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Abstract—Power systems around the world have been regis-
tering a degenerating inertial response in view of the growth
of inverter-based resources along with the withdrawal of con-
ventional coal units. Therefore, there is a need for swift fre-
quency support and its control, preferably by means of power
electronic-interfaced storage devices, owing to their beneficial
capabilities. Despite being particularly efficient, pragmatically,
the traditional model-based non-linear control techniques are
not highly popular in power system control design, primarily
due to the complications faced in obtaining accurately suitable
models for certain power system components. Lately, the model-
free Koopman operator-based model predictive control (KMPC)
has proven to be highly conducive for data-driven non-linear
control design. The principle behind KMPC is to change the
coordinates in a manner to get an approximately linear model,
which can then be controlled using a linear model predictive
control. In this study, we employed time-delayed embedding of
measurements to reconstruct a new set of preferable coordinates,
thereby suggesting an approach for finding the optimal number
of time lags and the embedding dimensions which are the
key parameters of this algorithm. The efficacy of this KMPC
framework is established by adopting a decentralized frequency
control problem through a decoupled synchronous machine
system, which we proposed for both the Kundur two-area system
as well as the IEEE 39-bus test system.

Index Terms—False nearest neighbors, koopman operator,
model predictive control, non-linear control, time-delayed
embedding.

I. INTRODUCTION

THE mounting implementation of inverter-based resources
(IBRs) in worldwide power systems of late has resulted in

a deteriorating tendency in overall system inertia [1], [2] giving
rise to critical reliability concerns, especially for transient and
frequency stability. Although frequency support can be derived
from the IBRs by allotting some headroom in the real power
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output, this comes at a cost of underutilizing the available
resources [3]. Nevertheless, an extensive amount of research
has been undertaken on the exploration of grid support func-
tionalities of IBRs. Shekhar et al. [4] operated PV (Pho-
tovoltaic) at an off-MPPT (Maximum Power Point Tracker)
output aiming to retain reserved power to regulate frequency.
The investigations in [1], [5], and [6] evaluated the ability
of inertia emulation via power electronic devices. Adopting
traditional energy storage systems (ESSs) for dampening the
frequency oscillation tends to be the most widely used tactic
for frequency regulation [7]. In our previous study [8], we
proposed that instead of decommissioning the entire coal plant,
the rotating mass of the decommissioned generator interfaced
with the grid by means of a back-to-back converter, referred
to as decoupled synchronous machine system (DSMS), can be
employed as an energy storage unit to emulate the inertia with
the help of an external frequency controller.

One of the major drawbacks in most of the current studies
in this domain is that they largely depend on linearizing
the system model in a tiny region surrounding a certain
fixed operating point, followed by a linear control design.
Unfortunately, such a structure does not ensure satisfactory
performance when dealing with large frequency disturbances.
Although there has been some research on the application of
non-linear control design techniques to the stability control
problem [1], [9], the availability of accurate non-linear models
is highly challenging, thereby validating the need for data-
driven non-linear control techniques [8], [10]. The Koopman
operator-based control framework is purely data-driven and
extremely simple to apply. It has shown incredible potential in
the control of non-linear systems [11]–[15]. Koopman operator
is an infinite-dimensional linear operator that can entirely
unfold the dynamics of the underlying non-linear systems and
take them forward in a linear manner [11]. The fundamental
outline of Koopman operator theory is to effectively embed
(or map) the original non-linear state space onto a higher
dimensional space where its dynamics appear linear in the
higher state space, followed by designing a linear control.
Another major hurdle affecting traditional non-linear control
design methods is the limits on input controls and states that
the control design needs to consider. Typically, model predic-
tive control (MPC) comes across as one of the few suitable
methods in terms of constraints, since it avoids solving the
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tricky Hamiltonian Jacobi-Bellman differential equation of the
system with constraints, using the repeated solution of a finite-
window optimization problem [16]–[18]. Facilitated by the
Koopman operator, the original non-linear system embedded in
the high-dimensional state space can be effectually controlled
by a linear MPC.

An outline for the Koopman operator approximation and
its application with MPC was proposed by Mezic et al. [11],
which is applicable to a system where only input and output
measurements are available. In such scenarios, internal states
of the power system are mostly unobservable and immea-
surable, which makes the forming of state space equations
a hugely challenging task. Such a framework has been suc-
cessfully applied to the DC motor speed control [11] as well
as the complex non-linear flow control problems [12]. The
applications of Koopman operator for the control of robotic
systems under simulation and experimental environments were
further analyzed in [13] and [14]. Hanke et al. applied the
Koopman operator-based model predictive control (KMPC) in
the field of power electronics, which is technically the first
practical KMPC application of its kind [13]. The proposed
method performed equivalent to the traditional model-based
approaches. Furthermore, the application of KMPC was inves-
tigated for the transient stabilization problem for a non-linear
power system model [10]. In [10], the average computational
time for the control signal was approximately 10 ms, indicating
the possibility of a real-time implementation in power system
transient control. The concept of KMPC framework was also
successfully applied to stabilize the power system frequency
oscillation utilizing the proposed DSMS device in our previous
study [8].

The prerequisite to constructing an approximation to Koop-
man operator tends to be the preference of embedding from the
original non-linear state space to the new higher dimensional
one, which simultaneously accomplishes linearization. From
this perspective, Brunton illustrated time-delayed embedding
to be a decent mapping option, which essentially is inspired
by the classical Takens’ theorem [19], [20]. Simply put,
the inputs and outputs observed over a period of time can
serve as the new coordinates. Noticeably, the two instrumental
parameters that need to be tuned suitably in order to achieve
fast and effective control are sampling time, denoted by τ , and
embedding dimension DE, representing the number of samples
to be collected (going back in time).

This study primarily contributes to this domain by proposing
a systematic method to optimize the instrumental time-delayed
embedding parameters for the generation of Koopman operator
and determining its success in making the KMPC frame-
work more vigorously efficient in terms of frequency control
against the various power system conditions, such as load and
topology changes. This study illustrates how a KMPC-based
frequency controller is capable of minimizing the frequency
oscillation as well as amplify the critical clearing time by about
3 cycles in the IEEE 39-bus system. The proposed KMPC-
based control follows a simple implementation process. It is
model-free, completely data-driven, and can be trained offline.
Once implemented, it can attain the same computational speed
as the linear MPC methods. Yet, it upholds the possibility of

integration with the traditional control strategies because it can
convert a non-linear problem to a linear domain.

The rest of the paper is organized as follows: Section II pro-
vides the theoretical basis of the Koopman operator. Section III
elucidates the algorithms for determining optimal embedding
parameters of the input-output system. Section IV describes
the mechanism of KMPC. Section V establishes the efficacy of
the proposed framework with an application to the frequency
control device DSMS in IEEE 39-bus system. Section VI
presents the conclusions as well as the potential future work.

II. KOOPMAN OPERATOR THEORY

A. Koopman Operator for Input-output System via
Time-delayed Embedding

Consider the typical input-output system,

xk+1 = f(xk, uk),

yk = h(xk) (1)

where xk is the system state, uk is the control input, yk is
the measured output, and k is the timestamp. This discrete-
time representation holds the advantage of being more realistic
since the collected data from the real-world systems is usually
derived in the form of discrete-time sampling.

In general, the states appear to be immeasurable while only
certain functions of the states can be quantified. Furthermore,
having a linear representation of the input-output dynamics
simplifies the control design step to a great extent. Hence, in
order to find the linear approximation of (1) with input-output
data pairs, we firstly need to define the measurable states of
the input-output system. This paper assumes the time-delayed
coordinates as the states of (1), because the dynamics of xk
are unknown and the utilization of time-delayed measurements
is classical in system identification theory [11]. The next
section provides a comprehensive explanation for why the
time-delayed coordinate is chosen. Let ζDE,τ,k denote the
time-delayed coordinates, i.e., y and u measured over a time
window as follows:

ζDE,τ,k =
[
yT
k , y

T
k−τ , . . . , y

T
k−τndy

, uT
k−1,

uT
k−τ , . . . , u

T
k−τndu

]T
(2)

where T represents the matrix transformation, ndy and ndu

represent the embedding dimensions of the output and input,
respectively, DE = [ndu, ndy], and τ is the sampling time, i.e.,
the time gap between two successive measurements.

Next, in conformity with [20], the new states at time k
denoted by zk are a dictionary of functions g acting on to
ζDE,τ,k

zk = g(ζDE,τ,k) (3)

where g is the user-defined observable (lifting) function, which
forms the infinite-dimensional linear space. In this paper, g is
chosen as:

g(ζDE,τ,k) =
[
ζDE,τ,k, ζDE,τ,k(1) 2, constant

]T
(4)
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where ζDE,τ,k(1) represents the embedded coordinate with
the most recent input-output measurements, i.e., ζDE,τ,k(1) =
[yT
k , u

T
k−1]. The constant is chosen to be 1 in this paper.

Koopman operator κ = [A,B]
T characterizes the trajecto-

ries linearly in the new state space z spanned by observable
g, i.e.,

zk+1 = Azk + Buk (5)

It is worth noting that uk in the second term Buk of (5) is
not lifted by g in order to preserve invertibility between inputs
of the transformed and the original system [11].

B. Solution of Koopman Operator

An approximation of the Koopman operator (A,B matrix
pair) for KMPC is acquired by solving the following linear
regression problem:

Xlift = [g(ζDE,τ,0), . . . , g(ζDE,τ,N−1)]

Ylift = [g(ζDE,τ,1), . . . , g(ζDE,τ,N )] (6)

where N is the total number of samples. By resolving the
optimization problem as given in (7), the system in (5) is
formed.

min
A′,B′

‖Ylift −AXlift −BU‖F (7)

where || · ||F denotes the Frobenius or the Euclidean norm.
U = [u1, . . . , uN ] represents the matrix formed with the input
signals. The numerical solution of (7) is given in [11].

III. OPTIMAL CHOICE OF TIME-DELAYED
EMBEDDING PARAMETERS

A. Takens’ Theorem and Extension to Input-output Systems

Time-delayed embedding essentially aims to unfold the
underlying unknown n-dimensional non-linear dynamics by
undertaking sequential observation of measurements. Takens’
theorem, the fundamental principle behind time-delayed em-
bedding, ensures the authentic reconstruction of the dynamics
of a system under certain conditions [19]. It was extended
to the input-output system by reconstructing the time-delayed
coordinates given in (2) using the time series data [21]. It was
hypothesized by Casdagli [21] that the following relationship
holds true:

yk+1 = F (ζDE,τ,k) =

F

([
yT
k , y

T
k−τ , . . . , y

T
k−τndy

, uT
k−1, u

T
k−τ , . . . , u

T
k−τndu

]T
)

(8)

The results from [22], [23] essentially validate Casdagli’s
conjecture for embedding such systems. Nonetheless, con-
structing a time-delayed coordinate has two instrumental pre-
requisites: The delay time τ and the embedding dimension DE.
Section III. B introduces the algorithm adopted for determining
τ , i.e., the time gap between two successive measurements.
Section III. C presents the algorithm applied for calculating
the optimal embedding dimension DE, which is required to
reconstruct the system. Figure 1 illustrates the procedure of
constructing the time-delayed coordinate ζDE,τ,k. This study

aims at determining these parameters for designing a fast and
effective KMPC method for the frequency control problem,
using the previously proposed DSMS system [8].

Collect
measurements

Calculate
delay time τ

via AMI

Calculate
embedding

dimension DE
via FNN

Form time-
delayed

coordinate
ζDE,k,τ

Apply

τ and DE

Fig. 1. Procedure of constructing ζDE,τ,k .

B. Auto Mutual Information

To exemplify the importance of the delay time τ , a simple
linear system y = sin(2π60t) is selected in this section. Ac-
cording to the Nyquist theorem, a sampling rate of 2 × 60 Hz
is sufficient to reconstruct the trajectory and thereby, a much
higher sampling rate can be obtained. For a non-linear system,
in order to obtain the accurate value of delay time, Fraser and
Swinney proposed a method to compute the time gap between
the points such that the delayed coordinates are as uncorrelated
as possible [24]. In other words, they developed a way to
quantify the dependence between the original time series data
yk and its time-shifted version yk+τ . This dependence is
named as Auto Mutual Information [24] given by:

I(yk, yk+τ ) =
∑
i,j

pij(τ) log

(
pij(τ)

pipj

)
, k = 1, . . . , N (9)

where pi is the probability that yk is in bin i of the histogram
drawn from the data points in y. pij(τ) is the probability that
yk is in bin i, while yk+τ is in bin j. pi and pij(τ) can be
obtained by using histcounts function in Matlab. The optimal
delay time τ is obtained at the first local minimum of Auto
Mutual Information curve or when the curve reaches its thresh-
old, defined as 1/e [25]. For the case of multidimensional
time series, i.e., for more than one measurement, the simplest
possible method referred to as uniform multivariate average
mutual information method [26] can be employed. The idea is
to present the mean of the delay time given by Auto Mutual
Information curves of all the variables as the uniform delay.
Vlachos and Kugiumtzis illustrated that by using this uniform
method, the reconstructed state space exhibits a comparable
quality to more complicated non-uniform multivariate meth-
ods [26]. In addition, depending upon the systems, several
other methods could be used, such as the minimum time delay
among all the variables, etc. [26].

C. Average False Nearest Neighbors

In the previous section, we obtained the sampling (delay)
time between two given measurements via Auto Mutual Infor-
mation algorithm. Now, this section presents the false nearest
neighbors algorithm that is used to calculate the number of
measurements needed to form the time-delayed coordinate,
i.e., the minimum dimension DE of the coordinate.

The principle behind the selection of these new state co-
ordinates is that in order to preserve all the properties of
the original dynamic system, the original states and the new
states should possess a diffeomorphism [27] between them
or simply put, differential invertible mapping. Since in the
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present study, we are mapping the original states onto a higher-
dimensional linear space, the mapping from the original to the
new space should serve as an embedding, i.e., there should
be a continuous invertible mapping occurring between the
original state space and its image in the new space. The
false nearest neighbors (FNN) algorithm [28] is considered a
standard method to determine the minimum time-delayed em-
bedding dimension. The reason being that with an insufficient
embedding dimension, the points that are not ‘neighbors’ in
the original phase space become ‘neighbors’ in the new space
as illustrated in a simple example in Fig. 2. The original state
space is a three-dimensional cylinder containing points A, B,
and C. In the insufficiently embedded two-dimensional space,
where point A, B, and C are projected onto point A′, B′, and
C′, respectively, point B′ will defectively be identified as the
nearest neighbor of point A′.

A C

B

B′A′ C′

Fig. 2. Example of FNN with insufficient and sufficient embedding.

However, FNN depends on two user-defined thresholds for
determining the true neighbors. The choice of the threshold
is subjective, which can lead to different embedding dimen-
sions [29]. A modified method referred to as average false
nearest neighbors was introduced by Cao so as to avoid the
above-mentioned subjective problem [29]. This algorithm was
proposed for the autonomous system, which can easily be
generalized to an input-output system [30]. Instead of using
user-defined thresholds to determine if the nearest neighbor of
each embedded point is true or false, Cao’s algorithm evaluates
E1(DE) defined in (11), which is the average of change in
distance between each point and its nearest neighbor after
increasing the embedding dimension from DE to DE + 1.
When DE reaches its optimal value, E1(DE) will cease further
variations.

More accurately, we first define the change of distance
between the embedded point ζDE,τ,k and its neighbor ζrDE,τ,k

going from dimension DE to DE + 1 as:

aDE,k =
||ζDE+1,τ,k − ζrDE+1,τ,k||
||ζDE,τ,k − ζrDE,τ,k

||
(10)

The average change of distances is defined as:

E1(DE) =
E(DE + 1)

E(DE)
(11)

where E(DE) is the mean of all aDE,k’s given by:

E(DE) =
1

N −max(ndy, ndu)

N−max(ndy,ndu)∑
k=0

aDE,k (12)

IV. KOOPMAN MODEL PREDICTIVE CONTROL USING
OPTIMAL TIME-DELAYED EMBEDDING

In section II, the non-linear system is transformed into a
linear system (5), which allows us to design the controller
using classical linear control methodologies. In this study,
MPC is adopted as the fundamental control algorithm. Yet, the
power system control is non-linear in essence, which creates
the non-convex problem, thereby posing challenges for its
numerical solution. To formulate the optimization problem in
a convex manner, [11] transforms the traditional non-linear
MPC problem into Koopman MPC (13), which principally is
a linear MPC without the loss of generality. In general, the
model in (5) is used to predict the system evolution at each
step k over the horizon with length Np, and then applied to the
optimization problem in (13) to resolve the optimal control u.

min
uk,zk

zT
Np
QNpzNp + qT

Np
zNp +

Np−1∑
k=0

zT
kQizk + uT

kRiui+

qT
kzk + rT

kuk

s.t. zk+1 = Azk + Buk, k = 0, . . . , Np − 1

yk = Czk

Ekzk + Fkuk 6 bk,

ENpzNp 6 bNp ,

z0 = g (ζDE,τ,0) (13)

where C is a linear mapping from the new state space variable
zk to the original system output yk. C = [I,0] after possible
reordering of zk. Qk and Rk denote the positive semi-definite
weighting matrices. Ek, Fk, and bk are the state and input
polyhedral constraints. (13) is transformed into a dense form
(14), such that the rapid computation can be performed using
quadratic programming (QP) solvers regardless of the size of
the lifting.

min
U∈RmNp

UTHUT + zT
0GU

subject to LU + Mz0 6 c

parameter z0 = g(xk)

U =
[
uT
0, . . . , u

T
Np−1

]T
(14)

where m is the dimension of input u. Refer [11] for the
explicit transformation and definitions of H , G, L, M , and
c. After it is transformed into (14), the formulation develops
independent of the size of the lifting space [10]–[12]. As
a result, within the same prediction window and with the
identical inputs and states, the computational cost of solving
(14) is comparable to that of solving a standard linear MPC.
More importantly, the matrices utilized in (14) are derived
from offline computation and hence, end up saving a lot of
computation time. On the other hand, conventional ways of
using MPC for non-linear systems requires the computation of
matrices at each step [11] and thus the process of resolution
tends to be substantially slower. These aforementioned details
allow the utilization of the existing incredibly efficient QP
solvers. In this study, structure-exploiting active-set QP solver
‘qpOASES’ [31] is utilized. Ferreau et al. demonstrates that
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the parametric active-set method is apt for applications that
require a priori knowledge [31]. This method speeds up the QP
solution and provides high accuracy as well. Ferreau et al. also
showed that qpOASES outperform other popular academic
and commercial QP solvers in small-to medium-scale convex
studies [31].

The proposed framework is summarized in Algorithm 1.
The construction of the KMPC framework is completed offline
employing a large set of offline simulation data. Hence, the
application of the KMPC method cannot be constrained by the
linearization process.

Algorithm 1: Computation of time-delay embedding
parameters for KMPC

1: Compute optimal τ∗ for input and output using (9).
Adopt the average τ for each variable.

2: for k = 0, 2, . . . , N do
3: for ndu = 1, . . . , Ndu and ndy = 1, τ , Ndy do
4: Construct delay embedding vector ζDE,τ,k

using (2)
5: Compute E1(DE) using (10) to (12)
6: Record D∗E = [n∗du, n

∗
dy] as minimum embedding

dimension once E1(DE) stops change. Otherwise,
go to 3.a.

7: end for
8: end for
9: Adopt D∗E and τ∗ as the embedding parameters and

solve (7) for A, B
10: Substitute A, B into KMPC (13). Solve (13) for u∗

and apply u∗(1) to the non-linear system at each step
of control.

V. CASE STUDY

A. DSMS Device

To test the efficiency of Algorithm I, the frequency regu-
lation device DSMS proposed in [8] is utilized in this paper
and the process is explained below.

The DSMS device is used to fully harness the advantage
of the retired traditional unit for damping the frequency os-
cillation. Currently, an increasing number of traditional power
plants have been replaced with renewable energy resources.

Instead of dismantling the entire plant of the retired unit, the
rotating mass of the generator can be converted into a flywheel
to provide frequency support during disturbances, while the
other parts, i.e., the governor and exciter can be eliminated.

DSMS consists of the rotating mass of the generator and
an AC-DC-AC converter, as shown in Fig. 3. The working
mechanism basically delivers active power to the grid when
the frequency is low or absorbs active power from the grid
when the frequency is high. Moreover, the DC-link voltage is
utilized to assist in the frequency regulation, as shown in [32].
In other words, the DSMS device can curtail the magnitude
of the frequency oscillation to stabilize the system.

KMPC controller is used to compute the amount of active
power and DC-link voltage deviation needed to dampen the
frequency oscillation. As shown in Fig. 3, the system enclosed
inside the Blackbox is comprised of the DSMS device and the
power grid. The commands of Pe,ref and dV dc,ref of DSMS
are the regulated inputs u for frequency control, while the
output y is the grid side frequency. Despite the state equations
of DSMS in (15), the mathematical equation of the entire
Blackbox system tends to be tedious to derive, since there
are numerous non-linear elements in the power grid, such as
the battery energy system, transformers, etc.

Lr
dird
dt

= ωrLrirq −Rrird − vdrc

Lr
dirq
dt

= −ωrLrird −Rrirq − vqrc + Erq

dδr
dt

= ωr

2H

ω0

dωr

dt
= −PE

Lg
digd
dt

= ωgLgigq −Rgigd − vdgc

Lg
digq
dt

= −ωrigd −Rgigq − vqgc + Vgq

dvdc
dt

=
1

Cdc
(idc,r − idc,g) (15)

where Erq is the generator constant voltage source behind the
transient impedance Rr + jωrLr. irdq and vdqrc represent the
machine-side converter dq-axis currents and voltage, respec-
tively. ωr is the electrical rotor speed deviation relative to the
nominal frequency ω0 rad/s, δr is the rotor angle, and PE is
the active power output of the rotating mass. Rg + jωgLg is

Power
Grid

Blackbox

DSMS
ωr

Rotating
mass Vdc

AC-DC
irq,d

DC-AC
igq,d

Pe,ref, dVdc,ref

Input u

KMPC
controller

Output y

ωg

Fig. 3. Diagram of external KMPC controller of DSMS system.
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the grid-side converter phase impedance. igdq and vdqgc are the
grid-side converter dq-axis currents and voltage, respectively.
ωg is the grid frequency. Vgq is the q-axis grid voltage, which is
an external input to the system. The DC circuit is modeled by
the equivalent DC capacitance Cdc, voltage vdc, machine/grid-
side DC currents idc,r, and idc,g. The power balance between
AC and DC sides is as given in (16).

PE = Erqirq = vdcidc

= vqrcirq + vdrcird = vqgcigq + vdgcigd = Vgqigq (16)

The internal control loops of the machine-side and the grid-
side converters are given in Fig. 4 and Fig. 5, respectively.
The derivations of converter state equations and the control
loop, which can be found in [16], are not presented here since
they do not represent the primary focus of this paper. By and
large, the active power, reactive power, and the DC voltage
references generate the references of the converter currents,
which then provide the references of the converter voltages,
namely duty cycles of the switching.

To test if the DSMS device can follow the commands
precisely, a 0.6 p.u. step change of the active power command
and a 0.2 p.u. step change of DC-link voltage command is
applied, respectively. It can be seen from Fig. 6 and Fig. 7

that the DSMS device adheres to the commands quickly and
accurately with reasonable overshoots [16].

B. KMPC Formulation of DSMS

In this section, the KMPC formulation of DSMS is pre-
sented. The KMPC controller issue is solved at each time step
of the following optimization problem. The objective function
is formulated to attain the optimal input u = [PE, dV dc], to
achieve the desired frequency zk.

min
uk

Np−1∑
k=0

(
zrefk − zk

)T
Q
(
zrefk − zk

)
+ uT

kRuk

s.t. zk+1 = Azk + Buk, k = 0, . . . , Np − 1

yk = Czk

|Pe.k| 6 bk,

|dV dc,k| 6 ak,

z0 = g (ζDE,τ,0) (17)

where Q and R are the symmetric positive semi-definite
weighting matrices. ζDE,τ,0 denotes the time-delayed embed-
ding coordinate at time step k = 0. bk is the constraint for
the control signals active power, while ak is the constraint for

AC-DC converter
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controller
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controller

PI
controller

PI
controller

Σ Σ

Σ
+

−

+

−

+
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−

+

−
Σ

Σ

Qe,ref =0

Qe

Pe,ref irq,ref
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irq
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ird,ref

Eq

vq
rc

vd
rc

ωrLr

ωrLr

Fig. 4. Internal control loops of machine-side converter of DSMS.
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controller
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Σ
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the control signal DC-link voltage variation. The entire opti-
mization process is repeatedly solved in a ‘receding horizon
fashion’, where only the first element of the input sequence u
is applied at each instance.

C. Studied Systems

In this sub-section, the above-mentioned algorithm is dis-
cussed with respect to two power systems—the Kundur two-
area system and the IEEE39-bus system. For each system,
three different categories are analyzed, making a total of six
cases. These three categories are:
• Original systems.
• Modified systems (without KMPC) – one conventional

power plant replaced with the renewable generation re-
source modeled as the negative constant load (no fre-

quency control capability).
• Modified systems (with KMPC) – adding the DSMS

device with KMPC frequency controller to the second
category.

1) Kundur Two-area System
The proposed algorithm is first tested in the Kundur two-

area system, see Fig. 8. For the first case study, we replaced
the generator at bus No. 3 by a negative constant load (passive
IBR) and compared its performance with the scenario where
that generator is converted into a DSMS device as proposed
in [8].

a) Time-delayed Embedding Parameters
Data from 104 random eventualities with 0.01 s sampling

time was collected using offline time-domain simulations in
Matlab/Simulink. Note that [P ∗E ,∆V

∗
dc] is constrained within

[± 0.1 p.u., ± 0.1 p.u.]. Following the algorithm given in
Algorithm 1, we first drew the Auto Mutual Information
curve for the output local frequency and the inputs P ∗E and
∆V ∗dc. The optimal time lag for frequency, P ∗E and ∆V ∗dc is
determined through the elbow of the Auto Mutual Information
curve, i.e., 9, 5, and 5 respectively. The average time lag for
the three numbers is 6, which leads to the final τ , i.e., 0.06 s,
see Fig. 9.

Applying τ∗ to the extended Cao’s algorithm yields Fig. 10.
The white dotted line signifies the candidates of the minimum
[ndy, ndu] combinations. [ndy, ndu] = [8, 8] is chosen due to the
corresponding low root mean square error method (RMSE).
In general, the state space of a practical power system is
massive. However, the embedding dimension chosen is based
on the dimensionality of the region in state space to which the
system dynamics are constrained for the given set of events
being analyzed (local), which tends to be much lower. In other
words, for a local disturbance even in a large-scale system, the
measurement data is ranked low, which restricts the optimal
embedding dimension obtained to a great extent, thus making
our approach even more practical.

b) Frequency Prediction
Now, based on Algorithm 1, the Koopman operator-based

linear system (3) can be constructed by resolving (9) using the
embedding parameters derived from the previous sub-section.
To validate the accuracy of the linear system, 200 random
frequency trajectories were investigated. The average RMSE
with 4.2 s prediction window over those trajectories was
calculated. To justify the optimal embedding dimension, the
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Fig. 8. Kundur two-area system diagram.
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frequency predictions were also performed with another two
sets of embedding dimensions; one set consisted of insufficient
embedding dimension, namely non-optimal, whilst the other
set possessed more than sufficient, namely sub-optimal. The
comparison between the various embedding dimensions is
given in Table I. As indicated by the RMSE in Table I,
[ndy, ndu] = [4, 4] is incapable of providing a sufficient space
to unfold the dynamics of the system. Even though [ndy,
ndu] = [8, 8] and [ndy, ndu] = [20, 20] both possess similar
low RMSE, the set with lesser embedding is preferred due to
faster control and lesser computational complicacy.

TABLE I
RMSE OF DIFFERENT EMBEDDING DIMENSION, KUNDUR

TWO-AREA SYSTEM

[ndy,ndu] RMSE
Optimal [8, 8] 1.54%
Sub-optimal [20, 20] 1.37%
Non-optimal [4, 4] 20.3%

It is hypothesized that in the lifting functions g in (4), the
inclusion of higher degree polynomials of the embedded coor-
dinate ζDE,τ,k, which comprises of the most recent input and
output measurements, can better portray the underlying non-
linear dynamics of the original system. To study its effects,
we compared the frequency prediction accuracy (RMSE) for
different higher degree orders included in the lifting function.
As shown in Table II, after the optimal embedding dimension
is accomplished, the prediction in the non-linear term in this
study remains more or less the same.

TABLE II
RMSE OF FREQUENCY PREDICTION WITH OR WITHOUT NON-LINEAR

TERM IN LIFTING FUNCTION, KUNDUR TWO-AREA SYSTEM

RMSE Without∥∥ζDE,τ,k

∥∥
2

RMSE With∥∥ζDE,τ,k

∥∥
2

RMSE With∥∥ζDE,τ,k

∥∥
[2,3,4]

1.60% 1.54% 1.26%

c) Frequency Controller
To test the performance of the proposed Koopman operator-

based MPC framework against large frequency disturbances, a
three-phase-to-ground fault at bus No. 8 is applied at 1 s. The
fault results in tripping one of the double line connecting area 1
and 2, which was then reclosed at 6 s. Figure 11 demonstrates
that with the control signals in Fig. 12, the system with KMPC
efficiently enhances the frequency stability by damping more
oscillation. The average computational time of the KMPC of
this frequency control is 1.2 ms running on an Intel Core
i7-8750 CPU @ 2.20 GHz, RAM 16 GB processor and the
Accelerator mode in Simulink.
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d) Robustness Test
To test the robustness of the controller, we applied various

system topologies. The transmission lines connecting area 1
and 2 are chosen as the analyses areas, because this region
forms the most critical line in this system. We applied different
line impedances of the double lines. As indicated from Fig. 13,
KMPC can dampen the oscillation with critical changes in the
system.

e) Critical Clearing Time
To further evaluate the KMPC performance, this section
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demonstrates the efficacy of the proposed controller for en-
hancing the transient stability of the system by comparing
critical clearing time (CCT) values for the same fault. A
three-phase fault is applied at bus 9 in the system before and
after implementing KMPC, respectively. The results listed in
Table III illustrate that CCT is increased by 0.05 s.
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Fig. 13. Frequency and voltage responses of generator 3 with different
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TABLE III
CCT COMPARISONS, KUNDUR TWO-AREA SYSTEM

System CCT (s)
Original Kundur two-area systems 0.31 s
KMPC system 0.36 s

2) IEEE 39-Bus System
The proposed algorithm is evaluated through a larger sys-

tem, i.e., the IEEE39-bus system given in Fig. 14. Similarly,
generator at bus No. 30 is replaced by the negative constant
load along with the DSMS device.
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Fig. 14. IEEE39-bus system diagram.

a) Time-delayed Embedding Parameters
In this case, data from 104 random eventualities was again

collected offline. [P ∗E ,∆V
∗
dc] is constrained within [± 0.5 p.u.,

± 0.2 p.u.]. The Auto Mutual Information curves for the output
local frequency and the inputs, P ∗E , and ∆V ∗dc are given
in Fig. 15. The average time lag for the three numbers is

7, resulting in the final τ , i.e., 0.07 s. Following the same
steps and mechanism as for the Kundur two-area case study,
[ndy, ndu] = [18, 18] is chosen, see Fig. 16.
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b) Frequency Prediction
Following Algorithm 1, the Koopman operator-based linear

system can be reconstructed with the embedding parameters
obtained from the previous sub-section. Analogous to the Kun-
dur two-area case study, the comparison between different em-
bedding dimensions is performed, see Table IV. As indicated
by this Table, [ndy, ndu] = [3, 3] is incapable of providing a
sufficient space to unfold the dynamics of the system. Even
though [ndy, ndu] = [18, 18] and [ndy, ndu] = [30, 30] both
have similar low RMSE value, the set with lesser embedding
is preferred due to faster control algorithm.

TABLE IV
RMSE OF DIFFERENT EMBEDDING DIMENSION, IEEE39-BUS SYSTEM

[ndy,ndu] RMSE
Optimal [18, 18] 1.86%
Sub-optimal [30, 30] 1.51%
Non-optimal [3, 3] 99.45%

As shown in Table V, when the optimal embedding dimen-
sion value is reached, the non-linear term ceases to change the
prediction largely, in this study.

c) Frequency Controller
A three-phase-to-ground fault at bus No. 25 is applied at

1 s, which trips the line connecting buses 25 and 26. Figure 17
illustrates that the system with KMPC efficiently enhances the
frequency stability with the control signals in Fig. 18. The
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average computational time of the KMPC in this case is 3 ms
under the same simulation environment as the Kundur two-
area case study.

TABLE V
RMSE OF FREQUENCY PREDICTION WITH OR WITHOUT NONLINEAR

TERM IN LIFTING FUNCTION, IEEE39-BUS SYSTEM

RMSE without∥∥ζDE,τ,k

∥∥
2

RMSE with∥∥ζDE,τ,k

∥∥
2

RMSE with∥∥ζDE,τ,k

∥∥
[2,3,4]

1.93% 1.86% 1.53%
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d) Robustness Tests
In this section, we analyze the robustness of the controllers

when operating condition changes. The first scenario is of the
robustness against load changes. The largest load at bus 39
(over 1000 MW) is reduced by half, while the second largest
load at bus 20 (over 600 MW) is doubled. The second scenario
is of the robustness against the change of transmission line
impedance/network topology. We picked the line connecting
21 to 22, which happens to be a major transmission corri-
dor for this system. On top of the previously defined load
changes, the impedance of the selected line increases to 500%.
According to the frequency responses of the above scenarios
given in Fig. 19 and Fig. 20, the controller is still capable of
handling large frequency oscillation under different operating
conditions.

D. Critical Clearing Time

A three-phase fault is applied at bus 3 in the original non-
linear system and the system with KMPC, respectively, so as
to evaluate the CCT of both the systems. The CCT is witnessed
to increase by approximately 2 cycles, see Table VI.
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TABLE VI
CCT COMPARISON, IEEE39-BUS SYSTEM

System CCT (s)
Original IEEE39-bus system 0.20 s
KMPC system 0.24 s

VI. CONCLUSION

A model-free methodology is proposed for determining
the optimal measurements of the parameters of time-delayed
embedding coordinate used for Koopman operator approx-
imation. The methodology is utilized to obtain the linear
approximation of a non-linear system with only input-output
measurements, while none of the state measurements are
given. To test the efficacy of the proposed method, we em-
ployed the Kundur two-area and the IEEE 39-bus system
cases, wherein the energy storage device DSMS serves as the
frequency control device, whose inputs are the active power
and DC-link voltage command, whilst output is the terminal
frequency. The proposed Koopman-operator based framework
exhibits promising performance in predicting the frequency
trajectories. Furthermore, KMPC is capable of dampening
the frequency oscillation under different system operating
conditions.

The proposed framework delivers satisfactory performance
in the above-mentioned cases. However, the data driven nature
also makes it prone to noise and corrupted data in real-
field measurements, and hence, it requires better data pre-
processing and screening for real-world deployment. Besides,
the operating conditions of the power system may vary dra-
matically in case of occurrence of large disturbances. If these
conditions are not included in the offline studied cases, the
offline trained KMPC may not act fast enough to adapt to
the new online cases. Furthermore, this framework can be
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applied to the system with real-time data. In addition to the
well-established performance for transient frequency control,
KMPC also tends to be potentially useful for other large time-
scale applications, such as economic dispatch, active power
regulation, etc., which could be a prospective research subject.
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