷ = FTS(x) =
K∑

k=1

fk(x) (26)

where fk is the k-th DT in the XGBoost model. A sample is
classified by comparing its predicted probability value p with
the classification threshold pth = 0.5. A sample with p < 0.5
is a secure sample, otherwise it is insecure. This is equivalent
to the criterion that a sample with FTS(u,v) = FTS(x) < 0
is a secure one, otherwise it is an insecure one.

III. DATABASE PREPARATION

Training of the XGBoost model is based on an overall
database (OB) prepared in advance with a large number of
OPs and their T-D simulation results of transient security.
These OPs include historical generation scheduling data and
further randomly generated ones with steady-state constraints
and feasible power flow solutions, which are as follows:

OP = [PG,1, PG,2,PG,3, . . . , PG,NG ] (27)
OP CPP = [G CPP1,G CPP2, . . . ,G CPPNC] (28)

where NG and NC are the number of generators and CPPs that
can be dispatched in the preventive control, respectively. For an
insecure initial OP, the generation rescheduling will be carried
out under its current load level. Therefore, different databases
are suggested to be established with different corresponding
load levels. Typical ones of N − 1 contingencies in which
transient instability occur frequently are selected to form the
CS according to historical records and experience of the
operators. In normal circumstances, these contingencies are
the most critical 3-phase-ground faults.

A. Data Selection

In this paper, data selection is adopted to reduce the number
of training samples and help provide model interpretability
at the same time. The interpretability is considered to be
necessary if the power system operators monitor and schedule
based on the prediction of a black-box AI model. It is difficult
to interpret the black-box AI model from a global perspective,
and may not be of necessity. In fact, local feature importance
evaluation is one of the most frequently-used methods for
providing model interpretability.

The local important features obtained by evaluation rep-
resent the prediction-making basis and reasons of the black-
box AI model in the neighborhood of the test sample, thereby
providing a local explanation of the model. The prediction
of the model is considered to be unreliable if the obtained
local important features are obviously inconsistent with human
experience. Take LIME [34] for example, as shown in Fig. 3,
an interpretable linear model is fitted with samples in the
neighborhood of the test point to perform a local feature
importance evaluation.

Fig. 3. Schematic diagram of LIME [32]. The dashed line approximates the
decision boundary in the neighborhood of the test point (bold cross).

Practically, for a given insecure initial OP of the power
system, in the process of its adjustment towards the security
boundary, the nearby samples are the actually effective ones,
while the far-away samples generally do not play a role.
Therefore, samples close to the initial OP can be selected, as
shown in Fig. 4. Then, a certain local model interpretability
can be achieved by local feature importance evaluations with
the XGBoost model trained with the selected samples. It
should be noted that the security boundary here in Fig. 4 is
only a schematic diagram with no specific expression.

x 2

x1 x1

x 2
Initial OPSecurity Boundary

(a) (b)

Initial OPSecurity Boundary

Insecure OP

Secure OP

Fig. 4. Schematic diagram of data selection. (a) Samples before data
selection. (b) Samples after data selection.

There are several commonly-used metrics that can describe
the distance between two samples x1 and x2, e.g. ∞-norm
distance d∞, 2-norm distance d2, and 1-norm distance d1,
which are defined as follows:

d∞(x1,x2) = max{|x1,i − x2,i|} (29)

d2(x1,x2) =
(∑

|x1,i − x2,i|2
) 1

2

(30)

d1(x1,x2) =
∑
|x1,i − x2,i| (31)

where x1,i and x2,i are the i-th feature of sample x1 and
x2, respectively. It should be noted that only features of
G CPPx are taken into account in the calculation of distance
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and features of P A B are not considered. In most current
research studies, the ∞-norm distance is utilized as follows:

0.9P 0
G,i 6 PG,i 6 1.1P 0

G,i (32)

It can be recognized that the adjustment range reserved for
each generator or CPP is quite small with this type of distance
metric. In order to complete a certain amount of generation
rescheduling, a large number of generators and CPPs need
to be adjusted. The distance, defined by 2-norm or 1-norm,
however, has a wider adjustment range for each generator with
a certain total generation rescheduling amount of the system,
which is similar to that in the realistic scheduling scenarios.

Typical results of data selection with ∞-norm distance,
2-norm distance, and 1-norm distance are shown in Fig. 5.
Practically, the distance defined by the 2-norm or 1-norm
metric have similar effects in data selection. The 1-norm
distance can be understood as the total amount of generation
rescheduling, while the 2-norm distance is the distance of
two samples in the Euclidean space. In order to facilitate
understanding, the 1-norm distance is adopted in this paper.

Initial OP_CPP
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_
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P
P
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_
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P
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_
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P
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Fig. 5. Typical results of data selection with ∞-norm distance d∞, 2-norm
distance d2, and 1-norm distance d1. Assuming that 10 CPPs in the system
could be rescheduled, each G CPP of the initial OP CPP is 1.0 and the total
amount of generation rescheduling is 2.0.

B. Data Rebalancing

A dataset is imbalanced if instances of some classes are
far fewer than those of the other classes. With an imbalanced
data set, classification models of machine learning can hardly
obtain satisfactory training results. However, for the TSA
scenarios in this paper, an imbalanced dataset is common.

Data rebalancing aims to rebalance the proportions of
different classes in an imbalanced dataset, of which random
under-sampling (RUS) and random over-sampling (ROS) are
the simplest methods. However, many samples are discarded
in random under-sampling, which affects the training effect of
the model, while random over-sampling will cause the problem
of model overfitting. The synthetic minority oversampling
technique (SMOTE) [43] is an improved scheme based on
random oversampling. SMOTE generates new samples based

on the spatial distribution of minority samples by interpola-
tion. For each sample in the minority class, the Euclidean
distance between this sample and all other minority samples
is calculated to obtain its k-nearest neighbors. The difference
between the original sample and a randomly chosen neighbor
is multiplied by a factor with the range of 0–1, and then added
to the original sample to derive a new sample.

Nonetheless, noise samples are easily generated when being
inserted between marginal outliers and inliers in the previous
SMOTE method. Therefore, data cleaning techniques, e.g.
Tomek links, and Wilson’s edited nearest neighbor rule (ENN),
are suggested to be executed after oversampling, which leads
to methods of SMOTE+Tomek and SMOTE+ENN [44]. In
ENN, the class in which more than two neighbors of the
sample belong should be marked as the predicted class. A
sample should be removed if its predicted class contradicts its
actual class. Generally speaking, the method of SMOTE+ENN
tends to remove more noise samples than SMOTE+Tomek
and is expected to provide a more in-depth data cleaning
effect. Hence, the method of SMOTE+ENN is adopted for
data rebalancing in this paper. Typical results of the samples
with different data rebalancing techniques are shown in Fig. 6.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Samples with different data rebalancing techniques. (a) Ordinary
samples. (b) Samples after applying RUS. (c) Samples after applying ROS. (d)
Samples after applying SMOTE. (e) Samples after applying SMOTE+Tomek.
(f) Samples after applying SMOTE+ENN. The blue dots represent the majority
samples and the orange dots represent the minority samples.

IV. PREVENTIVE CONTROL SCHEME

A. Strategy of the Preventive Control

When the power system on an initial OP is evaluated
to be insecure, online preventive control actions should be
conducted. In this paper, measures of generation rescheduling
are considered to be adopted to restore the system from an
insecure OP to a secure one in the preventive control. The
flowchart of the proposed online preventive control approach
is shown in Fig. 7, and the proposed methodology is imple-
mented in the following stages.
Stage I: Preparation of the Overall Database

An overall database (OB) containing a large number of OPs,
under different load levels in the system, should be prepared
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Load forecast data

Select a load level to build the
corresponding database

Randomly generate OPs with
steady-state constraints

Label samples of the database by the
evaluation criteria and T-D simulations

Generate OPs based on historical
generation scheduling data

The overall database

Current insecure OP

Offline Database Preparation Online Preventive Control

Execute data selection and
data rebalancing

Train the XGBoost modelfor the
proposed TSC-DCOPF model

End

Optimize the proposed TSC-DCOPF
model by DE to get the optimal OP

Evaluate the importanceof features
with the metric of total Gain

Fig. 7. Flowchart of the proposed online preventive control approach.

offline in advance. These OPs include historical generation
scheduling data and further randomly generated ones with
steady-state constraints and feasible power flow solutions.
Each sample of the database is labeled with T-D simulations
under each contingency of the CS and the evaluation criteria
for transient stability. After the overall database is generated,
there is no need to do T-D simulations again in the following
procedures.
Stage II: Data Selection and Data Rebalancing

For a given insecure initial OP, data selection is used to
reduce the scale of the database and help provide model
interpretability. Since the imbalanced database is common
to appear, the method of data rebalancing is adopted to
rebalance the proportions of different classes in the database.
Consequently, the prepared database (PB) for a given initial
OP is formed.
Stage III: Training of the XGBoost Model

The XGBoost model is trained based on the generated PB to
conduct the TSA and form the transient security constraint in
the proposed TSC-DCOPF model. Meanwhile, the importance
of features can be evaluated, ranked and selected by the
XGBoost model with the metric of total Gain. The XGBoost-
based TSA and preventive control scheme is shown in Fig. 8.
Stage IV: Implementation of the Preventive Control

On the basis of the proposed TSC-DCOPF model, the
optimal OP can be obtained by using DE and providing it to
the operators to execute the corresponding online preventive
control measures when the current OP is predicted to be
insecure.

B. Optimization of the Preventive Control

The differential evolution algorithm (DE) is an efficient
heuristic global optimization algorithm developed by Storn and
Price [45]. It is a type of swarm intelligent evolution algorithm
with a simple structure to implement. In each generation
of DE, new individuals are generated through differential
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Fig. 8. XGBoost-based TSA and preventive control scheme.

operations and crossover operations. The older individual will
be replaced if the fitness of a new individual is better. Through
continuous evolution, the individuals will move toward the
optimal solution. Compared with other algorithms, better op-
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timization results can usually be obtained by DE when solving
complex optimization problems with several constraints.

The TSC-feasible operating region is provided by the trained
XGBoost model. Then, utilizing DE, the optimal OP can
be searched out by minimizing the total amount of gener-
ation rescheduling, as defined in (14). Each individual of
the population generated in each generation should be inside
the feasible operating region with steady-state constraints, or
this individual should be re-generated. The transient security
constraint in the proposed TSC-DCOPF model is implemented
by using penalty functions.

In fact, the main time consumption of the TSCOPF solved
by DE lies in the power flow calculation. The calculation speed
of the DC power flow with branch loss is generally 4 times
more than that of the conventional DC power flow due to the
requirement of an iterative solution for branch loss. Under
the scenario of preventive control, the operational state of the
system is adjusted in the neighboring area of the initial OP,
thus the change of branch network loss is small and can be
considered to be unchanging in the early and middle stages of
generations in DE.

V. CASE STUDIES

Experimental results of the proposed approach are presented
and discussed in this section. Two test systems are selected
to demonstrate the proposed TSC-DCOPF model, namely,
the IEEE 39-bus test system and the South Carolina test
system. The latter shows that the presented approach can be
applied to realistic power systems. For both test systems, all
of the generators are assumed to be available for generation
rescheduling as part of the preventive control. In fact, for
an insecure initial OP, the database with the corresponding
load level should be selected first. To simplify the results and
without loss of generality, the overall database is obtained
under a typical load level with a small range of 95%-105% in
both test systems. The contingencies of the CS are 3-phase-
ground faults on the lines which are cleared after 0.1 s by
a single line tripping. It should be noted that in each line
fault contingency, faults on both sides of the line are adopted
respectively.

The programs for the test cases are developed based on
Python and run on a computer with an Intel Core i5-8300H
2.30 GHz CPU and 16 G RAM.

A. IEEE 39-Bus Test System
The IEEE 39-bus test system represents the 345 kV power

network of New England, USA [46]. It has 39 buses, 10
generators, 12 transformers, and 34 lines, in which the No. 39
generator is an equivalent machine. The generators and loads
are modeled with detailed sub-transient models and constant
impedance load models, respectively. The system is manually
divided into three regions according to the connection structure
of the system, as shown in Fig. 11. The contingency set of the
test system in this case is shown in Table I.

In fact, randomly generating new OPs with constraints are
not as easy as it seems. The following simple method is
proposed to implement the constrained random generation of
samples.

TABLE I
CONTINGENCY SET OF IEEE 39-BUS TEST SYSTEM

Contingency No. Faulted Line Faulted Bus
1 2–3 2 or 3
2 3–4 3 or 4
3 3–18 3 or 18
4 4–5 4 or 5
5 4–14 4 or 14
6 5–6 5 or 6
7 16–17 16 or 17
8 16–21 16 or 21
9 16–24 16 or 24
10 17–27 17 or 27

First, an OP should be randomly generated within the MW-
output range of each generator, which is as follows:

OP = [PG,30, PG,31,PG,32, . . . , PG,39] (33)

In order to maintain the balance of active power generation
and consumption in the system, the following equation should
be respected:

PG,30 + PG,31 + PG,32 + . . .+ PG,39 ≈ Const. (34)

Specifically, this equation is utilized as follows:

PG,sum,min 6 PG,30 + PG,31+

PG,32 + . . .+ PG,39 6 PG,sum,max (35)

where PG,sum,max and PG,sum,min are the maximum and mini-
mum set value of the total MW-output of the generators that
can be dispatched in the preventive control. PG sum,max and
PG,sum,min are two near values and the difference between
them is the MW-output tolerance, which can be compensated
by the MW-output change of the slack generator. Then, the
previously generated OP should be adjusted in the following
way if it does not satisfy (35): If the total power generation
exceeds the upper limit, a generator that does not reach its
lower limit of MW-output is randomly selected, and its MW-
output is reduced with a small random step, e.g. 0–0.1 p.u.
Similarly, if the total MW-output is below the lower limit, a
generator that does not reach its upper limit of MW-output
is randomly selected, and its MW-output is increased with a
small random step. The above two steps are iterated repeatedly
until the current OP satisfies (35). Furthermore, the generated
OP should be verified whether it satisfies other steady-state
constraints and has a feasible power flow solution, if not, the
generated OP should be abandoned and re-generated.

For the IEEE 39-bus test system, each generator can be
simply regarded as a CPP. Assuming that the MW-output range
of each generator is 10%–150% of its original value, 3,000
randomly generated samples are produced to form the OB at
the current load level. Then, each sample of the database is
labeled by the evaluation criteria for transient stability with T-
D simulations under each contingency of the CS. To facilitate
elaboration, the OP in the original calculation data of the
IEEE 39-bus test system is selected as the initial OP, which is
an insecure OP. Then, the PB can be obtained following the
procedure of data selection and data rebalancing as mentioned
before. Specifically, in the data selection procedure, samples
within the 1-norm distance of 12 p.u. from the initial OP are
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selected from the OB. The sizes of OB and the example PB
in this test system are shown in Table II.

TABLE II
SIZE OF OB AND THE EXAMPLE PB IN THE IEEE 39-BUS TEST SYSTEM

Size of Database Secure Insecure Total
OB 427 2573 3000
PB 478 362 840

Afterwards, the XGBoost model is trained based on the
generated PB to conduct the TSA, which achieves an average
test accuracy ratio of 97.88% with a 10-fold cross validation.
To facilitate visualization, the max-depth of each DT is limited
to 2. The number of training rounds is set to 100. After the
training procedure, 100 DTs are generated in the XGBoost
model, where each sample can obtain a corresponding leaf
value from each DT, as shown in Fig. 9. With the Logistic
function, a sample is predicted to be secure if the sum of the
corresponding leaf values in DTs is a positive value.
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Fig. 9. DTs generated by the XGBoost model in the IEEE 39-bus test system.

The feature importance scores are calculated and ranked
based on the metric of total Gain, and the top 10 are shown
in Fig. 10 and Fig. 11. It can be recognized that the most
important features are the MW-only power flow of the lines
rather than the MW-output of the generators. In general, the
MW-only power flow transmission from Region-1 to Region-2
and Region-3 through lines 16–17 has an important impact on
the transient security of the IEEE 39-bus test system on the
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Fig. 10. 599531495The top 10 feature importance scores based on the metric
of total Gain in the IEEE 39-bus test system on the initial OP.
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example initial OP.
Next, the ranked features are selected one by one from

top to bottom and added to the selected features to train the
XGBoost models. The accuracy curve with the number of
selected features is shown in Fig. 12, where the accuracy tends
to be stable when the number of selected features reaches
6. Hence, the top 6 features can be selected to train the
XGBoost model and form the transient security constraint in
the proposed TSC-DCOPF model.
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Fig. 12. Accuracy with the number of selected features based on the metric
of total Gain in the IEEE 39-bus test system on the initial OP.

In order to verify the proposed model interpretation method
in terms of local feature importance, LIME is utilized to
explain the XGBoost model trained with the OB, where the
initial insecure OP is the test sample. The top 10 important
features provided by LIME are shown in Fig. 13. It can be
seen that the most important features provided by LIME, e.g.
P 16 17, P 3 18, PG38, are consistent with those provided
by the proposed model interpretation method in this paper.

Then, the proposed TSC-DCOPF model is optimized with
DE, as shown in Fig. 14. The optimal OP is obtained after 150
generations of optimization in 5.51 s, where the population
size of each generation is 10. The MW-output of generators
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Fig. 13. The top 10 important features provided by LIME in IEEE 39-bus
test system on the initial insecure OP.

before and after optimization is shown in Fig. 15. The MW-
outputs with relatively large variations are PG34, PG36, and
PG37, as shown in Table III. In fact, if the other generators
remain unchanged, the system can still restore security as long
as these three generators are adjusted with these optimized val-
ues. On the selected insecure initial OP in this case, the system
is transient unstable when a 3-phase-ground fault occurs on
the side of bus 16 in line 16–17. Under this contingency, the
rotor angle curves of the generators with respect to the center
of inertia (COI) and voltage amplitudes of the buses before
and after generation rescheduling are shown in Fig. 16 and
Fig. 17. For the convenience of observation, only a portion of
the 0-20 s T-D simulation results are presented in the figures.
It can be recognized that the IEEE 39-bus test system for the
example insecure initial OP has restored transient security with
the generation rescheduling for preventive control.
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Fig. 14. Convergence curve of DE for the proposed TSC-DCOPF model in
IEEE 39-bus test system.

TABLE III
GENERATION RESCHEDULING RESULT IN THE IEEE 39-BUS TEST

SYSTEM

MW-output (p.u.) PG34 PG36 PG37
Before rescheduling 5.0800 5.6000 5.4000
After rescheduling 4.7260 5.3496 5.9416
Changed −0.3540 −0.2504 0.5416

B. South Carolina Test System

The South Carolina test system is a 500-bus operational
model jn South Carolina, USA, which is built using the
statistical analysis of a real power system. It has 500 buses,
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Fig. 15. MW-output of the generators before and after optimization in IEEE
39-bus test system on the initial OP.
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Fig. 16. Rotor angle curves of the generators and voltage amplitudes of the
buses before generation rescheduling with a 3-phase-ground fault occurred on
the side of bus 16 of line 16-17 in the IEEE 39-bus test system on the initial
OP.
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Fig. 17. Rotor angle curves of the generators and voltage amplitudes of the
buses after generation rescheduling with a 3-phase-ground fault occurred on
the side of bus 16 of line 16-17 in the IEEE 39-bus test system.

90 generators, 131 transformers, and 295 lines. It has 208
stations in total, including 31 CPPs and 177 PTSs, as shown in
Fig. 22. Among them, 49 generators with a capacity larger than
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50 MW in 19 CPPs are selected to be adjusted in this case. The
system is manually divided into three regions to facilitate the
visualization of the OPs in the databases. The generators in the
system are modeled with detailed sub-transient models and the
loads are modeled with comprehensive load models, including
a 40% constant impedance and 60% induction motor. The pa-
rameters of the induction motor model are typical parameters,
among which the stator leakage reactance is 0.295 p.u. and
the rotor leakage is 0.12 p.u. The contingency set of the South
Carolina test system in this case is shown in Table IV.

TABLE IV
CONTINGENCY SET OF SOUTH CAROLINA TEST SYSTEM

Contingency No. Transmission Channel Faulted Line Faulted Bus
1 CPP1-PTS44 3–62 3 or 62
2 CPP24-PTS26 232–262 232 or 262
3 PTS35-PTS37 163–200 163 or 200
4 PTS35-CPP50 162–220 162 or 220
5 PTS55-PTS56 87–141 87 or 141
6 PTS58-CPP64 143–452 143 or 452
7 CPP64-PTS65 143–401 143 or 401
8 PTS68-CPP69 110–274 110 or 274
9 CPP133-CPP135 14–386 14 or 386
10 CPP190-CPP197 80–407 80 or 407

In this test case, the OPs of the system are generated with
a combination of switching on and switching off generators
as well as adjusting the MW-output of the generators. For
the generation of the OB, the OP CPPs are first randomly
generated within the MW-output range of each CPPs while
considering the constraint of maintaining the balance of active
power generation and consumption in the system, which are
defined as follows:

OP CPP = [G CPP1,G CPP3, . . . ,G CPP197] (36)
G CPP1 + G CPP3 + . . .+ G CPP197 ≈ Const. (37)

Then, the previously generated OP CPP should be adjusted
following the similar steps described in Section V.A until
it satisfies (37). However, the OP CPPs need to be further
dispatched to be OPs to perform power flow analysis and
T-D simulations. Specifically, the OP CPPs are allocated to
the OPs in the following way: Priority should be given to
switching on the generators with large rated MW-output values
and the number of switched on generators should be as few as
possible. Next, the MW-output of the switched on generators
need to be adjusted to fit the corresponding value in the
generated OP CPP, where the generators with smaller rated
MW-output values should be considered first. In addition, at
least one generator should be kept on in each CPP. By this
means, 6,000 randomly generated OPs are produced to form
the OB at the current load level, which are shown in Fig. 18.

To facilitate elaboration, an insecure initial OP is randomly
generated and then the corresponding PB can be obtained
following the aforementioned procedure of data selection and
data rebalancing. Specifically, in the data selection, samples
within the 1-norm distance of 27 p.u. from the initial OP are
selected from the OB. Visualization of the OPs in the PB are
shown in Fig. 19. Sizes of OB and the example PB in this test
system are shown in Table V.

Afterwards, the XGBoost model is trained based on the
generated PB, which achieves an average test accuracy ratio
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Fig. 18. Sampled OPs of the OB in South Carolina test system.

TABLE V
SIZE OF OB AND THE EXAMPLE PB IN SOUTH CAROLINA TEST SYSTEM

Size of Database Secure Insecure Total
OB 5294 706 6000
PB 483 405 888

40

45 40 35 30 25Region-1 Gen. (p.u.) Reg
ion-2

 G
en

. (
p.u.)

Insecure Sample
Secure Sample

20
30

20

10

35

30

R
eg

io
n
-3

 G
en

. 
(p

.u
.)

25

20

15

10

Fig. 19. Sampled OPs of the example PB in South Carolina test system.

of 98.62% with the 10-fold cross validation. The max-depth of
each DT is limited to 4 and the number of training rounds is
set to 100. The 100 DTs generated within 100 training rounds
in the XGBoost model are shown in Fig. 20.

Then, the feature importance scores are calculated and
ranked based on the metric of total Gain, and the top 10
are shown in Fig. 21 and Fig. 22. It can be recognized that
the MW-only power flow transmission between Region-1 and
Region-2 has an important impact on the transient security of
the South Carolina test system.

The top 10 important features provided by LIME to explain
the XGBoost model trained with the OB are shown in Fig. 23,
where the initial insecure OP is taken as the test sample.
It can be seen that the most important features obtained
by LIME are consistent with those evaluated and ranked
before, e.g. P PTS36 PTS34 or P PTS36 PTS38 (which are
directly related features), P PTS51 PTS46, P PTS35 CPP50,
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Fig. 21. The top 10 feature importance scores based on the metric of total
Gain in South Carolina test system on the initial OP.

and P PTS56 CPP64. Meanwhile, in both the IEEE 39-bus
test case and South Carolina test case, most transmission
lines with high feature importance scores are in or near the
fault lines of CS. In fact, the fault lines of CS are the lines
that often lead to transient instability of the system with the
corresponding contingencies, selected by the N-1 screening or
the experience of operators. As can be seen, the MW-only
power flow of transmission lines in or near the fault lines of
CS have a superior impact on the transient security of the test
systems, which is also consistent with the experience of the
operators.

Then, the XGBoost model is trained with the top 10
features after the procedure of feature selection mentioned in
Section V.A. The CPPs near the important transmission lines
are selected to be rescheduled, for they are generally the most
effective CPPs to adjust the power flow of these lines, which
are CPP3, CPP4, CPP13, CPP33, CPP43, CPP50, CPP63,

CPP64, CPP69, and CPP71. Then, the proposed TSC-DCOPF
model is optimized with DE. The optimal OP is obtained
after 150 generations of optimization in 24.12 s, where the
population size is 10. The MW-output of the selected CPPs
before and after optimization is shown in Fig. 24. The MW-
output with relatively large variations are G CPP3, G CPP13,
G CPP43, and G CPP64, as shown in Table VI.

TABLE VI
GENERATION RESCHEDULING RESULT IN SOUTH CAROLINA TEST

SYSTEM

MW-output (p.u.) G CPP3 G CPP13 G CPP43 G CPP64
Before rescheduling 0.7151 1.2835 0.4232 11.6241
After rescheduling 0.9321 1.7458 0.5442 10.7221
Changed 0.2170 0.4623 0.1209 −0.9020

On the example of the initial OP in this case, the South
Carolina test system is transient unstable when a 3-phase-
ground fault occurs on the side of bus 87 in line 87–141. Under
this contingency, the rotor angle curves of the generators with
respect to the center of inertia (COI) and voltage amplitudes of
the buses before and after generation rescheduling are shown
in Fig. 25 and Fig. 26. It can be seen that the South Carolina
test system on the example of the initial OP has restored se-
curity with the generation rescheduling for preventive control.

To evaluate the overall reliability of the proposed approach,
5 OBs of different load levels from 90% to 110% with intervals
of 5% are created for more experiments. On each load level, 20
insecure initial OPs are randomly generated, 99% of which are
successfully adjusted back to the realistic secure region (under
T-D simulations) by generation rescheduling with the proposed
TSC-DCOPF model. In fact, a 100% success rate cannot be
guaranteed without verification by T-D simulations which cost
too much time. Nevertheless, the proposed online preventive
control method can still be provided to the operators as an
auxiliary tool besides offline methods.

Comparisons are made between XGBoost and other ma-
chine learning methods for TSA in the proposed approach,
e.g. decision tree (DT), random forest (RF), support vec-
tor machines (SVM), multi-layer perceptron (MLP), and 1-
dimensional convolutional neural network (CNN-1D). Among
them, both of the XGBoost and RF are trained with 100 DTs
which are CART. The MLP models are set up with one middle
layer which has 500 neurons and the CNN-1D model with
one 1-d convolution layer which has 50 channels and the size
of the convolution kernel is 3. The activation functions are
ReLU. Along with the Accuracy, the metric of the F1-Score
is considered to fairly evaluate the performances of the mod-
els, which is a comprehensive measurement of the Precision
and the Recall. Considering the reliability of the results, 5
initial OPs are randomly selected and the corresponding PBs
are generated for 5 independent test cases. Performances of
different machine learning models on the validation sets with
10-fold cross validation are shown in Table VII.

It can be recognized that the XGBoost model performs
better than other models by the indexes of the Accuracy and
F1-Score, but the variation is not significant. In fact, each of
these machine learning methods is considered to have enough
high precision to carry out TSA in the preventive control,
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Fig. 22. The top 10 important features based on the metric of total Gain in the South Carolina test system. The top 6 features are drawn in red, the other 4
are drawn in orange, and their directly related features are drawn in pink. The number drawn in the figure is the number of stations, not the number of buses.

TABLE VII
PERFORMANCES OF DIFFERENT ML MODELS ON THE VALIDATION SETS

No. Meas. SVM MLP CNN-1D DT RF XGB.
1 Acc. (%) 97.75 97.17 97.14 97.74 98.31 98.88

F1% 98.11 97.15 97.22 97.72 98.28 99.01
2 Acc. (%) 98.32 98.09 98.18 98.03 98.03 98.32

F1% 98.52 98.13 98.16 98.04 98.14 98.28
3 Acc. (%) 98.50 98.01 97.91 97.97 97.93 98.87

F1% 98.70 97.97 97.86 97.99 98.12 98.85
4 Acc. (%) 98.03 98.06 98.04 97.62 98.17 98.65

F1% 98.36 98.10 98.11 97.55 98.31 98.67
5 Acc. (%) 97.97 98.12 98.08 97.18 98.31 98.69

F1% 98.27 98.09 98.17 97.11 98.44 98.73

as have already been implemented in many research studies.

Meanwhile, compared with TSCOPF based on AC power
flow, the proposed TSC-DCOPF model has a faster calculation
speed, which is important when it is utilized in a realistic large-
scale power system, for example, a 2507-bus test system of
Northeast China, as shown in Table VIII. In the procedure of
DE on each test system, 150 generations of optimization is
carried out and the population size is 10.

TABLE VIII
SOLUTION TIME OF TSCOPF WITH AC POWER FLOW AND TSC-DCOPF

Time in Different Test System 39-Bus 500-Bus 2507-Bus
TSCOPF with AC Power Flow (s) 65.95 108.57 377.21
Proposed TSC-DCOPF (s) 5.51 24.12 112.41
Time Reduced (%) 91.65 77.78 70.20
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Fig. 23. The top 10 important features provided by LIME in the South
Carolina test system on the initial insecure OP.

G
_C

PP3

G
_C

PP4

G
_C

PP13

G
_C

PP33

G
_C

PP43

G
_C

PP50

G
_C

PP63

G
_C

PP64

G
_C

PP69

G
_C

PP71

0

2

4

6

8

10

12

M
W

-o
u
tp

u
t 

o
f 

th
e 

g
en

er
at

o
rs

 (
p
.u

.)

Before optimization
After optimization

Fig. 24. MW-output of the selected CPPs before and after optimization in
South Carolina test system on the initial OP.
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Fig. 25. Rotor angle curves of the generators and voltage amplitudes of the
buses before generation rescheduling with a 3-phase-ground fault occurring
on the side of bus 87 of line 87-141 in South Carolina test system on the
initial OP.

Since the calculation time is sufficiently reduced with the
proposed TSCOPF model compared with the conventional
TSCOPF with AC power flow, the optimal OP can be obtained
within tens of seconds, which could satisfy the requirement of
online preventive control. For a large-scale power system, the
method of network equivalent is suggested to be adopted to
further increase the calculation speed.
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Fig. 26. Rotor angle curves of the generators and voltage amplitudes of the
buses after generation rescheduling with a 3-phase-ground fault occurring on
the side of bus 87 of line 87-141 in South Carolina test system.

VI. CONCLUSION

This paper presents a new approach for online TSA and
preventive control based on XGBoost and DCOPF. The XG-
Boost model is utilized for local feature importance evaluation
and construction of the transient security constraint in the
proposed TSC-DCOPF model which is optimized by using
DE. The methods of 1-norm distance and SMOTE+ENN are
adopted for data selection and data rebalancing, respectively.
The proposed systematic approach is demonstrated on an IEEE
39-bus test system and a 500-bus operational model in South
Carolina, USA. Verified results have shown that a system
on an insecure OP can be reliably adjusted to the secure
region by generation rescheduling with the assistance of the
proposed approach. Comparisons with other commonly-used
methods indicate that the proposed approach is relatively fast
and reliable with a certain model interpretability, which could
meet the requirements of the engineering application for online
preventive control.

In this paper, an online preventive control method of gen-
eration rescheduling has been proposed based on XGBoost
and DCOPF. The major contribution of the proposed method
lies in the data selection and the local feature importance
evaluation which can provide the operators with the most
important transmission lines or sections and CPPs for the
transient security of the system on the current OP, as well
as the assistance for generation rescheduling in the preventive
control. A future study will focus on the method of network
equivalent, selecting the generators or CPPs to be adjusted,
and the further exploration of model interpretability, to further
improve the practicability of the proposed method.
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