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Abstract—Continued expansion of the power grid and the
increasing proportion of wind power centralized integration
leads to requirements in sharing both energy and reserves
among multiple areas under a hierarchical control structure,
which successively requires a correction between schedule plans
within multi-time scale. In order to address this problem, this
paper develops an information integration method integrating
complicated relationships among fuel cost, total thermal power
output, reserve capacity, owned reserves and expectations of
load shedding and wind curtailment, into three types of time-
related relationship curves. Furthermore, a multi-time scale tie-
line energy and reserves allocation model is proposed, which
contains two levels in the control structure, two time scales in
dispatch sequence and multiple areas integrated within wind
farms as scheduling objects. The efficiency of the proposed
method is tested in a 9-bus test system and IEEE 118-bus system.
The results show that a cross-regional control center is able to
approach the optimal scheduling results of the whole system with
the integrated uploaded relationship curves. The proposed model
not only relieves energy and reserve shortages in partial areas
but also allocates them to more urgent need areas in a high
effectivity manner in both day-ahead and intraday time scales.

Index Terms—Energy and reserve allocation, hierarchical
control structure, multi-area system, multi-time scale economic
dispatch, wind power.

I. INTRODUCTION

LARGE-scale integration of wind power introduces new
challenges to power systems combined with inherent

characteristics in China [1]. The power systems in China are
relatively large, including six regional power grids. Each re-
gional power grid consists of several interconnected provincial
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power grids [2]. In order to ensure the safe operation of such
a large power system, it is necessary to have a hierarchical
control system [3]. Also, the wind power clusters are centrally
integrated into the northwest of China, which is far away from
the load centers [4]. Eight large-scale wind power bases have
been created with more than 90 GW total capacity [5]. Hence,
cross-regional co-optimization of both energy and reserve has
become a trend in China [6]–[8]. Moreover, a multi-time scale
coordination framework (MSCF) is already implemented in
China to successively eliminate scheduling errors as time goes
on [9].

This paper is influenced by the practical requirements in
multi-time scale economic dispatch (ED) for a multi-area
system with multi-wind-farms integrated into a hierarchical
control structure. The inherent characteristics of China men-
tioned above bring relevant distinctiveness to this issue. First,
the hierarchical control system brings problems of information
security and different optimization objects into the upper
control center (UCC) and local control center (LCC). As for
China, the UCC owns the information of tie-lines connecting
areas and schedules the boundary exchange quantities for each
area. However, without knowing the tie-line information and
schedule results for other areas, the LCC of each provincial
power grid independently schedules the inside units to achieve
an optimal benefits solution of its own area under the boundary
shared energy and reserves already set by the UCC [10].
The relationship between the UCC and LCCs is presented in
Fig. 1. Under China’s vertical dispatch system, each regional
power grid contains several provincial power grids connected
by inter-provincial links. The regional power grid company
has the line parameters and scheduling control authority of the
inter-provincial contact line, which is used to optimize and dis-
patch the power and reserve interaction between the provinces.
Regional grid companies do not dispatch specific units in each
province, nor can they obtain the parameters of units and lines
in the province. According to the specific parameters of the
province’s generating units, i.e., the provincial transmission
line parameters and the province’s transmission grid structure,
the provincial power grid companies will take the province’s
best economic scenario as the dispatching target, and optimize
the dispatch of the power generating units in the province
based on the determined interactive power and reserve plans.

2096-0042 © 2020 CSEE
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Fig. 1. Vertical scheduling relationship and information exchange process
between the UCC and LCCs.

The provincial power grid needs to keep the unit and line
parameters in the province confidential and only upload the
interactive information among the provinces to the regional
dispatch. Thus, the issue of how to realize the optimal tie-
line scheduling in the UCC on the basis of ensuring the
LCC’s information privacy needs to be studied. Second, the
energy and reserve sharing among areas are supposed to ease
both power fluctuation and reserve shortages of the installed
systems with large-scale wind power bases [11]. Therefore,
it is worth considering how to evaluate which areas have a
greater urgency for energy and reserves when wind power is
integrated in more than one area [12] and how to arrange
the providers of energy and reserves under the existing grid
structure [13]. Third, within the MSCF, updated forecasts
during a multi-time scale can lead to new power imbalances
and an updated forecast error distribution leads to updated
reserve demands in the areas [9], [14]. Hence, both energy
and reserves are needed to correct the intraday look-ahead
time scale.

To solve the coordination of multiple LCCs, [2] describes a
decentralized approach based on a modified generalized ben-
ders decomposition. In [6] a fully decentralized optimization is
implemented based on the cutting plane consensus algorithm.
In [12] the boundary phase angles of each area are chosen as
coupling variables and are able to obtain a solution by iterating
between the LCCs and UCC. In [15] an augmented Lagrange
algorithm relies on no UCC being required, but just moderate
interchanges of information among LCCs.

All the references above except [12] adopt algorithms which
mathematically decentralize the original problems and coor-
dinate the sub-problems in multiple iterations which require
substantial data exchange among the LCCs. In these methods,
synchronous information interaction with high communication
costs or slow rates of convergence happen since no UCC
is considered [16]. However, the UCCs and LCCs in China
have their different but clear responsibilities, which make these
methods no longer applicable for China. Moreover, all these
references only consider the tie-line energy dispatch without
co-optimizing energy and reserves together. This may cause
reserves being unavailable when needed from other areas.

For the third problem under this background, [10] formu-

lates the coordinated tie-line scheduling problem by using
a two-stage adaptive robust optimization and explicates the
relationships of inputs and outputs belonging to different time
scales in the MSCF. Similarly, [14] also develops a MSCF
for quantifying regulation service requirements, and a multi-
time-scale method is considered for quantifying regulation
service requirements considering the combined impact of wind
variations. Although the above references can contribute to the
ED problem in MSCF, only [10] studies this issue in a multi-
area system. Also, [14] ignores the day-ahead scheduling part
in the MSCF. In general, none of them consider the reserve
shared along with the energy together among areas and all
of them are not suitable for the hierarchical control structure
adopted in multi-area systems.

This paper proposes an information integration method for
a regional grid and a hierarchical scheduling model across
both time and space. The major contributions of this paper
are summarized as follows:

1) An information integration method is developed for
a regional power grid. This method integrates complicated
relationships among total thermal power output, fuel costs,
reserve capacity, owned reserve volume and expectations of
load shedding (LS) and wind curtailment (WC) into three types
of time-related curves representing each area. Furthermore, the
developed method not only protects regional information pri-
vacy, but also provides sufficient information for a cross-region
control center to achieve a high quality solution compared with
the condition of omniscient information.

2) A multi-time scale scheduling model is designed to allo-
cate energy and reserve resources with high efficiency among
both dispatch periods and areas. Moreover, the proposed model
includes a multi-control-level to adapt to the hierarchical
control structure and includes multi-time scale sub-models to
correct the day-ahead scheduling results based on the intraday
look-ahead forecast information achieving lower operational
costs for the whole system.

The remainder of this paper is organized as follows. In
Section II, an information integration method is developed.
In Section III, a multi-time scale tie-line energy and reserve
allocation (TERA) model is proposed. In Section IV, the
proposed information integration method and multi-time scale
TERA model are both tested in a 9-bus test system and the
IEEE 118-bus system. Section V summarizes the conclusions.

II. INFORMATION INTEGRATION PROCESS IN A LCC

As with an UCC, it needs to know the answers to three
questions in order to achieve the results of power resource
sharing and efficient distribution within the whole system.
First, which area provides power with lower cost? Second, how
does the change in total output of an area affect the change
in its ability to provide upward or downward reserve? Third,
how does the change in the provision of upward or downward
reserve of an area affect the change in LS or WC expectations
in the area? To solve the above three questions, this paper
proposes three types of information integration curves.
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A. Relationship of Total Thermal Power Outputs and Total
Fuel Costs

Suppose that there are three thermal units in an area and
their consumption characteristic curves can be represented by
Fth1, Fth2, and Fth3 in (1). The tangent slope of any point
on these consumption characteristic curves is the incremental
consumption rate λ. According to the Equal Incremental
Principle [17], the total fuel consumption will be minimized if
the incremental consumption rates of the three units are all in
the same dispatch period, λ1 = λ2 = λ3 = λ. Therefore, the
relationship between the power outputs of the thermal units
and λ can be obtained as shown in (2).

F th
i = ai + biP

th
i,t + ci(P

th
i,t )

2, i = 1, 2, 3 (1)

P th
1,t =

λ− b1
2c1

, P th
2,t =

λ− b2
2c2

, P th
3,t =

λ− b3
2c3

(2)

where ai, bi and ci are the consumption coefficient of the
ith thermal power unit, and P th

i,t is the power outputs of ith
thermal unit in the tth dispatch period.

Besides the relationship presented in (2), power outputs of
thermal units are also constrained by (3) and (4). Constraint (3)
shows the upper and lower bounds for power output of thermal
unit i. Constraint (4) is the ramping capacity constraint, in
which RUi and RDi are the maximum output increase and
decrease of thermal unit i during a dispatch period.

P th,min
i 6 P th

i,t 6 P th,max
i (3)

−RDi 6 (P th
i,t+1 − P th

i,t ) 6 RUi (4)

Hence, the curves with unit power outputs as the abscissas
and λ as the ordinate can be plotted as shown in Fig. 2(a).
Furthermore, the integrated curve reflects the relationship
between the total output of thermal units within this area and
λ is shown on the right. And the total thermal output has a
corresponding range of changes in a certain dispatch period
corresponding to (3) and (4). Therefore, if P th

1,t, P
th
2,t, P

th
3,t

within this area are all known, the total fuel cost in this area
can be directly calculated. The relationship curve describing
the relationship of total power outputs of thermal units and
total fuel cost within an area is shown in the yellow part in
Fig. 2 (a). This relationship is named as PCm,t. In Fig. 2(a),
P total
m,t is the total thermal power output of area m; CFuel

m is
the corresponding total fuel cost of area m; Curve ∆PCx is
the variation form of PCm,t which describes the relationship
between ∆P total

m,t and ∆CFuel
m at the point x on PCm,t. ∆PCx

is appropriate for the correction process described later in
Section III.

B. Relationship of Total Thermal Power Outputs and Total
Reserve Capabilities

The second type is named as PRup
m,t and PRdn

m,t , indicating
the relationship of total thermal power outputs with total
upward and downward reserve capabilities within one area
respectively. The derivative processes of the relationship curve
PRup
m,t and PRdn

m,t are shown in the blue part of Fig. 2(a)
according to (5). Equation (5) explains that total upward
reserve capability r̄th

m,t and downward reserve capability rth
m,t

held by area m are the sum of each thermal unit’s reserve
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Fig. 2. Derivation processes of three types of relationship curves. (a)
Derivation processes of the relationship curves of PC
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m,t . (b)
Illustration of wind power forecast error probability distribution in a certain
bin. (c) Illustration of RLS

m,t and RWC
m,t under a certain dispatch period with

the corresponding wind power forecast value.

capacity after considering its ramp capability. PRup
m,t and PRdn

m,t

express the relationship of PRdn
m,t and provide for the capacity

of the upward or downward reserve. ∆PRup
x and ∆PRdn

x are
the variation forms of PRup

m,t and PRdn
m,t .

r̄th
m,t =

∑
i=1,2,3

min
{
P th,max
i − P th

i,t , R
U
i

}
rth
m,t =

∑
i=1,2,3

min
{
P th
i,t − P

th,min
i , RDi

} (5)

C. Relationship of Reserve Capabilities and Their Benefits

At last, the relationship curves named as RLS
m,t and RWC

m,t

are developed to integrate the relationship of the total reserve
capability held by a certain area and the LS/WC expectations
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within this area. Since improper reserve capacity leads to LS
and WC in a system, we use expectations of LS and WC to
measure the effect of owning upward reserve and downward
reserve, and thus (6) and (7) are derived in this paper to
describe these relationships. According to [18], the LS incident
happens when the wind power forecast error is greater than
the upward reserve owned by this area and WC happens when
the absolute value of the wind power forecast error is greater
than the downward reserve owned by this area. fm,t(x) in (8)
is the probability distribution function (PDF) of the versatile
probability distribution (VPD) [19] which is presented in Fig.
2(b) and is adopted to fit the distribution of the historical
wind power forecast error of area m. The amount of LS is
(x-r̄own

m,t) and the corresponding probability of this LS incident
is fm,t(x) when the wind power forecast error x is greater
than r̄own

m,t. Therefore, the expectation of LS under certain
forecast values is the integral of (x-r̄own

m,t)× fm,t(x) from r̄own
m,t

to Emax
error, m, t is the maximum wind power forecast error which

ever appeared in the historical data assembled in a certain bin
corresponding to a forecast level of area m. Analogously, the
expectation of WC under certain forecast values is the integral
of (-rown

m,t-x)× fm,t(x) from Emin
error, m, t to (-rown

m,t) as shown in
(7). RLS

m,t expresses the relationship of the “upward reserve
owned by area m” and the “LS expectation estimated in area
m.” RWC

m,t expresses the relationship of the “downward reserve
owned by area m” and the “WC expectation estimated in area
m.”

RLS
m,t(r̄

own
m,t) =

∫ Emax
error, m, t

r̄own
m,t

(x− r̄own
m,t)fm,t(x)dx (6)

RWC
m,t (r

own
m,t) =

∫ Emin
error, m, t

−rown
m,t

(x+ rown
m,t)fm,t(x)dx (7)

fm,t(x|αm,t, βm,t,γm,t) =
αm,tβm,te

−αm,t(x−γm,t)

(1 + e−αm,t(x−γm,t))βm,t+1
(8)

where αm,t, βm,t and γm,t are the shape parameters of VPD
within area m in dispatch period t.

However, (6) and (7) are not conducive to be applied directly
since RLS

m,t(r̄
own
m,t) and RWC

m,t (r̄
own
m,t) are non-explicit integral

functions. Thus, the independent variables r̄own
m,t and r̄own

m,t are
evenly separated into 1000 points within the possible range of
values in each bin. And the numerical integration method [20]
is adopted to get the corresponding function values. The final
relationship curves are presented in Fig. 2(c). Also, there are
the variation forms of this type of relationship curves, namely
the ∆RLS

x and ∆RWC
x .

III. MULTI-TIME SCALE TERA MODEL IN A
HIERARCHICAL CONTROL STRUCTURE

A. Day-ahead TERA Model

The day-ahead TERA model is launched in a receding
horizon of 24 h and determines boundary exchanged qualities
in the UCC and generation outputs of all units in their LCCs
in the following 24 h with a time resolution of 15 min.

1) Day-ahead TERA Model in the UCC
a) Objective function:

CUCC
day ahead =

∑
m∈AREA

∑
t∈T

PCm,t(P
total
m,t )+∑

m∈AREA
CLS
m

∑
t∈T

RLSm,t(R
up
m,t − R̃

up
m,t)+∑

m∈AREA
CWC
m

∑
t∈T

RWCm,t(R
dn
m,t − R̃dn

m,t) (9)

where CLS
m and CWC

m are the LS cost and the WC penalty
cost of area m; P total

m,t is the total power output of area m in
the dispatch period t; Rup

m,t and Rdn
m,t are the capability of

providing upward and downward reserves; R̃up
m,t and R̃dn

m,t are
the boundary upward and downward exchanged reserves by
area m with other areas. UCC needs day-ahead integrated re-
lationship curves from the LCCs to start the tie-line allocation
among the areas.

b) Constraints:

Rup
m,t 6 PRup

m,t (P total
m,t ), Rdn

m,t 6 PRdn
m,t (P total

m,t ) (10)

F−1
m,t(c̄m) 6 Rup

m,t − R̃
up
m,t,−F−1

m,t(1− cm) 6 Rdn
m,t − R̃dn

m,t

(11)

where c̄m and cm are related to the level of risk for LS and WC
in the chance constraints; F−1

m,t(x) is VPD’s inverse function of
wind power forecast error’s probability density function (CDF)
of area m in t. The specific expression of F−1

m,t(x) is shown
in (12) and (13).

F−1
m,t(c̄m) = γm,t −

1

αm,t
ln(c̄−1/βm,t

m − 1) (12)

F−1
m,t(1− c̄m) = γm,t −

1

αm,t
ln
[
(1− c̄m)−1/βm,t − 1

]
(13)

Constraint (10) shows that reserve capabilities held by area
m are affected by total thermal units’ output within area m
in t. Constraint (11) requires that the upward and downward
reserve owned by area m is larger than the wind power forecast
error in a certain confidence level c̄m and cm.

c) Tie-line constraints for exchange energy and reserves:

Lmin
l 6

∑
m∈AREA

GUCC
m,l P̃m,t 6 Lmax

l (14)

Lmin
l 6

∑
m∈AREA

GUCC
m,l (P̃m,t + R̃up

m,t) 6 Lmax
l (15)

Lmin
l 6

∑
m∈AREA

GUCC
m,l (P̃m,t − R̃dn

m,t) 6 Lmax
l (16)

where P̃m,t is the boundary power exchanged by area m with
other areas; GUCC

m,l showss the generation shift distribution
factor of the inject power of area m to the corresponding
transmission line l. For the UCC, each area is equivalent to
a node and the network is made up of all the cross-region
tie-lines.

Constraint (14) is the constraint of tie-lines among areas
using DC power flow. Constraint (15) and (16) require that
the power flow, along with the exchange reserve, be together
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to meet the thermal stability constraints, which ensures that
the cross regional shared reserve can be transmitted through
the tie-lines.

d) Other balance constraints:

(P total
m,t − P̃m,t) + Pwind, DA

m,t = P load
m,t (17)∑

m∈AREA
P̃m,t = 0,

∑
m∈AREA

R̃up
m,t = 0,

∑
m∈AREA

R̃dn
m,t = 0

(18)

where Pwind, DA
m,t here is the day-ahead forecast value of the

wind power of area m in dispatch period t.
Constraint (17) is the power balance constraint for each

area. And all the energy and reserve shared among areas are
supposed to be balanced in (18) since no extra energy could
be generated in the tie-lines.
2) Day-ahead ED Model in the LCCs

Boundary exchange variables P̃m,t, R̃
up
m,t and R̃dn

m,t, as well
as P total

m,t , Rup
m,t and Rdn

m,t assigned to area m are known quanti-
ties to the LCC within area m since they are already scheduled
by the UCC. Each area can set specific constraints according
to the characteristics of its own practical applications. Only
the basic ED model for the LCC in area m is presented here
as a reference.

a) Objective function:

CLCC
day ahead, m =

∑
i∈Gm

∑
t∈T

[
ai + bi · P th

i,t + ci · (P th
i,t )

2
]

(19)

where ai, bi and ci are fuel cost parameters of unit i within
area m; P th

i,t is the schedule output of thermal unit i within
area m.

Equation (19) represents the fuel costs of thermal power
units within area m.

b) Constraints:∑
i∈Gm

P th
i,t − P̃m,k,t = P total

m,t (20)

Lmin
l 6

∑
k∈BUSm

GLCC
k,l (P th

k,t + Pwind
k,t − P̃m,k,t −Dk,t)

6 Lmax
l (21)∑

i∈Gm

r̄th
i,t = Rup

m,t,
∑
i∈Gm

rth
i,t = Rdn

m,t (22)

r̄th
i,t = min

{
P th,maxi − P th

i,t , RUi

}
,

r̄th
i,t = min

{
P th
i,t − P

th, min
i , RDi

}
(23)

Constraint (20) guarantees the power balance within area
m. P̃m,k,t is the boundary power exchanged by area m with
other areas of bus k in dispatch period t. P total

m,t here is the input
information from the UCC. Constraint (21) limits line capacity
within area m. GLCC

k,l shows the generation shift distribution
factor of the inject power of bus k to the corresponding line l
within area m. Pwind

k,t and Dk,t here are the day-ahead forecast
of wind power and load of bus k in t respectively. Constraint
(22) guarantees the total upward and downward reserve in one
area can be allocated to each unit. Reserve capacity constraints
for unit i are shown in (23). In addition, (3) and (4) explained
in Section II, should also be considered in the LCCs.

B. Look-ahead TERA Model

In addition to the variation form of the look-ahead integrated
information from the LCCs, P error

m,t is also the input data which
is the forecast error within area m caused by the look-ahead
updated wind power information and is explained in (24).
Pwind, ID
m,t is the look-ahead wind power forecast. Moreover,

the decision variables scheduled by the day-ahead TERA
model are also the inputs for the start point of the look-ahead
correction process. The look-ahead TERA model in the MSCF
is launched in a receding horizon every 1 h and determines
the generation outputs of all units in the upcoming 4 h, with
a time resolution of 15 min.

P error
m,t = Pwind, ID

m,t − Pwind, DA
m,t (24)

1) Look-ahead TERA Model in the UCC
a) Objective function:

CUCC
look ahead =

∑
m∈AREA

∑
t∈T

∆PC
P total, DA

m,t
(∆P total

m,t )+∑
m∈AREA

CLS
m

∑
t∈T

∆RLS
Rup, DA

m,t

(∆Rup
m,t −∆R̃up

m,t)+ (25)∑
m∈AREA

CWC
m

∑
t∈T

∆RWC
Rdn, DA

m,t
(∆Rdn

m,t −∆R̃dn
m,t)

where ∆P total
m,t is the total output adjustment made by the

thermal units within area m in order to balance the total
forecast error P error

m,t ; ∆Rup
m,t and ∆Rdn

m,t show the adjustments
of the upward and downward reserve capabilities; ∆R̃up

m,t and
∆R̃dn

m,t show the adjustments of the upward and downward
reserve shared with other areas.

The objective function (25) of the UCC in look-ahead
time scale consists of three items. The first item shows the
sum change of the thermal units’ fuel costs within AREA
throughout T . The second item shows the sum variations of
the LS expectations within all areas throughout T . The third
item shows the sum variations of WC expectations within all
areas throughout T . Different from (9), (25) is supposed to
minimize the total correction costs based on the day-ahead
schedule results.

b) Additional constraints:

∆Rup
m,t 6 ∆PRup

P total, DA
m,t

(∆P total
m,t ),∆Rdn

m,t 6 ∆PRdn
P total, DA

m,t
(∆P total

m,t )

(26)

Constraint (26) replaces (10) since the variation forms
instead of the original forms of the relationship curves are
adopted in the look-ahead dispatch model.

c) Explanations of the adjustment relationship:

P error
m,t = ∆P total

m,t −∆P̃m,t (27)

P̃m,t = P̃DA
m,t + ∆P̃m,t (28)

Rup
m,t = ∆PRup

P total, DA
m,t

(0) + ∆Rup
m,t

Rdn
m,t = ∆PRdn

P total, DA
m,t

(0) + ∆Rdn
m,t (29)

R̃up
m,t = R̃up,DAm,t + ∆R̃up

m,t, R̃
dn
m,t = R̃dn, DA

m,t + ∆R̃dn
m,t (30)

where ∆P̃m,t is the adjustment of power that area m ex-
changes with other areas.
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Constraint (27) shows that the power unbalance within area
m is supposed to be covered by adjustments of both thermal
units’ output within this area and the exchanged power with
other areas. Constraint (28) shows that the final boundary ex-
changed power of an area is the sum of its original day-ahead
schedule and its look-ahead correction. Similarly, (29) shows
this relationhip in upward and downward reserve capability.
Constraint (30) shows this relationship of the upward and
downward exchange reserve of area m with other areas.
2) Look-ahead ED Model in LCCs

CLCC
look ahead, m =

∑
i∈Gm

∑
t∈T

[
ai + bi

(
P th, DA
i,t +

∆P th
i,t

)
+ ci(P

th, DA
i,t + ∆P th

i,t )
2
] (31)

where P th, DA
i,t is the day-ahead scheduled power output of

thermal unit i in dispatch period t; ∆P th
i,t is the adjustment of

the schedule output of thermal unit i within area m.
The proposed look-ahead TERA model within the multi-

time scale TERA is summarized in (32) and (33), in which
(32) shows the UCC part and (33) shows the LCCs part. All
the optimizations in LCCs mentioned above are executed in
parallel. {

obj. (25)
st. (11)–(18), (24), (26)–(30)

(32){
obj. (31)
st. (3)–(4), (20)–(23)

(33)

C. Linearization Process of a Multi-time Scale TERA Model
The piecewise linear method in reference [21] is applied

to the last two items of (9) and (25). The nonlinear func-
tions RLS

m,t(r̄
own
m,t) and RWC

m,t (r
own
m,t) are therefore transformed

into piecewise linear functions as shown in Fig. 3, which
is much more friendly to the scheduling model. The RLS

m,t

and RWC
m,t curves can describe the relationship between the

reserved reserve in the area and its corresponding LS and WC
expectations, which describe the effect of each area reserving
reserve capacity in different scheduling periods. Based on
this, the UCC will allocate upward and downward reserves
efficiently among different areas.

IV. CASE STUDY

The proposed information integration method and the multi-
time scale TERA model are both tested in a 9-bus test system

Rm  Relation Curveafter LinearizationLS
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Fig. 3. Piecewise linear examples of the RLS
m and RWC

m in a certain bin.

and the IEEE 118-bus system [22]. The 9-bus test system
is adopted to analyze effects of the proposed method in
detail. Since the 118-bus system represents a portion of the
Midwestern American Power System, it is used to verify
the applicability of the model and strategy in an actual
interconnected power system [23]. All the following results
are demonstrated with the time scale of 16 dispatch periods
in four hours, which shows the final results after a day-ahead
TERA, and one round of a look-ahead TERA. The codes are
executed on MATLAB software [24] based on an IBM CPLEX
12.4 solver [25].

A. The 9-bus Test System

1) System and Input Data
The 9-bus test system includes three wind farms and six

thermal units distributed in three areas shown in Fig. 4(a).
Wind farms integrated in bus 3, bus 6 and bus 9 are with
40 MW, 40 MW and 80 MW installed capacity respectively.
The basic parameters of the thermal units are listed in Table I.
The capacity limitations of the tie-lines are 100 MW. The ratio
of loads in area 1, area 2 and area 3 are 30.10%, 28.80% and
40.10% respectively. Additionally, the unit penalty cost of the
WC is set as 80 $/(MW·h) [26], and the LS cost is set as
3500 $/MW·h according to the Midwest ISO of USA [27]. It
is worth noting that there is no need to consider the correlation
among the three wind farms located in the three areas, because
the three wind farms are located in three different areas,
and the dispatching plans of the three areas are respectively
formulated by their LCCs. Different LCCs do not interfere
with each other’s scheduling plan, and the output of the wind
farms in area 1 will not affect the LCCs in area 2 and area 3
to formulate scheduling plans.

TABLE I
BASIC PARAMETERS OF THERMAL UNITS IN 9-BUS SYSTEM

Thermal
Units ai bi ci P th,max

i P th,min
i RUi RDi

G1 0.0128 17.82 10.15 100 50 12.50 12.50
G2 0.0459 15.47 74.33 80 30 10 10
G3 0.0228 17.82 10.15 100 50 12.50 12.50
G4 0.0559 15.47 74.33 80 30 10 10
G5 0.0328 17.82 10.15 100 50 12.50 12.50
G6 0.0659 15.47 74.33 80 30 10 10

Load forecast data are collected from the PJM Intercon-
nection LLC of North America [28] and are scaled down
according to the size of this test system. The historical wind
power forecast data are gathered from EIRGRID [29] for the
years 2014 to 2017. The wind power forecast error in area
3 is almost two times the average of the forecast error in
area 1 and area 2 in both day-ahead and look-ahead time
scales. The day-ahead (red line) and look-ahead (black line)
net load and the wind power forecast in the corresponding four
hours is demonstrated in Fig. 4(b). The load forecast does not
change among the time scales here. PCm,t, P

Rup
m,t and PRdn

m,t are
demonstrated in Fig. 4(c).
2) Basic Scheduling Results

The scheduled outputs of each thermal unit are displayed in
Fig. 5(a). Scheduling results show that area 1 is assigned with
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Fig. 4. 9-bus system and its input data. (a) Topological structure of 9-
bus system. (b) Load, wind power and net load forecast curves in day-
ahead (red line) and look-ahead (black line) time scale. (c) Integrated curves
demonstration.

the greatest load because the cheapest fuel costs are in area 1.
On the contrary, the thermal units in area 3 have the lowest
load in the whole system due to their higher fuel costs. The
power flow in the tie-lines is shown in Fig. 5(b). The directions
of power flow show that area 1 sends power to other areas
and area 3 receives power from outside. In Fig. 5(c), reserve
capacity of area m shows the ability of area m to provide
reserve. The reserve owned by area m indicates the sum of
reserve capacity of area m and the boundary reserve trading
volume of area m. Both the upward and downward reserve
shows the same trends that area 1 and area 2 provide reserve
to area 3. This trend is consistent with the fact that both the
positive and the negative wind power forecast errors of the
wind farm in area 3 are the largest within the whole system.

Taking upward reserve as an example, Fig. 6 illustrates
the effectivity oriented allocation of reserve sources among
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Fig. 5. Basic scheduling results of the 9-bus system. (a) Scheduled total
thermal power output. (b) Power flow among three areas. (c) Reserve capacity
and own by three areas.

different dispatch periods. Fig. 6(a) shows that the average
ordinate value of the RLS

m in bin 3 under the same abscissa
values are almost two times that of the RLS

m in bin 6. This
shows that area 1 in dispatch period 1 faces a much higher
LS expectation than it does in dispatch period 10 under the
same upward reserve. In line with this trend, area 1 owns more
upward reserve in dispatch period 1 than it does in dispatch
period 10 according to the our schedule results. Fig. 6(b)
illustrates the effectivity oriented allocation of reserve sources
among areas. According to the comparison of RLS

m in bin 3
of area 1, bin 10 of area 2 and bin 10 of area 3, area 3
obviously faces much higher LS expectations when owning
the same amount of upward reserve with area 1 and area 2 in
dispatch period 0. This difference indicates that the demand
of the upward reserve of area 3 is more urgent than that of
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Fig. 6. Effectivity analysis of owning upward reserve among multi-areas and
multi-time-periods. (a) Cost-effectivity comparisons among upward reserve
owned by area 1 in different dispatch periods. (b) Cost-effectivity comparisons
among upward reserve owned by three areas in the same dispatch period.

both areas 1 and 2, which coincides with our schedule results.

B. IEEE 118-bus Test System

1) System and Input Data
The load distribution proportions in the IEEE 118-bus test

system [22] are 22.7% in area 1, 41.6% in area 2 and 35.7%
in area 3. There are four cross-region tie-lines between area 1
and 2, and five tie-lines between area 2 and 3. Other historical
data sources adopted here are consistent with the data used
in the 9-bus test system and they are proportionally modified
according to their system scale. Three wind farms are located
on node 12, node 54 and node 106 [30], with 500 MW,
1000 MW and 500 MW installed capacities respectively. The
input information of the 118-bus system is displayed in Fig. 7.
2) Comparison with the Centralized ED Model

The centralized dispatch model is built to verify the accu-
racy of the proposed information integration method. Com-
pared with the proposed multi-time scale TERA model, the
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Fig. 7. Input information of the IEEE 118-bus test system. (a) Load, wind
power and net load forecast curves day-ahead (red lines) look-ahead (black
lines) time scales. (b) Integrated curves demonstratio.

TABLE II
ECONOMIC ANALYSIS OF CENTRALIZED DISPATCH MODEL

Type of cost Fuel cost ($) LS cost
expectation ($)

WC cost
expectation ($)

Total
($)

Area 1 84296 877 161 85334
Area 2 137786 1037 179 139001
Area 3 129244 1069 176 130489
118-bus system 351326 2983 516 354825

TABLE III
ECONOMIC ANALYSIS OF THE PROPOSED MODEL

Type of cost Fuel cost ($) LS cost
expectation ($)

WC cost
expectation ($)

Total
($)

Area 1 84297 878 169 85340
Area 2 137792 1052 183 139127
Area 3 129254 1075 178 130592
118-bus system 351343 3005 530 354878

centralized ED model here only removes the hierarchical
information exchange portion. The economic analyses of the
centralized ED model and the proposed multi-time scale
TERA model are shown in Table II and Table III respectively.

By contrast with the two tables above, the economy of
the centralized ED model and the proposed multi-time scale
TERA model is almost identical with only 0.015% difference
in total cost. This gap is primarily due to the numerical
calculation. Twenty other sets of input data are also tested in
the proposed model and the solution times are demonstrated
in Fig. 8. According to the statistical data, the UCC takes an
average 8.45 s and the LCC takes an average 2.00 s to solve the
corresponding section within the proposed day-ahead TERA
model. As for the look-ahead TERA model, the UCC takes
an average 2.27 s and the LCC takes an average 1.11 s to
finish the optimization process. To sum up, both the calculation
precision and the calculation speed of the proposed method
and model satisfy engineering requirements.
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V. CONCLUSION

This paper develops an information integration method
for the LCC within a multi-area system to tally with the
hierarchical control structure. The method contains three types
of relationship curves, namely the PCm,t, “PRup

m,t and PRdn
m,t ”

and “RLS
m,t and RWC

m,t ” Based on the uploaded relationship
curves, the UCC is able to achieve reasonable allocation of
both energy and reserves among the areas without knowing
the unit parameters within each area. This method achieves
a high quality solution which is close enough to the results
of the centralized ED model with full information. Then, this
paper designs a multi-time scale TERA model conforming to
both the MSCF and the hierarchical control structure adopted
in real operations in China. The look-ahead part adjusts the
operational points of the thermal units and shares the quantity
of energy and reserves among areas on the basis of the day-
ahead TERA results. Moreover, the capacity in the tie-lines
is also set aside for the sharing reserve, which guarantees the
shaving reserve can be delivered when needed. According to
the verification results in both 9-bus and 118-bus systems,
the proposed multi-time scale TERA model is more than a
shortage relieve process but also an efficiency oriented energy
and reserve allocation process.
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