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Demand-side Response Strategy of Multi-microgrids
Based on an Improved Co-evolution Algorithm
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Abstract—An effective modeling and optimization method,
which takes into account source-load-storage coordination, and
full-time collaborative optimization within and outside micro-
grids, is introduced. Considering the operational conditions of
various resources and their interactions, an energy management
model for microgrids is proposed aiming at maximization of
renewable energy utilization and minimization of overall system
costs. The model is suitable for both real-time pricing and
time-of-use mechanisms. In microgrids, demand response and
economic energy storage dispatch are introduced to enhance self-
coordination and self-balancing ability among different resources.
Depending on whether there is still an imbalance between supply
and demand after coordination within a microgrid, trade between
it and external microgrids are optimized in a orderly manner by
considering different transaction prices and usage rights. Finally,
three different schemes are designed, where the Lagrangian
multiplier method as well as a co-evolution algorithm are used
to solve and analyze different examples, verifying the reliability
and validity of the method proposed in this paper.

Index Terms—Co-evolution, demand-side response, multi-
microgrids, source-load-storage coordination.

I. INTRODUCTION

IN recent years, with the rapid development of smart grids
and the Energy Internet, the number of microgrids in the

distribution network increased. The power generation and con-
sumption of each microgrid only considers the maximization
of its own interests, ignoring the overall economy. However,
the traditional single microgrid only transmits power to the
distribution network through medium-voltage lines. Due to
the geographical distance between the two, large transmission
losses often occur. For this reason, the adjacent microgrids
are interconnected to form a microgrid cluster system [1]–[3].
A smooth implementation of microgrids rely on the effective
coordination and unification of information and communica-
tion, power dispatching, and demand response [4]–[6]. As the
most basic optimization and dispatch unit of the microgrid,
it has attracted widespread attention from both academia and
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industry since its first proposal. Reference [7] showed that the
microgrid represents an effective strategy towards large-scale
grid-connected transmission and comprehensive utilization of
renewable energy. In addition, the group provided a model for
the joint dispatch and optimization of both the microgrid and
electric vehicles for a grid-connected mode. References [8]
and [9] proposed that renewable energy and load-fluctuations
can be effectively suppressed by using different energy-storage
units. Therefore, an energy management and optimization
model for the microgrid was established. In [10], considering
the role of wind, solar and storage in the management and
optimization process of the microgrid, a model was estab-
lished with the objective of minimizing the system invest-
ment and fuel cost and maximizing the utilization rate of
renewable energy. The model was solved by the improved
particle swarm optimization method. References [11]–[13]
provided a modeling and optimization method for household
microgrids with high renewable-energy-penetration rates. This
was done to facilitate the local consumption of renewable
energy, online energy-management of the microgrid, and the
early recovery of user capital. Reference [14] introduced a
demand-response mechanism into the energy management and
optimal scheduling of a microgrid. The group promotes the
close interaction between energy producers and consumers
via economic stimulus programs to ensure effective system-
operations during the process of buying and selling electricity.

Even though there is an energy-management problem in
the collaborative optimization for microgrids with a high
renewable-energy penetration rate, current studies rarely con-
sider microgrid internal and external collaborative scheduling
problems and the interaction order with neighborhood/non-
neighborhood microgrids and the public grid [15]. In [16], an
optimal operational model of microgrids based on a multi-
agent system was proposed. The purpose is to save the
total energy cost expressed as the sum of locally observable
convex functions. However, the operating cost of every DG
in the microgrid is simplified to be a quadratic function,
and the operating characteristics of various DGs are not
considered. In [17], aiming at the active distribution network
with multi-microgrids access, a centralized coordinated opti-
mization model for multi-microgrids at three periods of peak,
normal and low valley generation was established, and solved
by the particle swarm algorithm. The closed-loop scheduling
scheme proposed in [18] adopts a stochastic model predictive
control strategy, which can avoid the forecast errors caused by
load demand, real-time electricity prices and high-penetration
distributed power sources in the open-loop strategy. With the
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goal of reducing total system cost, a distributed microgrid
operation scheduling strategy was proposed in paper [19], and
an improved particle swarm optimization method was used to
solve the scheduling problem. However, the impact of different
types of load and electricity price strategies on the optimal
dispatch were not considered.

This paper proposes a modeling and optimization method
that considers source, load, storage, and full-time collabo-
rative optimization within and outside the microgrid. The
different distributed generators, load, energy storage units in
the microgrid and their directly connected external grid is
regarded as a dispatchable resource in the optimization stage,
and the characteristics of every schedulable resource are fully
considered and the interaction relationship between each other
is established. The most significant novelties of this paper are:

1) Based on the principle of maximizing the utilization
of renewable energy and minimizing the operational cost of
the system, a demand response mechanism is introduced to
construct an optimal scheduling model suitable for real-time
price and time of use price in multiple scenarios.

2) Lagrange multiplier and co-evolution algorithms are
combined in order to solve the model. The former is used
to transform constrained optimization problems, and the latter
is used to solve unconstrained optimization problems.

3) This paper proposes an optimization strategy suitable
for internal autonomy and inter network cooperation, in order
to establish a transaction mechanism, so that the priority of
neighbor/non-neighbor microgrids is higher than that of the
public grid.

The rest of the paper is structured as follows: Section II
analyzes the system architecture of multi-microgrids in de-
tail. Section III primarily discusses the energy management
optimization model of microgrids and its solving strategy.
In Section IV, the optimization results of three different
schemes are compared. The main findings and conclusions
are summarized in Section V.

II. MULTI-MICROGRIDS MODEL

Each microgrid is composed of renewable energy, dis-
tributed power generation, an energy storage device and cus-
tomer load, connected to the public grid for operations, and
connected with other microgrids through energy channels, and
can support each other with electrical energy. Each microgrid
has an energy management center to regulate and control the
operation of the internal unit, which can conduct information
exchange and energy exchange with the upper-level grid,
or coordinate and assist with neighboring microgrids. More
specifically, microgrids can be characterized by the following
features [20]–[22]:

1) Composition: Microgrids can be divided into production
capacity, energy consumption, and hybrid nodes, according
to the energy richness after multi-period node interaction.
Among them, the production and energy-consumption nodes,
respectively, refer to microgrids that only output or input
energy to the outside. Hybrid nodes can experience both
scenarios.

2) Operating mode: Microgrids can enable the direct trading
of electricity with the public grid via grid-connected opera-

tions, alternatively, and they can realize self-balance through
self-regulation when off-grid.

3) Scheduling strategy: In the process of energy optimization
management, each micro-grid can regulate and control the
operation of the internal unit, and can conduct information
exchange and energy exchange with the external public grid,
or coordinate and assist with neighboring micro-grids.

As shown in Fig. 1, the public grid and microgrids are
different stakeholders and have their own operational goals.
It is necessary to conduct an interest game to determine the
exchange power of the tie line. There is a certain mutual
assistance relationship between each microgrid, which can
complement each other according to its needs to a certain
extent, thus improving system operating efficiency and eco-
nomics of its own operations.

In each microgrid, the energy dispatch and optimization cen-
ter are responsible for the completion of the following tasks:
capacity aggregation, energy distribution, and supply/demand
balancing. More specifically, the process consists of using the
communication network to transmit the following: monitored
source and network load, storage forecast, and response in-
formation. The transmission is done after the analysis and
decision processing of dispatchable instructions had been
formulated. In other words, what is used are primarily the
production-units that are based on wind, natural gas, and
photovoltaics, as well as the critical loads, interruptible loads,
and energy-storage units. The demands of energy-consuming
units and regulating units are collected separately, while the
matching of production with energy demands is realized
through the distribution and balance units.

III. METHODOLOGY

A. Objective Function

The objective function of energy management of microgrids
is to minimize the operational costs in the whole scheduling
cycle T as:

Ctotal =

T∑
t=1

(CDG(t) + Cload(t) + CES(t) + Cgrid(t)) (1)

Among them, Ctotal is the total operational cost of the sys-
tem; CDG(t), Cload(t), CES(t) and Cgrid(t) are the operational
costs of each distributed generator capacity, load demand,
energy storage unit and interaction with the external grid in
the period t.
1) Operating Cost for Generation Units

The main distributed generation units in a microgrid include
the micro-gas turbine, photovoltaic power, and wind power.
The operational cost of the micro-gas turbine is a quadratic
function, while the operational cost of wind power and pv
power is a quadratic function. They are expressed as follows:

CDG(t)=CMT(t) + Cwind(t) + Cpv(t) (2)

CMT(t)=

N∑
i=1

[
(αMT,i(PMT,i(t))

2+βMT,iPMT,i(t)+γMT,i
]

(3)

Cwind(t)=
M∑
i=1

(αwind,iPwind,i(t) + βwind,i) (4)
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Fig. 1. Framework of multi-microgrids.

Cpv(t)=

S∑
i=1

(αpv,iPpv,i(t) + βpv,i) (5)

where CMT(t), Cwind(t) and Cpv (t) are the operating cost of
the micro-gas turbine, wind power and photovoltaic power unit
at period t, respectively; N , M and S are the number of
various distributed power sources; αMT,i, βMT,i, γMT,i are the
cost coefficients of the micro gas turbine; αwind,i, βwind,i are
the cost coefficients of wind power; αpv,i, βpv,i are the cost
coefficients of photovoltaic power.
2) Load Demand Cost

The loads in a microgrid are classified into critical load and
flexible load according to dispatchable conditions, and their
operating costs are determined by the actual load demand and
corresponding tariff rates.

Cload(t) = Ccrit(t) + Cflex(t) (6)

Ccriti(t) = −
n∑

i=1

[Pcrit,i(t)ηcrit,i(t)] (7)

Cflex(t) =
m∑
i=1

[
− Pflex,i(t) · (1− λflex,i(t)) · lb price(t)+

Pflex,i(t)λflex,i(t)ηflex,i(t)
]

(8)

where Ccrit(t) and Cflex(t) are the total operating costs of the
critical load and the flexible load at time t respectively; n and
m are the number of corresponding loads; Pcriti,i(t), Pflex,i(t)
are the critical and flexible load demand at time t, respectively;
lb price(t) is the electricity base price; ηcrit,i(t), ηflex,i(t) are the
payable rate of the critical load and the compensation rate of
the flexible load, respectively.

3) Operating Cost of Energy-storage Unit
The operating cost of the energy storage unit primarily

includes charging costs, discharge benefits as well as charg-
ing/discharging switching costs.

CES,i(T ) =

T∑
t=1

(Cchar,i(t)− Cdis,i(t)) + Cswitch,i(T ) (9)

Cchar,i(t) = Pchar,i(t)lb price (10)

Cdis,i(t) = Pdis,i(t)ηdis,i(t)lb price(t) (11)

Cswitch,i(T ) = (Nchar,i(T ) +Ndis,i(T ))ηswitch,i(t) (12)

where Cswitch,i(T ), Nchar,i(T ), Ndis,i(T ) are the switch state
cost, charge to discharge and discharge to charge times at
period T ; Cchar,i(t), Cdis,i(t) are the charging fee and the
discharging income at time t, respectively; ηdis,i(t) is the
discharge rate.
4) Interaction Costs with External Grid

The cost of interacting with the external grid primarily
includes two parts: purchase and sale.

Cgrid(t) = Cneib(t) + Cnon neib(t) + Cpublic(t) (13)

Cneib(t) =

p∑
i=1

[(
P buy

neib,i(t)ηneib, buy(t)−

P sell
neib,i(t)ηneib,sell(t)

)
· lb price

]
(14)

Cnon neib(t) =

q∑
i=1

[(
P buy

non neib,i(t)ηnon neib, buy(t)−

P sell
non neib,i(t)ηnon neib, sell(t)

)
· lb price

]
(15)
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Cpublic(t) =
k∑

i=1

[(
P buy

public,i(t)ηpublic, buy(t)−

P sell
public,i(t)ηpublic, sell(t)

)
· lb price

]
(16)

where Cgrid(t), Cneib(t), Cnon neib(t), Cpublic(t) are the inter-
action costs between the microgrid and all external direct-
connected grids, neighboring/non-neighboring microgrids, and
public grids, respectively, at time t; p and q are the number
of neighboring/non-neighboring microgrids respectively.

B. Constraints

1) Capacity-unit Constraints
All DG capacity units need to meet the constraints of unit

output power during operations, as follows:

PDG,i,min ⩽ PDG,i(t) ⩽ PDG,i,max (17)

P actual
DG,i (t) =



τ high
DG,iPDG,i(t),

if PDG,i(t) > µhigh
DG,iP

rated
DG,i(t)

τ low
DG,iPDG,i(t),

if PDG,i(t) ⩽ µlow
DG,iP

rated
DG,i(t)

τmiddle
DG,i PDG,i(t),

others

(18)

where PDG is the type of DG in the microgrid, including
the micro-gas turbine, wind power, and photovoltaic power;
P actual

DG,i (t), P
rated
DG,i(t) are the actual and rated value of the

DG output power, respectively; τ high
DG,i, τ

low
DG,i, τ

middle
DG,i are the

conversion coefficient of different levels between actual output
power and actual generation power, respectively.
2) Constraints of Load Demand

Load demand constraints are determined by the energy
consumption and load interruption ratio.

Pcrit,i,min ⩽ Pcrit,i(t) ⩽ Pcrit,i,max (19)

Pflex,i,min ⩽ Pflex,i(t) ⩽ Pflex,i,max (20)

λflex,i,min ⩽ λflex,i(t) ⩽ λflex,i,max (21)

where Pcrit,i,min, Pcrit,i,max, Pflex,i,min, Pflex,i,max are the min-
imum and maximum constraints of critical load and flexible
load demand, respectively; λflex,i,min, λflex,i,max are the mini-
mum and maximum constraints of the interruptible proportion
of the flexible load, respectively.
3) Energy-storage Unit Constraints

Pchar,i,min ⩽ Pchar,i(t) ⩽ Pchar,i,max (22)

Pdis,i,min ⩽ Pdis,i(t) ⩽ Pdis,i,max (23)

QES,min ⩽ QES,i(t) ⩽ QES,max (24)

QES,i(t+ 1) = QES,i(t) + Pchar,i(t)(1− ηchar,i(t))−
Pdis,i(t)/(1− ηdis,i(t))− Pself, dis,i(t) (25)

where Pchar,i(t), Pdis,i(t), Pself, dis,i(t) are the charging power,
discharging power and self-discharging power of energy stor-
age, respectively; QES,i,min and QES,i,max are the upper and
lower limits of energy storage capacity; ηdis,i(t) and ηchar,i(t)
are the discharge and charge loss rate.

4) Constraint of Tie-line Power with the External Grid
If the microgrid cannot meet the load demand through

self-regulation, it can interact with other neighboring, non-
neighboring microgrids or public grids for tie-line power. The
constraints of tie line power are as follows:

P buy
neib,i,min ⩽ P buy

neib,i(t) ⩽ P buy
neib,i,max (26)

P sell
neib,i,min(t) ⩽ P sell

neib,i(t) ⩽ P sell
neib,i,max (27)

P buy
non neib,i,min ⩽ P buy

non neib,i(t) ⩽ P buy
non neib,i,max (28)

P sell
non neib,i,min ⩽ P sell

non neib,i(t) ⩽ P sell
non neib,i,max (29)

P buy
public,i,min ⩽ P buy

public,i(t) ⩽ P buy
public,i,max (30)

P sell
public,i,min(t) ⩽ P sell

public,i(t) ⩽ P sell
public,i,max (31)

whereP buy
neib,i(t),P

sell
neib,i(t),P

buy
non neib,i(t),P

sell
non neib,i(t),P

buy
public,i(t),

P sell
public,i(t) are the tie-line power interaction between the micro-

grid and neighboring microgrids, non-neighboring microgrids,
and the public grid at time t.
5) Supply and Demand Balance Constraints

In the microgrid, distributed power generation, energy stor-
age discharge, and power purchase from neighbors and non-
neighborhoods, and external grids should be kept in line with
load demand, energy storage charging, and power sold from
neighbors and non-neighborhoods, and external grids.

Psup(t) = Pdem(t) (32)

where

Psup =

N∑
i=1

P actual
MT,i (t)+

M∑
i=1

P actual
wind,i(t)+

S∑
i=1

P actual
pv,i (t) +

L∑
i=1

Pdis,i(t)+

p∑
i=1

P buy
neib,i(t) +

q∑
i=1

P buy
non neib,i(t) + P buy

public,i(t) (33)

Pdem =

n∑
i=1

Pcrit,i(t) +

m∑
i=1

Pflex,i(t) +

L∑
i=1

Pchar,i(t)+

m∑
i=1

P sell
nei,i(t) +

q∑
i=1

P sell
non neib,i(t)+P

sell
public,i(t) (34)

C. Model-solving Method

In this paper, the Lagrangian multiplier method and co-
evolution algorithm are combined to solve the model. The
former transforms the constrained optimization problem into
an unconstrained optimization problem, while the latter solves
the transformed unconstrained optimization problem.

The Lagrange multiplier method to solve the constrained
optimization problem is expressed as follows [23]–[25]:

min f(x1, x2, x3, . . . , xn) (35)

s.t.

{
pi(x1, x2, x3, . . . , xn) ⩽ 0 i = 1, 2, . . . , α

qj(x1, x2, x3, . . . , xn) = 0 j = 1, 2, . . . , β
(36)

where x = (x1, x2, x3, . . . , xn) are the decision variables to be
optimized; f(x) represents the objective function; pi(x) ⩽ 0,
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qj(x) = 0 represent the i-th inequality constraint and the j-th
equality constraint, respectively.

The Lagrange multiplier method transforms the constrained
optimization problem into an unconstrained problem by intro-
ducing a utility function, and continuously updates the utility
function in the optimization iteration, so as to obtain the
optimal solution of the problem.

L(u, v, ω)=f(x)+
1

2ω

I∑
i=1

([
max(0, ui+ωpi(x)

]2
−u2i

)
+

I∑
j=1

vjhj(x) +
ω

2

I∑
j=1

q2j (x) (37)

The correction formula of the multiplier is:

vj,k+1 = vj,k + ωqj(x1, x2, . . . , xn)k, j = 1, 2, . . . , I (38)

ui,k+1 = max
[
0, ui,k + ωpi(x1, x2, . . . , xn)k

]
,

i = 1, 2, . . . ,m (39)

The judgment function is:

ψk =

√√√√√


I∑
j=1

q2j,k(x) +
m∑
i=1

max
[
−pi,k(x),

ui,k
ω

] (40)

When ψk = ψ(xk) < ε, the iteration ends.
Next, the self-adaptive differential evolution algorithm is

used to solve the unconstrained optimization problem, which
is expressed as follows:

1) Mutation: The parent individual XG
i performs the muta-

tion operation to produce the mutated individual V G
i .

V G
i = XG

r1 + F · (XG
r2 −XG

r3) (41)

V G
i = XG

best + F · (XG
r1 −XG

r2) (42)

where G is the evolutionary generations; XG
r1, XG

r2, XG
r3 are

random individuals; XG
best is the optimal individual, and the

variation factor is F ∈ (0, 1).
2) Crossover: The parent individual XG

i and the mutant
individual V G

i perform crossover operations to produce the
experimental individual UG

i .

UG
i,j =

{
V G
i,j if randi,j(0, 1) ⩽ κ or j = jrand

XG
i,j otherwise

(43)

where the subscript j represents the jth dimension of the
individual UG

i , and cross factor κ ∈ (0, 1).
3) Selection:
The parent individual XG

i and the experimental individual
UG
i compete for survival by comparing the fitness value to

produce the offspring individual XG+1
i .

XG+1
i =

{
UG
i if f(UG

i ) ⩽ f(XG
i )

XG+1
i otherwise

(44)
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Fig. 2. Optimal scheduling method.

D. Energy Trading Strategy

The energy trading strategy of the microgrid is shown in
Fig. 2. Regardless of whether it is buying or selling electricity,
the order of microgrid transactions is to first meet its internal
needs, then its neighborhood, non-neighbor microgrid, and
finally the public grid.

When self-balancing cannot be achieved through self-
coordination, the microgrid with low capacity will give priority
to buying electricity from their neighboring microgrid, and
the price of electricity is slightly higher than the transaction
electricity price of the microgrid inside, but lower than buy-
ing from their non-neighboring microgrid and public grid.
In contrast, the microgrid with sufficient capacity will give
priority to selling electricity to their neighboring microgrid
and the selling price is slightly lower than the transaction
electricity price of the microgrid inside, but higher than the
price of selling electricity to their non-neighboring microgrid
and public grid.

IV. CASE STUDY

A. Parameter Settings

The configuration parameters for each component of the
microgrid selected for this article are shown in Tables I–III
and Fig. 3.
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TABLE I
DISTRIBUTED ENERGY PARAMETERS

Types NG1 NG2 NG3 WT1 WT2 PV1 PV2
Rated/kW 210 215 220 120 130 95 100

TABLE II
ENERGY-STORAGE PARAMETERS

Initial/kW Rated/kW Max/kW Efficiency/% Self-discharge/kWh
45 105 60 97.3 0.005

TABLE III
NETWORKS PARAMETERS

Types Buy/sell rates Interaction/kW
Adjacent 1.1/0.86 [−60, 60]
Non-adjacent 1.2/0.8 [−60, 60]
Public grid 1.3/0.75 Unlimited

B. Test Scheme Design

Depending on whether a demand response and direct con-
nection with the same-level microgrid are considered, three
typical application-schemes are established. In addition, time-
sharing/real-time electricity prices (Fig. 4) are used to compare
and analyze the optimization results with different schemes,
which makes it possible to verify the reliability and validity
of the method proposed in this paper. All tests are for 24 hours,
each of which is a 1 hour increment.
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Fig. 4. Time-of-use price and real-time price during the demand response
mode.

Scheme 1: Source-load-public grid direct-connection mode,
considering the order of energy interaction within and outside
the microgrid. Directly exchanged energy with the public

grid occurs as needed. This means giving priority to satisfy
the supply/demand needs of the grid, while any excess or
insufficient parts are directly connected. As a result, the energy
exchange with the public grid is satisfactory.

Scheme 2: Direct-connection mode with neighboring/non-
neighboring microgrids at the same level. The redundant or
insufficient demand of the microgrid will interact with its
neighboring and non-neighboring microgrids. If there is still
a supply-demand gap after the interaction, suitable interac-
tion/exchange with the public grid occurs.

Scheme 3: Demand-response mode. Based on Scheme 2, the
demand-response mechanism is introduced into the energy-
interaction process of the network. By adjusting the energy
production for each controllable production-unit in the net-
work, the charge/discharge status, power, and the interruption
ratio of the interruptible load are enabled.

C. Comparison of Different Schemes in Time-of-use Price and
Real-time Price Scenarios

The results for the above three schemes are shown in Figs. 5,
6, and 7, respectively, in which the positive value is the
microgrid purchase power and expense from the public grid,
while the microgrid sell power and profit are the negative
values.
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Fig. 5. Total energy consumption for the three investigated schemes.

In Fig. 5, the load demand during periods of high electricity
prices is reduced to varying degrees compared with schemes 1
and 2. Because under the demand response mechanism, each
energy-consuming unit is willing to interrupt part of the load
in the corresponding period to obtain corresponding economic
or electricity price compensation.

In Fig. 6(a) and Fig. 7(a), compared with schemes 1 and 2,
the purchase of electricity from the public grid and external
microgrid has different degrees of reduction, especially during
periods of high electricity prices in scheme 3; In scheme 2,
the microgrid purchase of electricity from the public grid is
greatly reduced compared to that in scheme 1.

In Figs. 6(b) and 7(b), scheme 1 has the worst economic
dispatch effect; scheme 2 has a relatively small cumulative
cost value during time period T due to preferential interaction
with the neighboring/non-neighborhood microgrids; In scheme
3, there is little interaction with the public grid due to the
introduction of the demand response mechanism.

Table IV shows the results of the total operating costs of
the microgrids during the time period T , that is, scheme 3 is
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Fig. 6. Comparison of three schemes under the time-of-use price scenario.
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Fig. 7. Comparison of three schemes under the real time price scenario.

the best, scheme 2 is the second best, and scheme 1 is the
worst.

TABLE IV
COMPARISON OF TOTAL SYSTEM COSTS UNDER THE THREE SCHEMES

Schemes Time-of-use price ($) Real-time price ($)
Scheme I 352.57 348.6
Scheme II 335.9 330.5
Scheme III 328.6 320.7

V. CONCLUSION

Considering full-time collaborative optimization within and
outside microgrids, this paper proposes an energy management
model of microgrids, and uses Lagrangian multiplier and co-
evolution algorithms for a comprehensive solution. Within the
network, the demand response mechanism and the economic
optimization of energy storage units are introduced to realize
the self-regulation, and reduce the number of power purchases
from the external network. Outside the network, if the micro-
grid cannot achieve self-coordination, it will give priority to
energy interaction with neighboring/non-neighboring micro-
grid and then the public grid. This method provides a new
potential for further research on the hierarchical coordination
of microgrids.

During 7:00–10:00 and 19:00–22:00, when the electricity
price is high, in the demand response mode of scheme 3, the
load consumption is reduced by about 60 kW and 30 kW
compared with schemes 1 and 2, respectively. The demand
response mode of scheme 3 reduces the power purchase from
the public grid and external grid by about 100 kW and 50 kW
compared with schemes 1 and 2, especially in the period
of high electricity prices from 17:00 to 21:00. In the entire
scheduling period, the total cost of the demand response mode
in the time-of-use electricity price and the real-time electricity
price is $ 328.6 and $ 320.7, respectively, which are smaller
than schemes 1 and 2, and scheme 1 has the highest cost.
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