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Decoupled Piecewise Linear Power Flow and Its
Application to Under Voltage Load Shedding

Mang Jiang , Qinglai Guo , Senior Member, IEEE, Hongbin Sun, Fellow, IEEE, and Huaichang Ge

Abstract—Various optimizations in power systems based on
the AC power flow model are inherently mixed-integer nonlinear
programming (MINLP) problems. Piecewise linear power flow
models can handle nonlinearities and meanwhile ensure a high
accuracy. Then, the MINLP problem can be turned into a
tractable mixed-integer linear programming (MILP) problem.
However, piecewise linearization also introduces a heavy compu-
tational burden because of the incorporation of a large number of
binary variables especially for large systems. To achieve a better
trade off between approximation accuracy and computational
efficiency, this paper proposes a model called decoupled piecewise
linear power flow (DPWLPF) for transmission systems. The P-
Q decoupling characteristic is used to ease the evaluation of the
piecewise cosine functions in the power flow equations. Therefore,
in optimizations, the coupling between variables is reduced.
Moreover, an under voltage load shedding (UVLS) approach
based on DPWLPF is presented. Case studies are conducted
for benchmark systems. The results show that the DPWLPF
facilitates the solution of optimal power flow (OPF) and UVLS
problems much better than conventional piecewise models. And
DPWLPF still enhances the approximation accuracy by using the
decoupled piecewise modeling.

Index Terms—Integer programming, piecewise linearization,
power flow modeling, under voltage load shedding.

NOMENCLATURE

A. Indices and Sets

i, j/I Index/set of the buses.
ij/B Index/set of the branches.
g/G Index/set of the units.
z/Z Index/set of the feeders.
c/C Index/set of the contingencies.
Ii Set of buses connected to bus i.
k Index of breakpoints or segments for piecewise

linearization.

B. Parameters

gij/bij/xij Conductance/susceptance/reactance of branch
ij.
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blij/b
SH
i Shunt susceptance of branch ij/bus i.

Tij/ϕij Tap ratio/phase shift angle of branch ij.
θij/θ̄ij Lower/upper bound of the domain set for piece-

wise linearization.
θij,k Angle difference of breakpoint k for branch ij.
N/Nb/NK Number of buses/branches/segments.
P g/P̄g Minimum/maximum power output of unit g.
Q

g
/Q̄g Minimum/maximum reactive power output of

unit g.
P 0
i /Q

0
i Base active/reactive power demand of bus i.

P shed,0
z / Base active/reactive power demand of feeder

Qshed,0
z z for load shedding.

aZi , a
I
i, a

P
i Proportion coefficients of bus i for ZIP load

modeling.
V i/V̄i Minimum/maximum voltage limit of bus i.
Sij Transmission capacity of branch ij.
Cz Load shedding cost of feeder z.
λreq Load margin requirement after a contingency.

C. Variables

wij,k Coefficients of breakpoint k for branch ij.
uij,k Variable indicating whether the angle differ-

ence of branch ij is located at segment k.
θ′PW
ij Voltage angle difference of branch ij for the

decoupled piecewise linear modeling.
V c
i /θ

′c
ij Voltage magnitude of bus i/voltage angle dif-

ference of branch ij under contingency c.
Pi/Qi Active/reactive nodal power injection of bus i.
PD
i /QD

i Active/reactive power demand of bus i.
P c
ij/Q

c
ij Active/reactive power flow of branch ij under

contingency c.
P c
g/Q

c
g Active/reactive power output of unit g under

contingency c.
xc
z Variable indicating the load shedding strategy

of feeder z under contingency c.
λc/λUVLS,c Post-fault load margin without/with UVLS un-

der contingency c.

I. INTRODUCTION

THE power flow model is the cornerstone of power net-
work analysis. Applications such as planning, scheduling,

control and reliability analysis have been implemented based
on the power flow model to ensure the safety and economy
of power grids. Nevertheless, the inherent nonlinearity and
nonconvexity pose challenges to related problems. Because
of some discrete operations and devices in power grids, opti-
mization problems using an AC model are normally solved by
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mixed-integer nonlinear programming (MINLP) approaches.
MINLP problems are non-deterministic polynomial time (NP)-
hard problems and rather difficult to solve. Discrete optimal
power flow (OPF) problems are intractable for commercial
MINLP solvers in some cases [1]. The global optimal solution
cannot be guaranteed theoretically for MINLP [2].

Linearizing the AC model is an effective solution. Thus, the
original MINLP is turned into mixed-integer linear program-
ming (MILP). Existing solvers and algorithms can guarantee
a reliable and an efficient solution [3]. The DC power flow
model is a well-known linearized version and is widely applied
in practice [4]. However, the DC model sacrifices the ability
to evaluate the voltage and reactive power, possibly leading to
AC infeasibility decisions [5].

Therefore, it is desirable to retain the voltage and reactive
power in linearized models. Voltage-related challenges remain
serious in power systems with the growing presence of renew-
able generation resources and power electronic equipment [6]–
[8]. Estimating the voltage and reactive power is essential to
avoid voltage-induced security risks, such as cascading trip-
offs of wind turbine generators [9] and commutation failures
of high-voltage direct current (HVDC) systems. Linear power
flow models, considering voltage and reactive power, have
recently attracted increasing attention. Empirical linear models
were proposed in [10]–[12] by a mathematical approximation
of the power flow equations in polar coordinates. A flat voltage
profile and zero angle differences across the branches were the
common assumptions. Moreover, there have been some data-
driven linear models. A linear model was presented in [13]
using the regression approach. The optimal linearization point
can be obtained by approximating a generalized moment
problem [14]. Sufficient prior data are required to ensure the
validity of the approximation.

All the above models are essentially a global lineariza-
tion. Because of their nonlinear nature, especially for voltage
and reactive power, their accuracy is limited under large
perturbations. When the system states violate the common
assumptions or historical distribution, the approximation de-
teriorates. In addition, ignoring higher order terms leads to
lossless networks [11]. The network loss cannot be evaluated.
The obtained locational marginal prices based on the linear
model may include unacceptable outliers [1]. For the unit
commitment (UC) problem, the scheduling obtained by the
linear models can deviate a lot from the optimal solution [15].
It is necessary to provide accurate pictures of the system’s
state to avoid possible adverse effects due to considerable
approximation errors.

Thus, piecewise linear power flow models [2], [3], [5], [16]
were proposed to improve the accuracy at the cost of modeling
complexity. Nevertheless, the optimizations are still tractable
MILP problems. Reference [2], [3] approximated the quadratic
terms of the phase angle differences by piecewise linear
modeling using a binary expansion discretization approach.
Reference [16] approximated the fictitious losses in the DC
model by the piecewise modeling of the cosine functions.
Reference [5] similarly approximated the cosine functions
while retaining the voltage and reactive power. However,
extra binary variables, along with auxiliary constraints, are

introduced, leading to an expanded search space. These binary
variables are necessary to ensure the accuracy because of the
non-convexity of power flow equations [5]. The number of
introduced binary variables is proportional to the number of
branches. For large systems, the computational burden can be
heavy. Therefore, the scalability issue of piecewise methods is
a concern.

To facilitate the optimizations based on piecewise lineariza-
tion, this paper presents a decoupled piecewise linear power
flow (DPWLPF) model for transmission networks. A decou-
pled modeling method to lower the complexity of piecewise
linearization is proposed. Unlike conventional methods, only
the active nodal power injections are utilized to estimate the
angle differences for the piecewise linearization. The effects of
reactive power injections on the approximated cosine functions
are omitted. Therefore, the coupling between binary and state
variables is reduced.

Moreover, an under voltage load shedding (UVLS) approach
to prevent static voltage instability is proposed based on
DPWLPF. UVLS is the last resort to maintain voltage stability
in critical situations [17]. Reference [18] proposed a UVLS
method by controlling smart appliances. Reference [19] solved
an optimization problem to determine the location and amount
of load shedding considering load uncertainties. However,
most of the load cannot be continuously and precisely shed.
In practice, all the load at a feeder will be shed when
the relay control of the feeder receives the signal. Hence,
binary variables should be included to describe their discrete
characteristics. Employing the proposed DPWLPF can convert
the original MINLP UVLS problem into MILP. In addition,
the decoupled piecewise modeling method can mitigate com-
putational challenges.

The contributions of this paper are two-fold: 1) A piecewise
linear power flow model called DPWLPF is presented for
transmission systems. The reactive power nodal injections
and approximated cosine functions are decoupled to simplify
piecewise linearization. Moreover, the square of the voltage
magnitude is used as the independent variable in DPWLPF to
enhance the approximation accuracy. 2) A MILP-based UVLS
approach is proposed to improve the post-fault load margin
(LM) and avoid static voltage instability. UVLS strategy is
obtained periodically by solving optimizations for every severe
contingency. The ZIP load model is considered and linearized
in the framework of DPWLPF.

The remainder of the paper is organized as follows. Sec-
tion II introduces the detailed formulations of DPWLPF.
Section III presents the UVLS approach. Case studies are
conducted in Section IV to verify the effectiveness of DP-
WLPF and UVLS. Finally, Section V presents the concluding
remarks.

II. DECOUPLED PIECEWISE LINEAR POWER FLOW

The AC power flow model is introduced first in this section.
Then, the DPWLPF model is presented in detail.

A. AC Power Flow Basics
According to the branch model shown in Fig. 1, the general

formulation of the AC active and reactive power flow equations
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Fig. 1. A general branch model with an ideal phase-shifting transformer.

at each bus in polar coordinates is derived as:

Pi =
∑
j∈Ii

Pij , ∀i ∈ I, (1)

Qi =
∑
j∈Ii

Qij − bSHi V 2
i , ∀i ∈ I, (2)

where bSHi denotes the shunt susceptance at bus i. The detailed
expressions of the power flows from i to j are:

Pij = gij(V
′2
i − V ′

i Vj cos θ
′
ij)− bijV

′
i Vj sin θ

′
ij , (3)

Qij = − bij(V
′2
i − V ′

i Vj cos θ
′
ij)− gijV

′
i Vj sin θ

′
ij

− blijV
′2
i /2. (4)

The coupling of the transformer gives:

V ′
i = Vi/Tij , θ′ij = θij − ϕij . (5)

Note that the shunt conductance is omitted here because the
conductance is generally negligible compared with the shunt
susceptances bSHi and blij/2.

B. Model of DPWLPF

Under the classic assumption (flat voltage profiles and very
small voltage angle differences),

V ′
i ≈ Vj ≈ 1, θ′ij ≈ 0, (6)

the sine term is approximated as:

V ′
i Vj sin θ

′
ij ≈ θ′ij . (7)

Considering V ′
i Vj and cos θ′ij as independent variables, the

first-order Taylor series expansion of the cosine term is:

V ′
i Vj cos θ

′
ij ≈ V ′

i Vj + cos θ′ij − 1. (8)

Since the voltage difference across a branch is small, the
bilinear term V ′

i Vj can be approximated as:

V ′
i Vj=

[
(V ′2

i +V 2
j )− (V ′

i − Vj)
2
]
/2 ≈ (V ′2

i +V 2
j )/2. (9)

By substituting (7)–(9) into (3) and (4), the branch flow
equations are approximated as:

Pij = gij(V
′2
i /2− V 2

j /2− cos θ′ij + 1)− bijθ
′
ij , (10)

Qij = − bij(V
′2
i /2− V 2

j /2− cos θ′ij + 1)− gijθ
′
ij

− blijV
′2
i /2. (11)

It can be observed that if cos θ′ij is ignored, the expression
in the approximated power flow equations (1), (2), (10) and
(11) become linear considering V 2 as the state variable. V 2 is
a monotonic function of the voltage magnitudes. The voltage
constraints can still be linear and formulated as (39). The

actual voltage magnitudes can be easily obtained through a
square root operation for a given V 2.

The cosine function becomes the only nonlinear term in the
approximated equations. When utilizing the classic assump-
tion, cos θ′ij can be approximated as 1. However, the accuracy
becomes worse, especially for reactive power. The significance
of retaining the cosine function is illustrated through the
following quantitative analysis. The general linear power flow
model is:

V ′
i Vj sin θ

′ ≈ ηP, (12)

V ′2
i − V ′

i Vj cos θ
′ ≈ ηQ, (13)

where ηP and ηQ are approximations of the two nonlinear
terms in (3) and (4), which are strongly related to active and
reactive power respectively because generally bij ≫ gij in
transmission systems. Two indicators are defined:

εP =

∫
Γ

(V ′
i Vj sin θ

′
ij − ηP)

2dV ′
i dVjdθ

′
ij (14)

εQ =

∫
Γ

(V ′2
i − V ′

i Vj cos θ
′
ij − ηQ)

2dV ′
i dVjdθ

′
ij , (15)

where εP and εQ reflect the approximation errors of ηP and
ηQ respectively. εP and εQ are presented in Table I. The
operational region Γ is defined as:

Γ = {(V ′
i , Vj , θ

′
ij)|0.9 ⩽ V ′

i ⩽ 1.1, 0.9 ⩽ Vj ⩽ 1.1,

|V ′
i − Vj | ⩽ 0.05, |θ′ij | ⩽ π/6}.

(16)

TABLE I
ERRORS (10−5) OF DIFFERENT APPROXIMATIONS

ηP εP ηQ εQ
V ′2
i − V 2

j

2
6.8320

θ′ij 1.7786
V ′2
i − V 2

j

2
− cos θ′ij + 1 0.0715

sin θ′ij 1.6532 V ′
i − Vj − cos θ′ij + 1 0.0733

The following conclusions can be drawn from Table I: 1)
Reactive power exhibits a stronger nonlinearity than active
power because 6.8320 is greater than 1.7786 when both
approximations ignore nonlinear trig functions. 2) With sin θ′ij
retained, εP reduces slightly. To further improve, the voltage
effects should be considered, which is out of scope in this
paper and can be explored in the future. 3) With cos θ′ij
retained, εQ reduces significantly. 4) The errors can be further
reduced from 0.0733 to 0.0715 if V 2 is used as the indepen-
dent variable.

Moreover, with cos θ′ij retained, the expression of the branch
loss is derived as (17). Although P loss

ij becomes independent
of voltage, a nonnegative loss is guaranteed when cos θ′ij is
retained. Otherwise, P loss

ij will be treated as 0.

P loss
ij = Pij + Pji = gij(V

′2
i + V 2

j − 2V ′
i Vj cos θ

′
ij)

≈ gij(2− 2 cos θ′ij).
(17)

Therefore, aiming to enhance the approximation accuracy, it
is crucial to reserve the nonlinearity of the cosine functions as
much as possible while still rendering tractable optimizations.
Hence, a one-dimensional piecewise linearization technique
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is employed for cos θ′ij . As shown in Fig. 2, the domain set
[θij , θ̄ij ] is partitioned evenly into θij,k ∈ R, k = 0, 1, 2,
· · · , NK :

θij,k = θij + k(θ̄ij − θij)/NK , (18)

where NK denotes the number of segments. The parameters
for the piecewise linearization, θij , θ̄ij , NK , should be selected
based on the following rules. First, in order to ensure the
optimization problem feasible, the domain set [θij , θ̄ij ] should
be large enough. In other words, the set should contain the
maximum angle difference of the system. In the pursuit of
robustness, the set can be [−π/4, π/4] considering that very
long lines may exist [4]. Second, NK should be selected
appropriately considering both approximation accuracy and
computation burden. This paper recommends NK ∈ [20, 50]
based on the tests in Section IV-A. It should be noted that
other partitioning methods, such as the method in [20], can
be extended to the proposed piecewise linear approximation.
Therefore, a unique interpolation of cos θ′ij can be obtained
according to a convex combination of θij,k:

θ′ij =

NK∑
k=0

wij,kθij,k, (19)

cos θ′ij ≈
NK∑
k=0

wij,k cos θij,k, (20)

Nk∑
k=0

wij,k = 1, (21)

wij,k ∈ [0, 1], ∀k = 0, 1, 2, · · · , NK . (22)

The combination of two adjacent breakpoints is illustrated
by the black point in Fig. 2. The coefficients wij,k are
continuous variables, and the sum of wij,k should be equal
to 1 (21).

Piecewise approximation
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Fig. 2. Schematic diagram of the piecewise linear approximation.

To determine the located segment of (θ′ij , cos θ
′
ij), a set of

binary variables uij,k are introduced. If θ′ij ∈ [θij,k−1, θij,k],
only the corresponding binary variable uij,k of the segment is
set as 1. Thus, we have the following constraints:

NK∑
k=1

uij,k = 1, (23)

uij,k ∈ {0, 1}, ∀k = 1, 2, · · · , NK . (24)

Only the two coefficients wij,k−1, wij,k are nonzero, while
the others are all zero. Therefore, the following constraints are
included to ensure the adjacent coefficients wij,k are nonzero
only when the corresponding located segment is activated:

wij,0 ⩽ uij,1, wij,NK
⩽ uij,NK

, (25)
wij,k ⩽ uij,k + uij,k+1, ∀k = 1, 2, · · · , NK − 1. (26)

By substituting (10), (11) and (20) into (1) and (2), we
obtain the piecewise power flow equations:

Pi =
∑
j∈Ii

[
gij

(
V ′2
i −V 2

j

2
−

NK∑
k=0

wij,k cos θij,k+1

)
−bijθ

′
ij

]
∀i ∈ I, (27)

Qi =
∑
j∈Ii

[
− bij

(
V ′2
i − V 2

j

2
−

NK∑
k=0

wij,k cos θij,k + 1

)

− gijθ
′
ij − blijV

′2
i /2

]
− bSHi V 2

i , ∀i ∈ I. (28)

The independent state variables are the generalized voltage
magnitude V 2, and the phase angle θ. cos θ′ij is retained in
(27), (28) and approximated by auxiliary continuous variables
wij,k. Binary variables uij,k along with constraints will be
introduced into the optimizations. The number of binary
variables is NbNK . Nb denotes the number of branches. The
searching space containing the binary variables hinders the
optimization solution, especially for large systems.

It is challenging to facilitate optimizations based on piece-
wise linear power flow models and meanwhile ensure an
enhanced approximation accuracy. Essentially, the piecewise
models improve the accuracy because of the approximated
cosine function

∑NK

k=0 wij,k cos θij,k. To address this problem,
this paper attempts to ease the evaluation of this approximated
cosine function. The details of this concept are presented as
follows.

The value of cos θ′ij is obtained based on the angle differ-
ence θ′ij . The phase angles θi, i ∈ I are the stated variables in
the piecewise power flow equations (27) and (28). θi is coupled
with both the active and reactive nodal power injections.

However, the connection between the phase angles θi and
the reactive nodal power injections Qi can be decoupled
because of the well-known P-Q decoupling characteristics for
transmission networks, since bij ≫ gij . We can obtain the
angle differences with little computation, such as the DC
model. Thus, we introduce equations to estimate the angle
difference:

Pi =
∑
j∈Ii

θ′PW
ij

xij
=
∑
j∈Ii

θPW
i − θPW

j − ϕij

xij
, (29)

∀i = 1, · · · , N − 1,

θPW
N = 0, (30)

where θPW
i denotes the voltage phase angle of bus i, which



980 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 7, NO. 5, SEPTEMBER 2021

is used for piecewise linearization. N denotes the number
of buses. Equation (29) models a lossless network while a
nonzero loss is guaranteed in (27). In order to avoid the
contradictions between (27) and (29) and to ensure their
feasibility, the bus N is considered as a slack bus whose phase
angle is set as 0 (31). The estimated angle differences θ′PW

ij

are only used to determine the convex combination and the
coefficient wij,k:

θ′PW
ij =

NK∑
k=0

wij,kθij,k. (31)

Finally, the DPWLPF model is obtained, and the overall
constraints include (21)–(31). The nonlinear and non-convex
power flow equations are turned into a series of linear
constraints with binary variables. The process of piecewise
linearization shown in Fig. 2 can be achieved equivalently by
linear constraints. wij,k and uij,k are introduced to optimiza-
tion problems as auxiliary variables.

Controllable phase-shifting transformers can be modeled in
DPWLPF without breaking the linearity. The discrete control
characteristics of tap ratios can be precisely and linearly
modeled [1]. The phase shift angles are linearly embedded
in DPWLPF and can be direct control variables. In this paper,
tap ratios and phase shift angles are considered as parameters.

Note that the P-Q decoupling is only utilized in the process
of piecewise linearization. In the power flow equations, the
coupling between V, θ, P and Q is still considered, which is
distinct from the DC model. In other words, θi are still retained
in (27) and (28) and affected by reactive power. Many factors
affect the solution time of MILP. In addition to the size, the
problem structure is an important factor. The DPWLPF model
relieves the computational burden by adjusting the problem
structure. It can be observed that θ′PW

ij only depends on
the active nodal power injections. Once θ′PW

ij is determined,
the weight coefficients wij,k and binary variables uij,k are
also determined through the constraints (21)–(26) and (31).
Q and V 2 will not directly affect the approximated cosine
function. Thus, Q and θ′PW

ij are decoupled. The DPWLPF
model reduces the coupling between the variables and still
achieves a piecewise linearization.

Because of ignoring the effects of reactive power, the error
between θ′PW

ij and the actual angle differences may increase.
Hence, the approximation of piecewise linearization may de-
teriorate. However, using θ′PW

ij can still improve accuracy.
Power flow calculation is utilized to illustrate the robustness of
DPWLPF. The results under different load scales of the IEEE
118 system are compared with the AC solution. Table II shows

TABLE II
THE PERFORMANCE OF DPWLPF UNDER DIFFERENT LOAD SCALES

Model RMS errors Load scale
1 1.1 1.2 1.3

DPWLPF
Voltage 3×10−4 4×10−4 6×10−4 0.001
Values of cos θ′ij 8×10−4 0.001 0.003 0.005
Angle differences 0.007 0.009 0.011 0.016

Linear model* Voltage 0.002 0.003 0.004 0.005
Values of cos θ′ij 0.004 0.007 0.012 0.019

*: The cosine function in power flow equations is considered as 1

the root-mean-square (RMS) errors of voltage magnitudes, the
values of cos θ′ij (the approximated cosine function) and DC
angle differences of θ′PW

ij . With the load increasing, the RMS
error between θ′PW

ij and actual angle differences increases.
However, cos θ′ij approximated through θ′PW

ij is still closer
to the actual cosine values than 1. Therefore, the voltages
obtained by DPWLPF are more accurate than those of the
linear model.

To further investigate computational efficiency and accuracy
of DPWLPF, numerical tests of OPF under benchmark systems
are conducted in Section IV-A.

III. UNDER VOLTAGE LOAD SHEDDING BASED
ON DPWLPF

A. Procedure of UVLS

UVLS is an important means to prevent voltage instability.
This paper employs LM as the voltage stability criterion.
LM denotes the maximum amount of additional load at a
given operation point. The flowchart of the proposed UVLS
approach is shown in Fig. 3. When a contingency is detected
by the online monitor system, after a certain delay, the relay
control will shed the load following the predetermined UVLS
strategy. Under normal circumstances, the system refreshes the
UVLS strategy periodically depending on the online system
states. The contingency set is defined by the operators, which
can include the N − 1 contingencies and N − 2 contingencies
with relatively high probabilities.

Online monitoring

Contingency occurs?

λc
<λreq ?

UVLS strategyRelay control

Contingency set

Run MILP model

Refresh UVLS strategyOnline monitoring & Relay control

Yes

Yes

No

No

Fig. 3. Flowchart of the proposed UVLS approach.

For each contingency, the post-contingency LM λc can be
obtained by the optimization-based method [21] based on the
power flow snapshot obtained by the online monitor system.
If λc is smaller than the LM requirement λreq, the UVLS
optimization is solved to generate and refresh the UVLS
strategy of contingency c. The refresh rate is limited by the
solution speed of optimizations. Parallel computing techniques
can accelerate this process. The UVLS optimization is a
MILP-based problem and is introduced in Section III-B. The
UVLS strategy, i.e., the optimal solution, determines which
feeders should shed load. When a certain contingency occurs,
the latest corresponding strategy is adopted by the relay control
to ensure LM is satisfying the requirement.

The online monitoring and relay control can be achieved by
the supervisory control and data acquisition (SCADA) systems
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and remote terminal units (RTU). SCADA/RTU have been
widely utilized in power systems. Considering the commu-
nication speed of SCADA/RTU and the solution time of the
optimizations, the refresh period can be about 5 minutes. To
ensure the robustness, the load in optimization can be set as
the maximum load during the refresh period because the load
may fluctuate.

B. Optimization Problem

The UVLS optimization for contingency c is formulated as
follows:

min
∑
z∈Z

Czx
c
z (32)

subject to

xc
z ∈ {0, 1}, ∀z ∈ Z, (33)
(21)− (31), ∀i ∈ I. (34)

Pi =
∑
g∈i

P c
g − (1 + λreq)(PD

i − P shed
i ), ∀i ∈ I, (35)

Qi =
∑
g∈i

Qc
g − (1 + λreq)(QD

i −Qshed
i ), ∀i ∈ I, (36)

P g ⩽ P c
g ⩽ P̄g, ∀g ∈ G, (37)

Q
g
⩽ Qc

g ⩽ Q̄g, ∀g ∈ G, (38)

V 2
i ⩽ (V c

i )
2 ⩽ V̄ 2

i , ∀i ∈ I, (39)
√
2Sij ⩾ P c

ij +Qc
ij ⩾ −

√
2Sij , ∀ij ∈ B, (40)

√
2Sij ⩾ P c

ij −Qc
ij ⩾ −

√
2Sij , ∀ij ∈ B, (41)

Sij ⩾ P c
ij ⩾ −Sij , ∀ij ∈ B, (42)

Sij ⩾ Qc
ij ⩾ −Sij , ∀ij ∈ B. (43)

The objective function is to minimize the total cost of load
curtailment (32). Binary variables xc

z denote the load shedding
strategy (33). xc

z is equal to 1 if all the load at feeder z
is shed and 0 otherwise. Note that continuously controllable
loads can be easily extended in this model. The constraints of
the DPWLPF modeling presented in Section II are included
to provide a picture of post-contingency system states after
UVLS (34). The nodal power balance equations are described
as (35) and (36). The output active and reactive powers for the
units should be limited in the allowable range (37), (38).The
voltage magnitudes of buses are restricted in the security range
(39). Constraints (40)–(43) represent the piecewise linear
quadratic apparent branch flow constraints [22].

C. ZIP Load Modeling

The ZIP model is used to depict the voltage-dependent
nonlinear load characteristics:

PD
i = P 0

i

[
aZi (V

c
i )

2 + aIiV
c
i + aPi

]
, (44)

QD
i = Q0

i

[
aZi (V

c
i )

2 + aIiV
c
i + aPi

]
, (45)

where aZi , a
I
i, a

P
i are the proportion coefficients for ZIP load

modeling. Since (V c
i )

2 is the independent state variable of
DPWLPF, V c

i in (44) and (45) becomes a nonlinear term.
V c
i can be linearized as 0.5(V c

i )
2+0.5 around the nominal

operation point. Hence, equations (46) and (47) become linear:

PD
i = P 0

i

[
(aZi + 0.5aIi)(V

c
i )

2 + 0.5aIi + aPi
]
, (46)

QD
i = Q0

i

[
(aZi + 0.5aIi)(V

c
i )

2 + 0.5aIi + aPi
]
. (47)

Similarly, the amount of active and reactive load shedding
of bus i can be calculated by (48) and (49). In this paper, the
proportion coefficients of different feeds located at a same bus
are assumed as consistent.

P shed
i =

∑
z∈i

P shed,0
z

[
(aZi + 0.5aIi)(V

c
i )

2 + 0.5aIi + aPi
]
xz,

(48)

Qshed
i =

∑
z∈i

Qshed,0
z

[
(aZi + 0.5aIi)(V

c
i )

2 + 0.5aIi + aPi
]
xz.

(49)

There is a bilinear term (V c
i )

2xz . Auxiliary constraints are
included to turn the bilinear term into linear:

−V̄ 2
i (1− xz) + (V c

i )
2 ⩽ µz ⩽ (V c

i )
2, (50)

V 2
i xz ⩽ µz ⩽ V̄ 2

i xz. (51)

Moreover, µz should replace (V c
i )

2xz in (48) and (49).

IV. CASE STUDIES

Case studies are conducted on a computer with an Intel Core
i7-8550U CPU at 1.80 GHz and 15.9 GB of RAM. The MILP
solver is GUROBI 8.1 [23]. The optimality gap tolerance is
set as 0.01%. The parameters for the piecewise linearization
θij , θ̄ij , NK , are set as −π/6, π/6 and 24 respectively.

A. Numerical Tests of OPF

The effects of the proposed decoupled piecewise power
flow modeling are discussed in Section II-B. The actual
performance should be invested through numerical tests. Here,
we use the fundamental optimization in power systems, OPF,
as the testing platform. To verify the effectiveness of DP-
WLPF, three other power flow modeling schemes along with
DPWLPF are tested under several benchmark systems:

Scheme 1: The cosine functions are approximated as 1 in
the proposed linearization (10), (11).

Scheme 2: The cosine functions are approximated by the
conventional piecewise modeling method. The functions are
determined by θ′ij in the power flow equations (27), (28),
which are coupled with both active and reactive power.

Scheme 3: The cosine functions are retained by the proposed
decoupled piecewise modeling method. However, V instead of
V 2 is considered as the independent variable.

Scheme 4: The proposed DPWLPF.
Because the cosine functions are globally considered as 1,

OPF based on scheme 1 are linear programming problems.
OPF based on other schemes are MILP problems. The results
are compared with ACOPF. The solution time and absolute gap
of objectives are shown in Table III. Detailed data of these sys-
tems can be obtained from the package of MATPOWER [24].
The cost of reactive power generation is considered as 10%
of that of active generation. S1–S4 are short for the four
modeling schemes. It can be observed that the solution of
all modeling schemes is rapid for small systems. S1 owns
the fastest solution efficiency. The solution time is 1.22 s
even for the largest system. However, the solution time of S2
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TABLE III
SOLUTION TIME AND ABSOLUTE GAP OF OBJECTIVES

System
Solution time (s) Absolute gap (%)

S1 S2 S3 S4 S1 S2 S3 S4
IEEE 9 0.01 0.02 0.01 0.02 4.65 0.53 1.02 0.97
IEEE 30 0.03 0.06 0.05 0.06 11.6 4.11 1.94 1.96
IEEE 118 0.07 0.59 0.61 0.67 2.84 0.10 0.25 0.25
IEEE 300 0.18 1.95 1.58 1.61 2.88 0.13 0.92 0.89
PEGASE
1354 0.78 206 70.5 60.1 2.56 1.65 1.56 1.55

POLISH
2383wp 1.22 1723 1349 1147 5.54 3.66 3.76 3.69

increases markedly especially for relatively large systems, i.e.,
PEGASE 1354 and POLISH 2382wp. Because of piecewise
linearization, the size of optimizations is enlarged. The binary
variables are too many to provide an efficient solution for S2.
S3 and S4 employ the proposed decoupled piecewise modeling
method and adjust the problem structure. Although the number
of binary variables is the same compared with S2, the solution
time of large systems still decreases significantly.

To further compare the approximation accuracy of system
states, we calculate the RMS errors of voltage magnitudes and
branch apparent power flows between ACOPF and OPF based
on the approximated models. For easy visualization, the RMS
errors are normalized as shown in Fig. 4. The RMS errors of
S1 are considered as the baselines. It can be observed that
the errors of S1 are larger than the errors of the other three
modeling schemes. As analyzed before, the cosine functions
are important to approximate the reactive power equations. The
piecewise linearization of the cosine functions has a positive
effect on approximation. Moreover, the network loss can be
considered leading to reduced errors of branch flows for S2,
S3 and S4.

Normalized RMS errors of voltage magnitudes
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Fig. 4. Normalized RMS errors of (a) voltage magnitudes; (b) branch
apparent flows.

However, none of the three piecewise models dominates the
others in approximation accuracy. The more precise modeling
schemes considering different indicators are shown in Fig. 5.
Statistically, S2 is the more precise modeling scheme because
61% of the quantities obtained by S2 are more accurate than

S2
S3
S4

50% 50%67%

17%

17%
61%

33%

6%

67%

33%

(a) (b) (c) (d)

Fig. 5. The scenario ratio of the most precise modeling scheme considering
(a) Absolute gap between objectives; (b) Voltage magnitudes; (c) Branch
flows; (d) All of the above quantities.

the others. However, the computational burden of S2 is heavy
for large systems as shown in Table II. For S3, the ratio in
Fig. 5 is less than the other two piecewise modeling schemes.
In addition, the RMS errors are obviously greater in some
cases, such as the voltage magnitudes of IEEE 9, which
indicates using V 2 as the independent variable can enhance
the approximation.

The effect on accuracy of the decoupled piecewise modeling
method is observed here. The RMS errors of S4 are close to
those of S2. Using the proposed decoupled modeling method
may reduce the accuracy slightly. But in some cases, the ac-
curacy is improved, i.e., 33% of quantities obtained by S4 are
more precise. Given the increase in computational efficiency,
S4 achieves a better trade-off between approximation accuracy
and computational efficiency.

The RMS errors of voltage magnitudes and solution time
for the PEGASE 1354 system under different values of NK

are shown in Fig. 6. Because of the symmetry of the cosine
function in the given [θij , θ̄ij ], we set NK as different even
numbers. It can be observed that if NK is too small, the error
is large. With NK increasing, the error decreases. However,
when NK is large enough, the error hardly decreases, while
the solution time tends to increase significantly. Hence, we
recommend NK ∈ [20, 50] to achieve a tradeoff between errors
and solution time.
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Fig. 6. Performance under different numbers of segments.

B. Performance of UVLS

The proposed UVLS method is implemented in the IEEE
118 system. The LM requirement λreq after a contingency is
set as 0.05. The proportion coefficients of ZIP load aZi , a

I
i, a

P
i

are assumed as 0.25, 0.25, 0.5 respectively. We increase the
load by 30% and reduce the generation capacity by 40% to
simulate a heavy loading scenario. For each bus with nonzero
load, there are three feeders for potential load curtailment.
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Suppose the system is disturbed by a severe N − 2 con-
tingency, which is defined as the simultaneous outage of
the generator located at bus 12 and the lines 27–28. The
corresponding post-contingency LM λc = 0.0024 of this N−2
contingency is less than λreq. The UVLS strategy of the
power flow snapshot is already generated by the optimization
presented in Section III-B beforehand. Hence, the relay control
sheds the load according to the predetermined strategy.

According to the theorem in [21], the type of bifurcation
observed in this case is the so-called limit induced bifurcation,
which is illustrated by the PV curves shown in Fig. 7. In a
normal situation, the voltage of bus 1 is maintained as 0.94 p.u.
When the equilibrium point moves from O to A with the
load increasing, the reactive power outputs of the generators
also increase. When the point reaches A, the generator located
at bus 1 generates maximum reactive power. The blue curve
indicates the PV curve when the generator located at bus 1
always generates maximum reactive power output. The point
A is below the saddle node and means the voltage collapses.
The pre-contingency LM λn = 0.0547 is the length of the OA.
If the N−2 contingency occurs, the maximum load point will
move from point A to B, as shown in Fig. 7. In addition,
LM will reduce to 0.0024, which is far less than the LM
requirement. The system faces the risk of voltage instability.
However, if the relay control system sheds the load located
at the assigned feeders following the UVLS strategy, the base
equilibrium point of the system will move from O to M. And
LM becomes λUVLS,c = 0.0491, which is quite close to the
requirement λreq = 0.05.

There are inevitable errors in linear approximated power
flow models. Therefore, either over-optimistic or conserva-
tive solutions may be obtained by the MILP-based UVLS
optimization. This paper recommends operators determine the
higher LM requirement to avoid security risks considering load
fluctuation between the refresh interval, load modeling errors
and approximation accuracy.

To further verify the effectiveness of the proposed UVLS
based on DPWLPF, the results are compared under different
power flow models and different contingencies. The contin-
gency set is defined as the loss of a single generator and
single line outage. Based on the procedure shown in Fig. 3,
we can sort out severe contingencies. Because the load is
heavy, a total of 76 contingencies are diagnosed as severe
contingencies and their LMs cannot satisfy the requirement.

Then the UVLS strategies are obtained by optimizations
based on different power flow models. The four modeling
schemes from Section IV-A are employed here. In addition,
the AC power flow modeling is utilized here as scheme 5.
However, the optimization problem is a MINLP, which is
intractable for many solvers. Therefore, binary variables xc

z

are considered as continuous variables by adding auxiliary
constraints xc

z(1−xc
z) = 0. And the original MINLP problem

becomes nonlinear programming (NLP), which can be solved
by IPOPT [25].

The performance of UVLS strategies obtained by different
power flow models can be evaluated by the mean absolute
error of LM, which is defined as:

MAE =
∑
c∈C∗

|λUVLS,c − λreq|
card(C∗)

, (52)

where C∗ denotes the set of severe contingencies and card(C∗)
denotes the number of severe contingencies. The smaller MAE
is, the better the quality of the solution is. The MAE of
different models are shown in Table IV. Note S5 is not
available here. The NLP problem is diagnosed as infeasible
or the number of iterations exceeds the maximum limit.
Furthermore, the LMs after the UVLS of different contin-
gencies are shown in Fig. 8. The contingencies are sorted by
severity degree. Through UVLS, the LM can be improved.
However, the MAE of S1 is significantly larger than the
MAE of other schemes because ignoring the nonlinearity of
the cosine function leads to lower accuracy. Moreover, S1
estimates LM over-optimistically and sheds less load for lower
cost. The LMs after the UVLS of S1 are shown as the red
curve in Fig. 8. Some of them are obviously less than the
requirement. By the piecewise linearization, the LMs of S2,
S3 and S4 are close to the requirement. What’s more, the
actual voltages at the maximum load point are compared with
those obtained by optimization. The RMS errors of the voltage

TABLE IV
PERFORMANCE OF UVLS STRATEGIES OBTAINED BY

DIFFERENT MODELS

Scheme MAE (10−3) RMS error of voltages
S1 9.18 0.0225
S2 3.19 0.0107
S3 3.97 0.0132
S4 2.92 0.0104
S5 N/A N/A
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Fig. 7. PV curves under pre-contingency configuration, under post-contingency configuration and after UVLS.
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Fig. 8. LMs of contingencies after UVLS obtained by different modeling
schemes.

magnitudes under the four schemes are presented in Table IV
respectively. S4 provides the most accurate picture of voltage
profiles indicating the proposed DPWLPF is the most accurate
modeling scheme in this case. Hence, the MAE of S4 is the
smallest, i.e., the UVLS strategy obtained by S4 outperforms
the others.

A Monte Carlo simulation is conducted for the IEEE 118
system to investigate the performance of UVLS under load
fluctuation during the refresh period. The load is assumed to
be distributed uniformly with a certain deviation ratio from the
base value, e.g. P ′0

i ∼ U(0.95P 0
i , 1.05P

0
i ). For each deviation

ratio that belongs to {0.01, 0.02, 0.03, 0.04, 0.05}, 5,000
random scenarios are simulated. The load fluctuates while
the predefined UVLS strategy is the same and executed after
the outage of lines 76–77. To improve robustness, the load
in optimization increases by 3%. The LMs after UVLS are
shown in Fig. 9. At 5% fluctuation, sufficient margin of voltage
stability can still be guaranteed, i.e., λUVLS,c > 0.05.
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Fig. 9. LMs after UVLS under load fluctuation.

The average solution time of all three piecewise models is
around 1 s. To further compare the computational speed, a case
study is conducted for a larger system, PEGASE 1354. The
average solution time of the models is 271 s, 141 s and 136 s
respectively, which verifies that the proposed decoupled piece-
wise modeling approach relieves the computational burden.

V. CONCLUSION

This paper proposes a piecewise linear power flow model
called DPWLPF. Aiming at improving the computational effi-
ciency, a decoupled modeling method is proposed to decouple

the reactive power and approximated cosine functions in
piecewise power flow equations.

Through case studies under benchmark systems, DPWLPF
effectively relieves the computational burden, especially for
large systems, while not significantly impairing the approxi-
mation of the piecewise linearization. Approximation accuracy
may reduce slightly. But in some cases, accuracy improves.

Based on DPWLPF, an UVLS approach is presented. DP-
WLPF can turn the intractable MINLP problem into MILP.
LM is improved by the generated UVLS strategy to avoid
static voltage instability. Moreover, DPWLPF has the potential
to be augmented for other intractable MINLP problems in
power systems, which can be explored in a future study.

REFERENCES

[1] Z. F. Yang, H. W. Zhong, A. Bose, Q. Xia, and C. Q. Kang, “Optimal
power flow in AC–DC grids with discrete control devices,” IEEE
Transactions on Power Systems, vol. 33, no. 2, pp. 1461–1472, Mar.
2018.

[2] T. Akbari and M. TavakoliBina, “Approximated MILP model for AC
transmission expansion planning: global solutions versus local solu-
tions,” IET Generation, Transmission & Distribution, vol. 10, no. 7,
pp. 1563–1569, May 2016.

[3] T. Akbari and M. Tavakoli Bina, “Linear approximated formulation of
AC optimal power flow using binary discretization,” IET Generation,
Transmission & Distribution, vol. 10, no. 5, pp. 1117–1123, Apr. 2016.

[4] B. Stott, J. Jardim, and O. Alsac, “DC power flow revisited,” IEEE
Transactions on Power Systems, vol. 24, no. 3, pp. 1290–1300, Aug.
2009.

[5] P. A. Trodden, W. A. Bukhsh, A. Grothey, and K. I. M. McKinnon,
“Optimization-based islanding of power networks using piecewise linear
AC power flow,” IEEE Transactions on Power Systems, vol. 29, no. 3,
pp. 1212–1220, May 2014.

[6] F. R. Badal, P. Das, S. K. Sarker, and S. K. Das, “A survey on control
issues in renewable energy integration and microgrid,” Protection and
Control of Modern Power Systems, vol. 4, pp. 8, Apr. 2019.

[7] F. D. Xu, Q. L. Guo, H. B. Sun, B. M. Zhang, and L. Jia, “A two-
level hierarchical discrete-device control method for power networks
with integrated wind farms,” Journal of Modern Power Systems and
Clean Energy, vol. 7, no. 1, pp. 88–98, Jan. 2019.

[8] D. L. Zhang, J. L. Li, and D. Hui, “Coordinated control for voltage
regulation of distribution network voltage regulation by distributed
energy storage systems,” Protection and Control of Modern Power
Systems, vol. 3, pp. 3, Jan. 2018.

[9] G. Mu, J. Wang, and G. G. Yan, “The mechanism of DFIGs grouping
tripped off from power grid,” CSEE Journal of Power and Energy
Systems, vol. 4, no. 1, pp. 103–111, Mar. 2018.

[10] S. M. Fatemi, S. Abedi, G. B. Gharehpetian, S. H. Hosseinian, and M.
Abedi, “Introducing a novel DC power flow method with reactive power
considerations,” IEEE Transactions on Power Systems, vol. 30, no. 6,
pp. 3012–3023, Nov. 2015.

[11] J. W. Yang, N. Zhang, C. Q. Kang, and Q. Xia, “A state-independent
linear power flow model with accurate estimation of voltage magnitude,”
IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3607–3617,
Sep. 2017.

[12] Y. Wang, N. Zhang, H. Li, J. W. Yang, and C. Q. Kang, “Linear three-
phase power flow for unbalanced active distribution networks with PV
nodes,” CSEE Journal of Power and Energy Systems, vol. 3, no. 3, pp.
321–324, Sep. 2017.

[13] Y. X. Liu, N. Zhang, Y. Wang, J. W. Yang, and C. Q. Kang, “Data-driven
power flow linearization: a regression approach,” IEEE Transactions on
Smart Grid, vol. 10, no. 3, pp. 2569–2580, May 2019.

[14] M. Hohmann, J. Warrington, and J. Lygeros, “Optimal linearizations of
power systems with uncertain supply and demand,” IEEE Transactions
on Power Systems, vol. 34, no. 2, pp. 1504–1512, Mar. 2019.

[15] S. Bahrami and V. W. S. Wong, “Security-constrained unit commitment
for AC-DC grids with generation and load uncertainty,” IEEE Transac-
tions on Power Systems, vol. 33, no. 3, pp. 2717–2732, May 2018.



JIANG et al.: DECOUPLED PIECEWISE LINEAR POWER FLOW AND ITS APPLICATION TO UNDER VOLTAGE LOAD SHEDDING 985

[16] O. W. Akinbode and K. W. Hedman, “Fictitious losses in the DCOPF
with a piecewise linear approximation of losses,” in Proceedings of 2013
IEEE Power & Energy Society General Meeting, Vancouver, 2013, pp.
1–5.

[17] Q. P. Wang, Z. Q. Bo, Y. K. Zhao, X. W. Ma, M. Zhang, H. Zheng,
and L. Wang , “Integrated wide area protection and control for power
grid security,” CSEE Journal of Power and Energy Systems, vol. 5, no.
2, pp. 206–214, Jun. 2019.

[18] J. H. Wang, H. Y. Zhang, and Y. Zhou, “Intelligent under frequency and
under voltage load shedding method based on the active participation of
smart appliances,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp.
353–361, Jan. 2017.

[19] I. Kaffashan and T. Amraee, “Probabilistic under voltage load shedding
using point estimate method,” IET Generation, Transmission & Distri-
bution, vol. 9, no. 15, pp. 2234–2244, Nov. 2015.

[20] L. Wu, “A tighter piecewise linear approximation of quadratic cost
curves for unit commitment problems,” IEEE Transactions on Power
Systems, vol. 26, no. 4, pp. 2581–2583, Nov. 2011.

[21] R. J. Avalos, C. A. Canizares, F. Milano, and A. J. Conejo, “Equivalency
of continuation and optimization methods to determine saddle-node and
limit-induced bifurcations in power systems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 56, no. 1, pp. 210–223,
Jan. 2009.

[22] X. Chen, W. C. Wu, and B. M. Zhang, “Robust restoration method for
active distribution networks,” IEEE Transactions on Power Systems, vol.
31, no. 5, pp. 4005–4015, Sep. 2016.

[23] GUROBI Website, 2019. [Online]. Available: https://www.gurobi.com.
[24] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-

POWER: steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, no. 1, pp. 12–19, Feb. 2011.
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