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Hybrid Scenario Generation Method for Stochastic
Virtual Bidding in Electricity Market

Dongliang Xiao, Member, IEEE, and Wei Qiao , Fellow, IEEE

Abstract—Stochastic optimization can be used to generate
optimal bidding strategies for virtual bidders in which the
uncertain electricity prices are represented by using scenarios.
This paper proposes a hybrid scenario generation method for
electricity price using a seasonal autoregressive integrated moving
average (SARIMA) model and historical data. The electricity
price spikes are first identified by using an outlier detection
method. Then, the historical data are decomposed into base and
spike components. Next, the base and spike component scenarios
are generated by using the SARIMA- and historical data-based
methods, respectively. Finally, the electricity price scenarios are
obtained by combining the base and spike component scenarios.
Case studies are carried out for a virtual bidder in the PJM
electricity market to validate the proposed method. The optimal
bidding strategies of the virtual bidder are generated by solving
a stochastic optimization problem using the electricity price
scenarios generated by the proposed method, the SARIMA
method, and a historical data-based method, respectively. Case
study results show that the proposed method is better than
the SARIMA method in preserving statistical properties of the
electricity price in the generated scenarios and is better than the
historical data-based method in predicting the future trend of
the electricity price and, therefore, can help the virtual bidder
earn more profit in the electricity market.

Index Terms—Electricity market, electricity price, scenario
generation, stochastic optimization, virtual bidding.

NOMENCLATURE

A. Indices and Sets

t Index of time periods, running from 1 to T .
w Index of scenarios, running from 1 to Ω.
g Index of the autoregressive terms in an SARIMA

model, running from 1 to G.
h Index the moving average terms in an SARIMA model,

running from 1 to H .
i Index of the seasonal autoregressive terms in an

SARIMA model, running from 1 to P .
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j Index of the seasonal moving average terms in
an SARIMA model, running from 1 to Q.

m Index of the elements in a dataset, running
from 1 to M .

ΛD
t /ΛR

t Set of the scenarios for day-ahead (DA)/real-
time (RT) electricity price in a time period t.

ΛDb
t /ΛRb

t Set of the base component scenarios for DA/RT
electricity price in a time period t.

ΛDs
t /ΛRs

t Set of the spike component scenarios for
DA/RT electricity price in a time period t.

XD/XR Set of historical DA/RT electricity price data.
XDb/XRb Set of the base component of historical DA/RT

electricity price data.
XDs/XRs Set of the spike component of historical DA/RT

electricity price data.

B. Decision Variables

PVI
tw /PVD

tw Power sold/bought by a virtual bidder in the
DA market for a scenario w in a time period
t when an incremental/decremental bidding
curve is used.

C. Parameters and Constants

PVmax Maximum bidding capacity of a virtual bidder.
prtw Probability of the occurrence of a scenario w

in a time period t.
λD

tw/λ
R
tw DA/RT electricity price for a scenario w in a

time period t in the scenario set ΛD
t /ΛR

t .
λDb

tw /λRb
tw The w th base component scenario of the

DA/RT electricity price scenario set ΛDb
t /ΛRb

t .
λDs

tw /λRs
tw The w th spike component scenario of the

DA/RT electricity price scenario set ΛDs
t /ΛRs

t .
xD
m/xR

m The m th DA/RT electricity price data in the
historical dataset XD/XR.

xDb
m /xRb

m The m th base component of the DA/RT
electricity price data in the historical dataset
XDb/XRb.

xDs
m /xRs

m The m th spike component of DA/RT elec-
tricity price data in the historical dataset
XDs/XRs.

zDm/zRm The m th binary parameter in the vector
ZD/ZR, which is equal to 1 if xD

m/xR
m is

identified as a price spike, and is equal to 0
otherwise.

ZD/ZR The vector used to mark the price spikes in the
dataset XD/XR.

S Seasonality order in an SARIMA model.
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d Differentiation order in an SARIMA model.
ϕg The gth autoregressive parameter in an

SARIMA model.
θh The hth moving average parameter in an

SARIMA model.
D Seasonal differentiation order in an SARIMA

model.
Φi The ith seasonal autoregressive parameter in an

SARIMA model.
Θj The jth seasonal moving-average parameter in

an SARIMA model.
εDb

tw /εRb
tw Independent error term of a base component

scenario w for the DA/RT electricity price in
the independent error vector EDb

t /ERb
t .

EDb
t /ERb

t Independent error vector of the base compo-
nent scenario sets for the DA/RT electricity
price.

εDb
tw /εRb

tw Dependent error term of a base component
scenario w for the DA/RT electricity price in
the dependent error vector E

Db

t /E
Rb

t .
E

Db

t /E
Rb

t Dependent error vector of the base component
scenario sets for the DA/RT electricity price.

α Skewness of a dataset.
β Kurtosis of a dataset.
KXDb,XRb Variance-covariance matrix of the base compo-

nent datasets XDb and XRb.
ΣXDb,XDb Variance of the dataset XDb.
ΣXDb,XRb Covariance of the base component datasets

XDb and XRb.
LΛDb

t ,ΛDb
t

Transformation matrix used for correlating the
error terms of the base component scenario sets
ΛDb
t and ΛRb

t .
XD/XR Sample mean value of the dataset XD/XR.

I. INTRODUCTION

MOST wholesale electricity markets in the United States
have a two-settlement structure, which includes DA and

RT markets. In the DA market, the participants, such as power
producers and load serving entities, submit bids one day before
the operating day based on their DA schedules; the market is
then cleared and the cleared powers are settled at DA prices.
In the RT market, the power deviations from the DA schedules
are settled at RT prices on the operating day [1]. In addition to
the market participants that have physical assets on the demand
or generation sides, pure financial participants can also buy
or sell power at DA prices in the DA market and their DA
commitments are settled at RT prices in the RT market on
the next day. This type of transaction is called virtual bidding
or convergence bidding; and these pure financial participants
are referred to as virtual bidders whose profitability is related
to the difference between DA and RT electricity prices [2].
Virtual bidding was first used in the PJM market in 2000 and
currently is available in most U.S. electricity markets [3].

The main purposes of allowing virtual bidders to participate
in electricity markets are to increase the liquidity and reduce
price differences between DA and RT markets. The benefits
and drawbacks that virtual bidding may bring to the market

were discussed in [4]. By analyzing the historical data in the
California electricity market, the studies [5] and [6] concluded
that virtual bidding could reduce the differences between DA
and RT electricity prices. However, virtual bidding may not
improve market efficiency if used by a financial transmission
right holder [7] or a cyber attacker [8]. Additionally, the impact
of virtual bidding on market efficiency depends on the forecast
accuracy of the virtual bidder. The study in [2] showed that
the virtual bidders with perfect forecast results could improve
the efficiency of electricity markets. However, the authors
of [9] addressed the fact that the virtual bidders with bad
forecast results would decrease the total social welfare and
should be screened out of the electricity markets. Thus, the
virtual bidders’ forecast accuracy affects both the profitability
of virtual bidding and the efficiency of electricity markets.

The stochastic optimization technique can be used to gen-
erate optimal bidding strategies for virtual bidders while
addressing the electricity price uncertainties via scenarios. In
this circumstance, the forecasted hourly electricity price is
represented by a set of scenarios with certain probabilities
instead of a deterministic value, and the accuracy of the
generated scenarios significantly affects the profit of the virtual
bidder. In literature, scenario generation methods based on
statistical models [10]–[16] or historical data [17] have been
reported for power system applications. In [10]–[12], the
SARIMA model was used to generate scenarios for elec-
tricity price and renewable energy productions, respectively.
In [13], the wind power scenarios were generated based on
a multivariate normal distribution and the variability of the
wind power was characterized by a range parameter in the
covariance function. In [14], a generalized dynamic factor
model was used to generate dependent load and wind power
scenarios. In [15], a quantile regression forest model was
employed to generate scenarios for wind, photovoltaic, and
small hydro power productions. In [16], Weibull distribution
was considered to generate wind speed scenarios, and transfer
component analysis was utilized to improve the effectiveness
of the scenario generation method.

Statistical models, such as SARIMA, can usually provide
satisfactory scenario generation results if the historical data are
stable and normally distributed [12]. However, the electricity
price data are usually volatile and contain spikes caused by
unexpected factors, such as power outages [18] and strategic
behaviors of market participants [19]. In the United States,
the average annual volatility of electricity price is 359.8%,
which is much higher than the price volatility of natural
gas (48.5%), financial assets (37.8%), metals (21.8%), and
agriculture (49.1%) [20]. Moreover, there are much more
positive price spikes than negative ones. Thus, the distribution
of the electricity price data is asymmetric and very different
from a normal distribution. The scenarios generated by the
commonly used statistical models may not be able to capture
the asymmetry and spikes of the electricity price.

To avoid this drawback of statistical models, reference [17]
generated electricity price and wind power scenarios by using
their historical data in different time periods directly for
stochastic wind power bidding. The generated scenarios were
assigned with an equal probability. However, this method does
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not sufficiently utilize temporal correlations between historical
data, which are considered in the SARIMA model and shown
to be helpful for predicting the future trends of uncertain
parameters [12]. Thus, the historical data-based method may
not forecast the future trend of uncertain electricity prices as
accurately as the SARIMA-based method.

This paper proposes a hybrid scenario generation method
that utilizes the temporal correlations of historical electricity
price data without the need for any assumptions of the
distribution of historical data, such as the normal distribution
assumption in the SARIMA-based method. In the proposed
method, the spikes contained in the historical electricity price
data are first identified. Then, the historical electricity price
data is decomposed into base and spike components. Next,
the SARIMA method is used to generate the base component
scenarios; and the spike component scenarios are directly
generated from the historical data of the spike components.
Finally, the base and spike scenarios are combined and used
for the stochastic optimization problem for the virtual bidder.
The main contributions of this paper are given as follows:

1) A hybrid method of generating electricity price scenarios
based on the SARIMA model and historical data is proposed.
By decomposing the historical electricity price data into base
and spike components and generating their scenarios using
different methods separately, both the trend and variations of
the future electricity price can be captured in the generated
scenarios without the need for any assumption of the distribu-
tion of historical data. The improved scenario generation by
using the proposed method can help the virtual bidder earn
more profits in the electricity market.

2) The statistical properties of the scenarios generated by
different methods are studied in detail. It is found that the
scenarios generated by the proposed method can characterize
the volatility, asymmetry, and heavy tails of electricity prices
more accurately than those generated by the SARIMA-based
method without outlier detection.

The remainder of this paper is organized as follows. Sec-
tion II presents the stochastic optimization problem of gener-
ating optimal virtual bidding strategies in electricity markets.
Section III presents the proposed hybrid electricity price
scenario generation method. Section IV compares different
scenario generation methods. Section V presents results of case
studies. Section VI concludes the paper.

II. STOCHASTIC VIRTUAL BIDDING STRATEGY

A. Market Framework

Figure 1 shows the typical time frame of a two-settlement
electricity market widely used in the U.S. [21]. On the day
before the operating day, virtual bidders submit incremental
and decremental virtual bids before the submission closure
time for the DA market; and both the cleared virtual bids and
prices are determined by the DA market clearing process. On
the operating day, the RT power balance is ensured through
a RT market clearing process; and the deviations caused by
the DA virtual bids need to be settled at RT electricity prices
on this trading floor. To make the virtual bidding profitable in
the electricity market, the virtual bidders need to forecast DA

One day before operating day

Operating day

DA electricity
prices are

determined

Submit DA
virtual bids

DA market
clears

RT market clears for each hour

Fig. 1. Time frame of a typical two-settlement electricity market.

and RT electricity prices accurately using the latest historical
data.

In contrast to the conventional power producers or electricity
retailers that have physical resources in the power grid, the
virtual bidders are pure financial participants without any
physical resources. The maximum bidding capacity of a virtual
bidder is determined by the available credit in its trading
account, and a virtual bidder with higher credit would have
a larger virtual bidding capacity.

B. Stochastic Optimization Model for Virtual Bidding

In this paper, the virtual bidder is assumed to be a price-
taker in the electricity market and its bidding capacity is not
large enough to influence DA or RT electricity prices. The
mathematical model for optimizing the expected profits of a
virtual bidder in a time period t is as follows:

max
PVI

tw ,PVD
tw

πt =

Ω∑
w=1

prtw[(λ
D
tw − λR

tw)P
VI
tw + (λR

tw − λD
tw)P

VD
tw ]

(1)

Subject to:

0 ≤ PVI
tw , ∀t, ω (2)

0 ≤ PVD
tw , ∀t, ω (3)

PVD
tw + PVI

tw ≤ PVmax, ∀t (4)

PVI
tw = PVI

tw′ ∀t, ω, ω′ : λD
tw = λD

tw′ (5)

PVD
tw = PVD

tw′ ∀t, ω, ω′ : λD
tw = λD

tw′ (6)

(λD
tw − λD

tw′)(PVI
tw − PVI

tw′) ≥ 0, ∀t, ω (7)

(λD
tw − λD

tw′)(PVD
tw − PVD

tw′ ) ≤ 0, ∀t, ω (8)

where the objective function is the expected profit of the
virtual bidding in the time period t; Constraints (2)–(4) limit
the virtual bidding capacities in the DA market; Constraints
(5) and (6) ensure that the scenarios with the same DA
electricity price have the same DA virtual bid capacity on the
bidding curves; and Constraints (7) and (8) constitute the non-
decreasing and non-increasing properties for the incremental
and decremental bidding curves, respectively.

In the stochastic optimization problem of the virtual bidder,
since the expected profit is calculated based on the scenarios
of uncertain DA and RT electricity prices, the scenario values
significantly affect the profitability of the DA virtual bidding
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strategy obtained by solving the optimization problem. If the
future trend or some probabilistic properties of the uncertain
prices cannot be captured by the generated scenario sets ΛD

t =

{λD
tw}

Ω

w=1 and ΛR
t = {λR

tw}
Ω

w=1 sufficiently, the expected profit
calculated by using (1) will deviate significantly from the
actual profit. This circumstance indicates that the objective
function and constraints containing the uncertain parameters
of the stochastic optimization problem are incorrect so that the
generated DA bidding strategy may not help the virtual bidder
effectively earn profit in the electricity market.

Additionally, as shown in (1), a virtual bidder’s profit
depends on the absolute value of the differences between DA
and RT prices. If the DA electricity price is close to the RT
electricity price, the virtual bidder could not earn much profit
no matter what scenario generation method is adopted, because
there are no arbitrage opportunities in DA and RT electricity
markets.

III. PROPOSED HYBRID SCENARIO GENERATION METHOD

This section presents the overall framework and detailed
procedure of the proposed hybrid scenario generation method
for electricity pricing. The generated scenarios are used in the
stochastic optimization problem (1)–(8) given in Section II.

A. Overall Framework

Figure 2 shows the flowchart of the proposed method. The
scenario sets of the DA electricity price ΛD

t = {λD
tw}

Ω

w=1

and RT electricity price ΛR
t = {λR

tw}
Ω

w=1 are generated
jointly based on the historical DA electricity price dataset
XD = {xD

m}Mm=1 and RT electricity price dataset XR =
{xR

m}Mm=1 while considering the dependency between DA and
RT prices.

First, the spikes contained in the historical electricity price
datasets are identified using an outlier detection algorithm.
Then, the original historical DA price dataset XD is de-
composed into a base component dataset XDb and a spike
component dataset XDs. Similarly, the original historical RT

Input:Historical DA and RT electricity price datasets X D and X R

Price spike vectors Z D and Z R

Base component datasets:

X Db and X Rb

Base component datasets:

A
t

Db and A
t

Rb

Spike component datasets:

X Ds and X Rs

Spike component datasets:

A
t

Ds and A
t

Rs

Step 1:Electricity price spike identifiction using (9) and (10)

Step 2:Decomposition of historical datasets using (11) and (12)

Step 5:Combination of base and spike component scenarios using (18)–(20)

Output:DA and RT electricity price scenarios A
t

D and A
t

R

Step 3:SARIMA-based scenario

generation using (13)–(17)

Step 4:Historical data-based

scenario generation

Fig. 2. Framework of the proposed hybrid scenario generation method.

price dataset XR is decomposed into a base component dataset
XRb and a spike component dataset XRs. Next, an SARIMA-
based method is designed to generate the base component
scenario sets ΛDb

t and ΛRb
t ; and the spike component scenario

sets ΛDs
t and ΛRs

t are directly generated from the spike
component datasets. Finally, by adding the base and spike
component scenarios, the final DA and RT price scenario sets
ΛD
t and ΛR

t are obtained. Each step of the proposed hybrid
method for generating the DA and RT electricity price scenario
sets ΛD

t and ΛR
t from the historical datasets XD and XR,

respectively, is presented in detail as follows.

B. Step 1: Identification of Price Spikes
Figures 3 and 4 provide the histograms of the historical

DA and RT electricity prices for a certain month in the PJM
electricity market, respectively. Some DA/RT electricity price
data patterns deviate significantly from their mean or median
value and, thus, can be regarded as price spikes or outliers from
a statistical perspective. Therefore, an outlier detection method
based on the median absolute deviation (MAD) is designed to
identify the price spikes.
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Fig. 3. Histogram of the DA electricity price for a certain month.
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Fig. 4. Histogram of the RT electricity price for a certain month.

Specifically, a data pattern is identified as a spike if it
deviates more than three times the MAD from the median
value of the historical data [22]. The MAD of the dataset XD

can be calculated as follows:

MAD(XD) = 1.4826 median(jXD − median(XD)j) (9)

where median() is the function of calculating the median of
a dataset. Then, each DA electricity price spike is identified
and marked using a binary parameter zDm as follows.

zDm =

{
0, |xD

m − median(XD)| ≤ 3MAD(XD)

1, |xD
m − median(XD)| > 3MAD(XD)

(10)
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where zDm is equal to 1 if the m th data pattern is identified as a
price spike. Finally, a vector ZD = {zDm}Mm=1 can be obtained
to mark all the DA electricity price spikes in the dataset XD.

The RT electricity price spikes in the dataset XR can
be identified using the method similar to (9) and (10) and
marked by another vector ZR = {zRm}Mm=1. The proposed
outlier detection method is based on MAD instead of standard
deviation, because MAD is robust to outliers and can be used
to measure the dispersion of the data more accurately than
standard deviation.

C. Step 2: Decomposition of Historical Dataset

After the price spikes have been identified, the historical
DA price dataset XD = {xD

m}Mm=1 is decomposed into a base
component dataset XDb = {xDb

m }Mm=1 and a spike component
dataset XDs = {xDs

m }Mm=1. For each historical price data
pattern identified as a spike, the base component is equal to the
median value of the historical data, and the spike component
is equal to the original price data pattern minus the median
value. For each historical data pattern that is not identified as a
spike, the base component is equal to the original data pattern,
and the spike component is zero. The formulas for calculating
the base and spike components of the historical DA electricity
price data are expressed as (11) and (12), respectively.

xDb
m =

{
xD
m, if zDm = 0

median(XD), if zDm = 1
(11)

xDs
m =

{
0, if zDm = 0

xD
m − median(XD), if zDm = 1

(12)

The historical RT electricity price dataset XR is also decom-
posed into a base component dataset XRb = {xRb

m }Mm=1 and
a spike component dataset XRs = {xRs

m }Mm=1 using formulas
similar to (11) and (12), respectively.

D. Step 3: Base Component Scenario Generation

To generate scenarios for multiple uncertain parameters by
using statistical models, the joint probability distribution first
needs to be estimated, which is generally a complex operation.
However, if the uncertain parameters are assumed to follow
a multivariate Gaussian distribution, the scenario generation
process can be simplified by using the univariate SARIMA
model and variance-covariance matrices [12].

The base component scenarios of the DA electricity price
λDb

tw in a certain time period t can be generated using the
SARIMA model, which are expressed as follows:(

1−
G∑

g=1

ϕgB
g

)(
1−

P∑
i=1

ΦiB
iS

)
(1−B)

d
(1−BS)

D
λDb

tw

=

(
1−

H∑
h=1

θhB
h

)1−
Q∑

j=1

ΘjB
jS

 εDb
tw (13)

where S is the seasonality order, ϕ1, ϕ2, · · · , ϕG are G au-
toregressive parameters; θ1, θ2, · · · , θH are H moving average
parameters; Φ1,Φ2, · · · ,ΦP are P seasonal autoregressive
parameters; Θ1,Θ2, · · · ,ΘQ are Q seasonal moving average

parameters; εDb
tw represents the forecast error for the scenario

w, which follows an independent normal probability distri-
bution for the SARIMA model; and B is the backward shift
operator, whose function is given as follows.

BdλDb
tw = λDb

t−d,w (14)

Based on the historical base component dataset XDb, the
parameters of (13), which include ϕg,Φi, θh, and Θj , can
be estimated by using the maximum likelihood method. To
generate a scenario λDb

tw in the time period t, an error term
εDb

tw needs to be first sampled from a normal probability
distribution. The scenario λRb

tw and error term εRb
tw for the RT

price can be generated in a way similar to (13) and (14).
To consider the dependency between DA and RT prices in

the scenario generation process, their correlation is modeled
by using the variance-covariance matrix KXDb,XRb of the DA
price base component dataset XDb and the RT price base
component dataset XRb expressed as follows:

KXDb,XRb =

[
ΣXDb,XDb ΣXDb,XRb

ΣXDb,XRb ΣXRb,XRb

]
(15)

where ΣXDb,XDb is the variance of XDb, ΣXRb,XRb is the
variance of XRb, and ΣXDb,XRb is the covariance of XDb

and XRb. Then, the Cholesky decomposition is performed for
the variance-covariance matrix as follows.

KXDb,XRb = LΛDb
t ,ΛDb

t
LT

ΛDb
t ,ΛDb

t
(16)

where LΛDb
t ,ΛDb

t
is the transformation matrix used for cor-

relating the error terms of the scenario sets ΛDb
t and ΛRb

t .
Let EDb

t = [εDb
tw ]Ω×1 and ERb

t = [εRb
tw ]Ω×1 be the column

vectors containing Ω independent error terms of the scenario
sets ΛDb

t and ΛRb
t , respectively. Then, the independent error

vectors EDb
t and ERb

t are transformed to be the dependent
error vectors E

Db

t = [εDb
tw ]Ω×1 and E

Rb

t = [εRb
tw ]Ω×1 as

follows: [
E

Db

t

E
Rb

t

]
= LΛDb

t ,ΛDb
t

[
EDb

t

ERb
t

]
(17)

Then, the SARIMA model (13) is modified by replacing the
independent error term εDb

tw with the dependent error term εDb
tw .

Finally, the base component scenario sets ΛDb
t = {λDb

tw }Ωw=1

and ΛRb
t = {λRb

tw }Ωw=1 are generated by using the modified
SARIMA model.

E. Step 4: Spike Component Scenario Generation

The price spikes in electricity markets can significantly
affect the market participants’ economic benefits. However,
since price spikes are usually caused by some unexpected
events in the power system, the spike component data are
usually highly volatile and difficult to be forecasted using the
SARIMA model. This study proposes to generate the spike
component scenario sets ΛDs

t and ΛRs
t using the samples

of the historical spike component datasets XDs and XRs

in the t th hour, respectively, i.e., ΛDs
t = {λDs

tw }Ωw=1 and
ΛRs
t = {λRs

tw }Ωw=1, where λDs
tw ∈XDs, λRs

tw ∈XRs, and Ω ≤
M .
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F. Step 5: Combination of Base and Spike Component Sce-
narios

Since the base and spike component scenario sets generated
in Step 3 and Step 4, respectively, have the same number of
scenarios, they can be added directly to generate the final DA
price scenario set ΛD

t and RT price scenario set ΛR
t as follows:

ΛD
t = ΛDb

t + ΛDs
t (18)

ΛR
t = ΛRb

t + ΛRs
t (19)

Since the sequence of the scenarios in each scenario set is
random, the base and spike component scenarios are randomly
combined. Additionally, since all of the scenarios in ΛD

t and
ΛR
t are assigned with an equal probability, respectively, the

probability prtw of each scenario w of the final DA and RT
electricity price scenario sets is

prtw =
1

Ω
(20)

where Ω is the total number of scenarios generated for the
stochastic optimization problem for the virtual bidder.

IV. COMPARISON OF EXISTING AND PROPOSED SCENARIO
GENERATION METHODS

The SARIMA- and historical data-based scenario generation
methods have been widely used in practice. However, both
methods have disadvantages when used for electricity price
scenario generation.

For the SARIMA-based scenario generation method, both
the error term εDb

tw and the generated scenario λDb
tw in (13) are

assumed to follow symmetric normal distributions, which may
not be correct for actual probability distribution of electricity
prices. As shown in Figs. 3 and 4, the DA and RT price data
are asymmetric and have heavy tails and, thus, are different
from normal distributions and cannot be simply characterized
by using mean and variance.

To measure the symmetricity and heavy-tailedness of a
probability distribution, skewness and kurtosis are commonly
used [23]. The skewness α(XD) and kurtosis β(XD) of the
dataset XD are calculated as follows.

α(XD) =
1
M

∑M
m=1 (x

D
m −XD)

3(√
1
M

∑M
m=1 (x

D
m −XD)

2
)3 (21)

β(XD) =
1
M

∑M
m=1 (x

D
m −XD)

4(
1
M

∑M
m=1 (x

D
m −XD)

2
)2 (22)

In the SARIMA model, since the normal distributions
used for characterizing the error terms are symmetric, their
skewness values are 0. Additionally, since the tails of the
normal distributions have the same shape, their kurtosis values
are the same, which is 3 [23]. However, for the DA and RT
price data shown in Figs. 3 and 4, their skewness values are
2.62 and 5.88, respectively; and their kurtosis values are 11.78
and 44.5, respectively, which are much larger than 3. These
values indicate that the DA and RT price data are asymmetric
and more heavy-tailed than normal distributions. Thus, it is not

accurate to generate the electricity price scenarios by using
the SARIMA method, which cannot characterize some key
statistical properties of the price data correctly.

Compared to the SARIMA method, the scenarios generated
by directly using the historical data can preserve more sta-
tistical properties, such as asymmetry and heavy-tailedness,
of the electricity price, but do not fully utilize the temporal
correlations of the historical data. In contrast, the SARIMA
model (13) considers the temporal correlations of the historical
data of the uncertain electricity price and, therefore, is superior
to the historical data-based method for predicting the future
trend of the uncertain electricity price [12].

The proposed hybrid scenario generation method utilizes
the advantages of both the SARIMA and the historical data-
based methods. On one hand, the base component data is
more stable than the original data. Thus, it is more suitable
to use the SARIMA model to generate the base component
scenarios. On the other hand, the spike scenarios generated
by the historical data-based method preserve more statistical
properties of the historical data without any assumption for
its distribution. Thus, the scenarios generated by the proposed
hybrid method can capture the future trend and preserve
important statistical properties, such as skewness and kurtosis,
of the electricity price, which can help increase the profit of
the virtual bidding strategy obtained by solving the stochastic
optimization problem (1)–(8).

V. CASE STUDIES AND RESULTS

A. Simulation Setup

The proposed hybrid electricity price scenario generation
method is validated via case studies for a virtual bidder
in the PJM electricity market. The virtual bidder has the
maximum virtual capacity of 30 MW and is assumed to submit
DA virtual bids at the Eastern Hub in the PJM electricity
market. The hourly DA and RT electricity price data at the
trading hub are publicly available on the PJM website. The
historical data from June 2018 to May 2019 are used for
the case studies. For each operating day, the historical data
of the last three months are used to generate the electricity
price scenarios and stochastic virtual bidding strategies for
different hours in the next day. For instance, the scenarios and
virtual bidding strategies for September 1, 2018 are generated
based on the historical data from June 1, 2018 to August 31,
2018. The parameters of the SARIMA model are estimated
using the MATLAB econometric toolbox. Since the stochastic
optimization problem (1)–(8) for the virtual bidder is a linear
programing (LP) problem, it can be efficiently solved by using
the Yalmip toolbox [24] and Gurobi in MATLAB [25].

B. Results of the Scenarios Generated by Different Methods

The results of 100 scenarios generated by using the histori-
cal data-based, SARIMA-based, and proposed hybrid methods
in a certain hour are shown in Fig. 5. Figure 5(a) shows
that there are many positive price spikes in the DA and RT
markets, whose values significantly deviate from the mean
values of the data. For instance, the mean value of the RT
electricity price data in Fig. 5(a) is 51.5 $/MWh; while the
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Fig. 5. Scenarios generated by (a) historical data-based, (b) SARIMA-based, and (c) proposed hybrid scenario generation methods.

RT price spikes are as high as 329.2 $/MWh, which makes
the distribution of the historical price data pretty asymmetric.
In this circumstance, a statistical model, such as the SARIMA
model, is not capable of fully characterizing the statistical
properties of the data because the error terms in the SARIMA
model (13) are assumed to follow a normal distribution. As
shown in Fig. 5(b), the scenarios generated by the SARIMA
model are symmetric and their maximum deviation from
the mean is much smaller than that in Fig. 5(a). Thus, the
information of the price spikes is lost in the scenarios of
Fig. 5(b). When using the proposed hybrid scenario generation
method, some important statistical properties of the historical
data, such as symmetricity and heavy-tailedness, are preserved.
As shown in Fig. 5(c), quite a few DA and RT electricity
price scenarios generated by the proposed method significantly
deviate from the mean values, which is similar to the result in
Fig. 5(a). However, the minimum DA electricity price scenario
value in Fig. 5(c) is close to that in Fig. 5(b) but is lower than
that in Fig. 5(a), because the base components of the scenarios
in Fig. 5(c) are generated using the SARIMA model instead
of the historical data.

To further compare the proposed method with the historical
data-based and the SARIMA methods, four key statistical
parameters, including mean, variance, skewness, and kurtosis,
of the scenarios generated for each hour of a day over 8 months
from October 2018 to May 2019 (called hourly scenarios) are
calculated. First, the mean absolute error (MAE) between the
mean value of the hourly DA/RT electricity price scenarios
generated by each of the three methods and the actual DA/RT
electricity price values over the 8 months is calculated for each
hour of a day. The resulting MAEs of the mean values of the
DA and RT electricity price scenarios generated by the three
different methods for the 24 hours of a day are compared in
Fig. 6. The results show that in most hours, the MAEs of the
historical data-based method are larger than those of the other
two methods that use the SARIMA model. Thus, the SARIMA
and proposed hybrid methods can forecast the future trend of
the DA/RT electricity prices, which can be represented by the
mean value of its scenarios generated for each hour, more
accurately than the historical data-based method.

Next, the MAEs of the variance values of the DA/RT elec-
tricity price scenarios generated by the SARIMA method and
the proposed method, respectively, with respect to that gen-
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Fig. 6. Comparison of the MAEs of the mean values of (a) DA and (b) RT
electricity price scenarios generated by different methods.

erated by the historical data-based method over the 8 months
are calculated for each hour of a day. The resulting MAEs
of the variance values of the DA and RT electricity price
scenarios generated by the SARIMA and proposed methods
for the 24 hours of a day are compared in Fig. 7. Similarly,
the MAEs of the skewness and kurtosis values of the DA and
RT electricity price scenarios generated by the SARIMA and
proposed methods for the 24 hours of a day are calculated and
compared in Figs. 8 and 9, respectively. The results show that
the MAEs of variance, skewness, and kurtosis of the proposed
method are lower than those of the SARIMA-based method,
respectively, in all of the 24 hours. The results indicate that the
scenarios generated by the proposed method can characterize
the volatility, asymmetry, and heavy tails of the electricity
prices more accurately than those generated by the SARIMA-
based method.

C. Results of Different Stochastic Virtual Bidding Strategies

To study the impacts of different scenario generation meth-
ods on the stochastic virtual bidding strategies, 100 scenarios
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Fig. 7. Comparison of the MAEs of the variance of (a) DA and (b) RT
electricity price scenarios generated by different methods.
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are generated for dependent DA and RT electricity prices,
respectively, by using the three different methods and are used
in the stochastic optimization problem (1)–(8), respectively.
Then, by solving the problem (1)–(8), the optimal virtual
bidding strategies are generated. Fig. 10 shows that the DA
virtual bidding curves are different when using different sce-
nario generation methods. When using the SARIMA method,
the virtual bidder submits a decremental bidding curve to buy
power in the DA market. However, when using the historical
data-based and proposed hybrid scenario generation methods,
the virtual bidder submits incremental bidding curves to sell
power in the DA market.
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Fig. 9. Comparison of the MAEs of the kurtosis of (a) DA and (b) RT
electricity price scenarios generated by different methods.
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Fig. 10. Optimal DA virtual bidding curves in a certain hour generated by
using different scenario generation methods.

Based on the generated virtual bidding curves and actual
DA and RT electricity prices, the actual profits of the virtual
bidder are calculated. Table I compares the actual monthly
profits of the virtual bidder from October, 2018 to May, 2019
obtained using the three different scenario generation methods.
The total profits of the 8 months obtained by using the three
different scenario generation methods are all positive. This
indicates that the virtual bidder can generate profit in the
electricity market regardless what scenario generation method
is used. When using the proposed method, the virtual bidding
is profitable in 6 months. However, when using the SARIMA
and historical data-based scenario generation methods, the
virtual bidding is only profitable in 4 months. Moreover, the
proposed method outperforms the other two methods in 6 of
the 8 months, and the total profit obtained using the proposed
method is 24.54% and 4.66% higher than those obtained by
using the historical data-based and SARIMA-based scenario
generation methods, respectively. On the other hand, Table I
shows that the historical data-based and SARIMA-based sce-
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TABLE I
ACTUAL PROFITS OF THE VIRTUAL BIDDER OBTAINED BY USING

DIFFERENT SCENARIO GENERATION METHODS

Method Historical data SARIMA Hybrid
Profit in October 2018 ($) −823.55 −3676.55 −171.16
Profit in November 2018 ($) 3098.20 6234.21 843.49
Profit in December 2018 ($) 1259.48 27513.91 11702.89
Profit in January 2019 ($) 11422.61 8402.69 19254.58
Profit in February 2019 ($) 28757.2 15742.25 21922.16
Profit in March 2019 ($) −42.45 −1394.07 81.27
Profit in April 2019 ($) −283.34 −753.63 −151.95
Profit in May 2019 ($) −445.46 −1027.54 98.74
Total profit of eight months ($) 42892.71 51041.27 53417.48

nario generation methods outperform the proposed hybrid
method in 2 of the 8 months. This is because certain extreme
scenarios of the uncertain electricity prices caused by some
unexpected events, such as sudden power outages, abnormal
weather, etc., cannot be predicted accurately by using the
historical data or the SARIMA model. In those circumstances,
the actual profits obtained by using the three methods tend to
be random. It should be pointed out that the performance of
a scenario generation method should be evaluated by using a
sufficiently large number of data samples, which are hourly
virtual bidding results over a sufficiently long time, such as
8 months, in this paper. As the result, the proposed method
is shown to be statistically better than the other two methods,
which, however, does not guarantee that the proposed method
is always better than the other two methods in all hours, days,
or months for this virtual bidder’s stochastic decision-making
problem.

VI. CONCLUSION

This paper proposed a hybrid electricity price scenario
generation method for generating bidding strategies for virtual
bidders via stochastic optimization. In the proposed method,
price spikes were identified using an outlier detection method;
based on the spikes identified, the historical price data was
decomposed into base and spike components. Then, the base
component scenarios were generated by using the SARIMA
model; and the spike component scenarios were generated by
using the historical data-based method. The final electricity
price scenarios were obtained by adding the base and spike
component scenarios together.

The proposed method was validated and compared with the
historical data and SARIMA-based methods for generating
bidding strategies for a virtual bidder in the PJM market.
The case study results showed that the scenarios generated
by the proposed method can more accurately characterize the
volatility, asymmetry, and heavy tails of the historical data
than the SARIMA-based method. The total profit obtained
using the proposed method was 24.54% and 4.66% higher than
those obtained by using the historical data-based and SARIMA
scenario generation methods, respectively.

In a future study, the proposed outlier detection-based
hybrid scenario generation method can be extended to other
decision-making problems with uncertainties, such as power
system planning and renewable energy trading in electricity
markets. Additionally, a price-maker virtual bidder can be

studied by using a bilevel optimization model in which the
scenarios of other market participants’ bidding strategies can
be generated by using the proposed method and the impact of
the virtual bidder’s bidding capacity on market outcomes can
be analyzed.
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