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Abstract—The strong stochastic disturbance caused by large-
scale distributed energy access to power grids affects the se-
curity, stability and economic operations of the power grid. A
novel multiple-step greedy policy based on the consensus Q-
learning (MSGP-CQ) strategy is proposed in this paper, which
is an automatic generation control (AGC) for distributed energy
incorporating multiple-step greedy attribute and multiple-level
allocation strategy. The convergence speed and learning efficiency
in the MSGP algorithm are accelerated through the predictive
multiple-step iteration updating in the proposed strategy, and the
CQ algorithm is adopted with collaborative consensus and self-
learning characteristics to enhance the adaptability of the power
allocation strategy under the strong stochastic disturbances and
obtain the total power commands in the power grid and the
dynamic optimal allocations of the unit power. The simulations
of the improved IEEE two-area load-frequency control (LFC)
power system and the interconnected system model of intelligent
distribution network (IDN) groups incorporating a large amount
of distributed energy show that the proposed strategy can achieve
the optimal coordinated control and power allocation in the
power grid. The algorithm MSGP-CQ has stronger robustness
and faster dynamic optimization speed and can reduce generation
costs. Meanwhile it can also solve the strong stochastic distur-
bance caused by large-scale distributed energy access to the grid
compared with some existing intelligent algorithms.

Index Terms—Automatic generation control, collaborative
consensus, multiple-step greedy attribute, multiple-level
allocation.

I. INTRODUCTION

THE large-scale access of renewable new energy [1], such
as wind power [2], solar energy [3], and the popular-

ization of electric vehicles [4], is needed in order to deal
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with the energy crisis and increasing environmental pollu-
tion. However, the distributed energy sources and loads are
stochastic, intermittent and difficult to accurately predict [5],
[6], which produces greater challenges to the security, stability
and economic operation of power systems [7]. The traditional
centralized automatic generation control (AGC) can hardly
meet the developing requirements and operational conditions
for the power grid [8]. Therefore, the urgent task is how
to solve the strong stochastic disturbance problem caused by
the large-scale interconnection of distributed energy from the
perspective of distributed AGC.

In recent years, many scholars have begun studying the
distributed AGC strategy. According to the control mode and
implementation mechanism of AGC, the existing distributed
AGC strategies [9] can be divided into two categories: the
AGC “control” strategy and the AGC “power allocation” strat-
egy. Aiming at the “control” strategy of the distributed AGC,
an adaptive dynamic programming strategy for load-frequency
control (LFC) was proposed to obtain the optimal frequency
regulation of multiple-area power system by adapting to the
real-time disturbances and uncertainties [10]. And a multiple-
area AGC strategy based on artificial neural network (ANN)
was presented in [11], which trained with the back propa-
gation algorithm to achieve the optimal control of the area
control error (ACE). Similarly, the authors have also completed
some studies on distributed AGC control strategies based on
the multiple-agent reinforcement learning (MARL) proposed
DCEQ (λ) [12], DWoLF-PHC (λ) [13] and WPH [14]. The
intelligence of the system is improved in these algorithms by
sharing information experience and mutual cooperation among
agents, thus the problem of the optimal cooperative control in
AGC is effectively solved [15]–[17].

An improved algorithm hierarchical Q-learning (HQL) was
proposed in [18] for the “power allocation” strategy of the
distributed AGC to deal with the curse of dimensionality in the
dynamic optimization of power allocation under control per-
formance standards (CPS). And a new consensus transfer Q-
learning (CTQ) was developed in [19] to achieve the effect of
decentralized autonomy and centralized collaboration, which
can effectively utilize historical optimization information for
fast dynamic power allocation. However, the two categories
of the AGC strategies only separately take into account the
“control” or “power allocation” in the distributed AGC sys-
tems, without considering both of them, so they really cannot
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achieve the intelligence from the whole to the branch [20].
The authors observed the long-term simulation data of these

control algorithms and found that their convergence rate still
was slow with the continuous access of large-scale distributed
energy, thus new methods of AGC “control” need to be
explored. A multiple-step greedy policy (MSGP) was proposed
in [21], which is a reinforcement learning (RL) algorithm with
multiple-step greedy attributes. It updates the greedy strategy
of selecting multiple-step action by several iterations, and
quickly converges into an optimal strategy, so as to obtain
a good performance of coordinated control.

Meanwhile, a collaborative consensus algorithm was uti-
lized in the AGC “power allocation” part of the EPCC
strategy [22] to dynamically optimize the power allocation
of generating units. However, the collaborative consensus
algorithm is only a simple first-order consensus algorithm,
which is strongly dependent on the model and is easy to fall
into the local optimal solution. Therefore, it needs to explore
the new algorithms of dynamic optimization allocation. A
consensus Q-learning (CQ) algorithm is proposed in this paper
in order to improve the adaptability of the consensus algo-
rithm in a dynamic stochastic environment, which integrates
a collaborative consensus algorithm and classical Q-learning
algorithm [23] to solve the shortcomings of the first-order
consensus algorithm.

Therefore, a novel multiple-step greedy policy based on
consensus Q-learning (MSGP-CQ) strategy is proposed in this
paper, that is, the algorithm MSGP is used in the “control”
part of AGC and the algorithm CQ is used in the “power
allocation” part of the unit. The cooperative control strategy,

with multiple-step greedy attributes, is combined with the
optimal power allocation method with self-learning ability to
form a MARL algorithm. The proposed strategy is adopted
to obtain the total power command and the dynamic optimal
allocation of the unit for the regional power grid. Then the
optimal cooperative control of the distributed AGC is obtained
from the whole to the branch, which solves the strong stochas-
tic problem caused by the large-scale access of distributed
energy to the grid. An improved IEEE two-area LFC power
system is employed and the interconnected system model of
intelligent distribution network (IDN) groups incorporating a
large amount of distributed energy is constructed to simulate
and verify the effectiveness of the proposed strategy. The
results show that the proposed strategy MSGP-CQ can reduce
the generation cost of generating units, has stronger robustness
and faster dynamic optimization speed, and can solve the
strong stochastic disturbance caused by large-scale access
of distributed energy compared with the existing intelligent
algorithms.

II. AGC FRAMEWORK BASED ON MSGP-CQ STRATEGY

The distribution networks incorporated with a large number
of distributed energy resources can be virtually divided into
several small area grids according to the cut-set method of
graph theory, and the control framework is shown in Fig. 1.
Each small area grid is regarded as a territorial power grid,
which maintains the power frequency stability by controlling
the power exchange at the regional boundary. The territorial
power grids can be actively decoupled and enter the island
operation mode while serious faults happened in the power
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system, so that the collapse of the whole power grid can be
avoided. And each territorial grid consists of several generator
unit groups (GUG) of the same type.

The MSGP-CQ strategy, based on the multiple-level control
mode, is proposed to achieve the optimal coordinated control
and power allocation of the AGC system in the framework of
distribution networks composed of multiple territorial power
grids. The so-called “multiple-level” is based on the multiple-
level control strategy consisting of the AGC “control” part
and unit “power allocation” part. The “control” part of AGC
is the first level in the proposed multiple-level control mode.
The MSGP control algorithm with heterogeneous attributes of
the multiple-agent stochastic game is adopted to obtain the
total power command in each territory power grid. And the
unit “power allocation” of AGC is the second to third level
in the control mode. The first level of the CQ algorithm is
applying a new HQL (λ) algorithm with the multiple-step
backtracking eligibility trace to dynamically allocate the total
power command obtained in each territorial grid to the GUGs.
The second level is that each GUG uses a consensus algorithm
with homogeneous attributes of multiple-agent system collabo-
rative consensus (MAS-CC) to dynamically allocate the power
command of each GUG to each generator unit.

III. MSGP-CQ STRATEGY

The MSGP-CQ strategy is proposed by combining the
acquisition of total power commands and the dynamic optimal
power allocation of the units to obtain the optimal solution of
the distributed AGC, and to solve the problem of the stochastic
disturbance caused by large-scale distributed energy access to
the power grid.

A. MSGP Control Algorithm

The algorithm MSGP is proposed as the “control” part of
AGC to obtain the total power commands of the territorial
power grids, which incorporates multiple-step greedy policy
iteration with faster convergence speed. It has a higher con-
vergent multiple-step look-ahead greedy attribute.

However, the monotonic improvement of action selection
policy is not guaranteed by multiple-step greedy policy below
a certain step-size value. Therefore, the one-step greedy policy
with the largest immediate reward is introduced as the action
selection policy while the multiple-step greedy policy is not
monotonously improved.

The action of one-step greedy policy a1-step and the action
of multiple-step greedy policy ak are as follows, based on the
above two action selection policies.

a1-step(s) = argmax
a∈A

Q(s, a) (1)

ak(s) = argmax
a∈A

Qk(s, a) (2)

where Q(s, a) is the Q value function of one-step greedy
policy under the state s and the action a; Qk(s, a) is the Qk

value function of the multiple-step greedy policy under the
state s and the action a, and A is the set of actions.

The agent calculates the current value function errors of
the one-step greedy policy and multiple-step greedy policy

through the reward value R1 obtained in the current explo-
ration, which is given as follows.

δn = R1(sn, sn+1, an)+

γ1Qn(sn+1, a1-step)−Qn(sn, an) (3)

δk,n = R1 (sn, sn+1, an) + γ1(1− k)V π
n (sn+1)+

kγ1 max
ak

Qk,n(sn+1, ak)−Qk,n(sn, an) (4)

where R1(sn, sn+1, an) is the reward function of the agent
from the state sn to the state sn+1 under the selected action
an; γ1 is the reward discount factor; k is the step-size factor;
V π(sn+1) is the Q value function expectation under the state
sn+1 and the decision-making policy π; δn is the Q value
function error of the agent at the nth iteration, and δk,n is the
Qk value function error of the agent at the nth iteration.

The algorithm MSGP is updated iteratively as follows:

Qn+1(sn, an) = Qn(sn, an) + α1δn (5)

Qk,n+1(sn, an) = Qk,n(sn, an) + α1δk,n (6)

where α1 is the learning rate of the value function.
The decision-making policy with a multiple-step greedy

attribute is iteratively obtained by updating the calculated Q
and Qk value functions, and the convergent optimal strategy
is finally achieved, which is iteratively updated as follows:

πn+1(sn) = πn(sn)+

β1 (bsn (Qn+1, Qk,n+1, πn)− πn(sn)) (7)

where πn(sn) is the value function of the decision-making
policy under the state sn at the nth iteration; β1 is the learning
rate of policy iteration, and bs(Q,Qk, π) is the determinant
equation to guarantee the monotonic improvement of the
decision-making policy π, which is given as follows.

bs (Q,Qk, π) =

{
ak(s), Q (s, ak) ⩾ V π(s)

a1-step(s), otherwise
(8)

It is shown in (8) that the value of bs(Q,Qk, π) chooses the
action of multiple-step greedy policy ak if the Q value function
under the state s and the action of multiple-step greedy policy
ak is not less than the Q value function expectation under
the state s and the decision-making policy π. That is the
multiple-step greedy policy is adopted to ensure monotonic
improvement. Otherwise, the action of one-step greedy policy
a1-step is chosen.

With the sufficient trial-and-error iterations, the value func-
tion of the decision-making policy will gradually converge to
a stable optimal action to accelerate the convergence speed of
the RL policy, then an optimal control policy will be finally
acquired.

B. CQ Allocation Algorithm

The algorithm CQ is adopted to optimize the power al-
location of each unit in the territorial power grid after the
total power command of the AGC control is acquired. It is
primarily composed of two power allocation levels and their
corresponding allocation algorithms.
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1) HQL (λ) Algorithm
The introduction of the HQL (λ) algorithm can achieve

the process of interactive learning and self-learning between
GUGs, that is, the initial allocation of power instructions
between GUGs. The linear weighted sum of ∆Perror and Ctotal

are selected as the reward function considering the optimal
allocation effect of this power allocation level. Due to the
inconsistency of physical dimensions between ∆Perror and
Ctotal, the order magnitude of Ctotal is divided by 1,000, which
is classified into the same order of ∆Perror, so that the two
control objectives of ∆Perror and Ctotal are balanced. The
reward function is chosen as follows.

R2 (sn, sn+1, an) = −∆P 2
error −

Ctotal

1000
(9)

The eligibility trace based SARSA (λ) is selected for the
multiple-step iteration updating process to obtain the multiple-
step information updating mechanism of the RL algorithm,
which is expressed as shown in (10).

en+1(s, a) =

{
1, (s, a) = (sn, an)

γ2λen(s, a), otherwise
(10)

where en(s, a) is the eligibility trace at the nth iteration
under the state s and the action a; γ2 is the reward discount
factor, and λ is the eligibility trace attenuation factor. The
eligibility trace records the frequency of each joint action
strategy in detail, and updates the iteration Q value of each
action strategy. While the current action state pair is the same
as the next step, the action state pair will be given a higher
backtracking reward [24]. Therefore, the eligibility trace value
of the action state pair is usually set to 1.

The agent evaluates the calculation of the value function
errors, which is given as follows:

δn = R2(sn, sn+1, an) + γ2Qn(sn+1, a1-step)−
Qn(sn, an) (11)

Mn = R2(sn, sn+1, an) + γ2Qn(sn+1, a1-step)−
Qn(sn, a1-step) (12)

where δn is the Q value function error of the agent at the nth
iteration, and Mn is the evaluation of the function error.

The algorithm HQL (λ) is updated iteratively as follows:

Qn+1(s, a) = Qn(s, a) + α2Mnen(s, a) (13)
Qn+1(sn, an) = Qn+1(sn, an) + α2δn (14)

where α2 is the value function learning factor.
The total power command of each territorial grid is taken as

a state variable. And it is discreted into (−∞, −650], (−650,
20), (20, 850), and [850, +∞).
2) Collaborative Consensus Algorithm

In the collaborative consensus algorithm, the ramp time
is selected as the consensus variable, and each GUG is
regarded as a hierarchical multiple-agent network [25]. The
collaborative consensus algorithm for ramp time is to make
each agent update its own information state timely based on
the ramp time of its neighboring agents, so that the information
state of all agents in the network converges to a common value.

Supposing that the GUG is a multiple-agent network with the p
agents, which are respectively indicated by p(p = 1, . . . , P ).
The relationship between the interactive agents is indicated
by the graph G = (V,E,A). The node set is V = (Vp,
p = 1, . . . , P ), and each node indicates an agent. The edge
set is E ∈ V × V , and the element indicates the relationship
between the interactive agents by a directed or undirected
communication connection [26].

Assume that the connection between the interactive agents
vp and vq is resolved by the probability bpq . The laplace
matrix L = [lpq] can reflect the topology of the multiple-agent
network [27], which is described as follows:{

lpp =
∑P

q=1,p̸=q bpq

lpq = −bpq
, ∀p ̸= q (15)

The ramp time of each generator unit in GUG is selected as
the consensus variable, and more disturbances are assumed by
the leader of the units with a larger ramp rate in this paper. The
power command of the wth unit of the GUGi in the territorial
power grid is described as shown in (16).

∆Piw = tiw ×∆P rate
iw (16)

where tiw and ∆P rate
iw are the ramp time and ramp rate of the

wth generator unit of the GUGi. And ∆P rate
iw is described as

follows:

∆P rate
iw =

{
∆P rate+

iw , ∆Pi > 0

∆P rate−
iw , ∆Pi < 0

(17)

The ramp time of each follower is updated by (18) in GUG.

tiw[k + 1] =

Wi∑
v=1

dwv[k]tiv[k] (18)

where Wi is the generator units number of the GUGi, and
dwv[k] indicates the term [w, v] of the random row matrix
D = dwv[k] ∈ RWi×Wi of discrete time k, which is described
as follows:

dwv[k] =
|lwv|∑Wi

v=1 |lwv|
, w = 1, 2, . . . ,Wi (19)

And the ramp time of the leader is selected as follows
according to [28]:

tiw[k + 1] =


Wi∑
v=1

dwv[k]tiv[k] + σi∆Perror-i, if ∆Pi > 0

Wi∑
v=1

dwv[k]tiv[k]− σi∆Perror-i, if ∆Pi < 0

(20)

where σi is the factor of the power regulation in GUGi, and
∆Perror-i is the power deviation for GUGi, which is shown
in (21).

∆Perror-i = ∆Pi −
Wi∑
w=1

∆Piw (21)

Meanwhile, the power commands and the maximum ramp
time are described in (22) and (23).

∆Piw =

{
∆Pmax

iw , ∆Piw > ∆Pmax
iw

∆Pmin
iw , ∆Piw < ∆Pmin

iw

(22)
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tiw = tmax
iw =


∆Pmax

iw

∆P rate+
iw

, ∆Piw > ∆Pmax
iw

∆Pmin
iw

∆P rate−
iw

, ∆Piw < ∆Pmin
iw

(23)

where ∆Pmax
iw and ∆Pmin

iw are the maximum and minimum
capacity of the wth units in GUGi.

The weighed factor can be selected as shown in (24) while
the power command ∆Piw over the limitation.

bwv = 0, v = 1, 2, · · · ,Wi (24)

C. Reward Function Selection

With selecting the weighted sum of ACE and Ctotal as the re-
ward function of the AGC control algorithm, a larger weighted
sum will lead to a smaller reward. However, considering the
physical dimension inconsistency between ACE and Ctotal,
the Ctotal is divided into 50,000, that is, ACE and Ctotal are
classified into the same order of magnitude, which reflects
the significance of the comprehensive objective function. And
finally, the reward function of MSGP is defined as follows:

R1 (sn, sn+1, an) = −µ [ACE(n)]
2 − (1− µ)Ctotal(n)

50000
(25)

where ACE (n) is the absolute instantaneous value of the ACE
at the nth iteration; Ctotal(n) is the actual generation cost of all
generator units at the nth iteration; µ and 1−µ are the reward
weighting ratios of ACE and Ctotal. The parameter µ is set to
0.5 because of the two control performance indexes are of the
same importance, that is, ACE and Ctotal can be regarded as
having the same weight.

D. Parameter Setting

The parameters of the system need to be set properly in
the design of the distributed AGC. It proves that pretty good
effects can be obtained by setting the parameters through
enough simulations and trial-and-errors as shown in Table I.

TABLE I
AGC PARAMETER SETTINGS

Parameters Quantity Setting
value

α1 learning rate of the MSGP algorithm 0.1
α2 learning rate of the CQ algorithm 0.5
β learning rate of the policy iteration 0.3
γ1 reward discount factor of the MSGP algorithm 0.9
γ2 reward discount factor of the CQ algorithm 0.9
k step-size factor of the MSGP algorithm 0.88
λ eligibility trace attenuation factor 0.9

1) The learning rate of value function α is set between 0
and 1, which weights the stability of the MSGP-CQ strategy.
A larger value α can accelerate the policy iteration learning
rate of the Qk and Q value function, while a smaller α can
enhance the system stability. And the learning rate α1 of the
MSGP algorithm and the learning rate α2 of the CQ algorithm
are selected as 0.1 and 0.5, respectively according to trial and
error.

2) The learning rate of policy iteration β is set between
0 and 1, which weights the impact of the action selection

policy on policy iteration updating. And a larger value β can
accelerate the convergence rate of policy improvement, while
a smaller β can ensure that the system can fully explore the
other actions in the action space. Finally, the value β is chosen
as 0.3 through trial and error.

3) The reward discount factor γ is also set between 0 and 1,
which weights the importance of immediate rewards and future
rewards. The more far-sighted the agent is, the more attention
it attaches to the long-term rewards in the future when γ is
larger. Meanwhile, more attention is attached to the immediate
rewards when γ is close to 0. The reward discount factor γ1
of the MSGP algorithm and the reward discount factor γ2
of the CQ algorithm are both selected to be 0.9 through the
simulations.

4) The step-size factor of multiple-step greedy policy k is
between 0 and 1, which calculates the step-size number of
greedy policies for the action selection. The control perfor-
mance is the best while the step-size is set to 5. Therefore the
parameter k is calculated to be 0.88.

5) The eligibility trace attenuation factor λ allocates the
credits among state-action pairs. Usually, the parameter is
between 0 and 1, which determines the convergence rate and
the non-Markov decision process effects for the large time
delay system. And the factor λ is chosen as 0.9 after many
simulations.

E. MSGP-CQ Procedure

The overall MSGP-CQ procedure of the execution steps is
described in Fig. 2.

IV. ANALYSIS OF EXAMPLES

A. The Improved IEEE Two-Area LFC Power System

One equivalent generator in each area is replaced by three
types of GUGs: the thermal power (TP), the liquefied natural
gas (LNG) and large hydropower (LH) based on the IEEE
standard two-area LFC power system model [29], [30]. Mean-
while, the type, and number and parameters of the generator
units in area B are exactly the same as area A. The structure of
the improved model of the IEEE two-area LFC power system
is shown in Fig. 3. And the parameters of the model and the
AGC generator units are set according to [16].

The real-time data of areas A and B are collected during the
operation of the AGC system, and the current state of each area
is observed to determine the action. The two areas share and
exchange the information through AGC controllers to avoid
the control inconsistency between the two areas. Thereby the
optimal strategy can be quickly achieved.
1) Pre-learning

The algorithm MSGP-CQ needs sufficient pre-learning to
optimize the Qk and Q functions before on-line operations,
that is, the algorithm is optimized and the optimal set of
actions is acquired through random exploration and off-line
trial-and-error training. In the pre-learning stage, a continuous
sinusoidal load disturbance with the period of 5,000 s, the
amplitude of ± 1,000 MW and the duration of 30,000 s is
applied to areas A and B.
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Calculate the value function error δn by (11) and

evaluation of value function error Mn by (12)

Obtain the reward R1 (sn, sn+1, an) via (26)

Update the multiple-step greedy policy
πn+1 (sn) by (7)
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Qk,n+1 (sn, an) according to (5) and (6)
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Initialize Q0, Qk,0, R1, R2, π0, e0,

for all s S, a A. Set all parameters and give

the initial state s0, n=0 
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M
S

G
P

  
al

g
o
ri

th
m

n=n+1

Output the total power command ∆PΣ

∆Piw over the limitaion by (22)

Update the value function Qn+1 (sn, an)

according to (13) and (14)

Output the power command of each GUG
∆Pi (i=1,2,…,m) 

Calculate the wth unit power command
∆Piw by (16)

Execute the consensus algorithm
according to (18) and (20)

Update the ramp time tiw according to (23)

Update the row random matrix D by (15) and (19)

Calculate the power deviation ∆Perror-i of GUGi

|∆Perror-i| <εi

Output the power command of wth unit ∆Piw

Determine the ramp rate via (17)

Update the eligibility trace en (s, a) via (10)

Yes

No

Yes

No

Fig. 2. Execution steps of the MSGP-CQ strategy.

The algorithm will approach a deterministic optimal strategy
after enough explorations, so that it can execute optimal
action quickly as the system obtains the real-time operation
information. The AGC system also outputs the adjustment
command of the total power generation in real-time. The pre-
learning effect of MSGP-CQ is shown in Fig. 4, and the output
of AGC controller based on the MSGP-CQ strategy has com-
pletely tracked the load disturbance after only experiencing
the optimization of about 2,000 s through trial-and-error. It
means that MSGP-CQ is a certain optimal strategy with a
faster convergence rate approximately and can be run in real
environments after massive training exploration.

The four algorithms MSGP-CQ, EPCC [22], HQL [18],
and WPH [14] are put into the AGC system for pre-learning
to compare the convergence effects. The 2-norm Q function
matrix ∥Qk(s, a)−Qk−1(s, a)∥2 ⩽ ς (ς = 0.01) is employed
as a criterion for pre-learning to achieve an optimal strategy.
Both the Q values and look-up table will be saved after
pre-learning to ensure the application of MSGP-CQ into a
real power system. The results of the Q-function differential
convergence in area A during the pre-learning of the four
algorithms are shown in Fig. 5. The convergence results
show that the convergence speed of MSGP-CQ is improved
by 81.25%–94.44% compared with other three algorithms. It
illustrates that the convergence speed in the MSGP-CQ is
much better, and the update stability of the value function
is also improved very well compared with other algorithms.
2) White Noise Load Disturbance

The load disturbance of stochastic white noise is introduced
into the improved two-area LFC power system to simulate the
random disturbance caused by distributed energy access, and
further verify the control performance in the proposed strategy
after the pre-learning. It can be seen that the output power of
the AGC controller can track the load disturbance accurately
and quickly and maintain stable following in Fig. 6, while
the frequency deviation ∆f and ACE are always in the ideal
range. And the total power command and the unit actual output
can balance the load disturbance placidly. It indicates that the
MSGP-CQ controller has a faster and smoother tracking effect
on the load change, which fits the character that the smoother
the unit’s secondary frequency modulation process, the higher
the generation efficiency. It also shows that the MSGP-CQ
strategy has stronger adaptability in the distributed energy
grid-connected environment.

The control performance of the four intelligent algorithms
MSGP-CQ, EPCC, HQL, and WPH, is tested with the stochas-
tic white noise disturbance for 24 hours. In this case, |∆f | is
the average value of the absolute values for the frequency
deviation, |ACE| is the average value of the absolute value
for ACE, and all the indicators are the average values in the
simulation time. CPS1 evaluates the effect of ACE changes
on system frequency, and CPS2 evaluates the ACE ampli-
tude. The CPS index considers the distribution of CPS1
and CPS2 indicators, which are mainly used to evaluate the
control performance of the entire AGC system. The statistical
results are shown in Table II. The algorithm MSGP-CQ can
decline |∆f | by 15.51%–67.95% and |ACE| by 15.21%–
50.83% compared with the other intelligent algorithms in area
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Fig. 3. The improved model of the IEEE Two-area LFC power system.
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Fig. 4. The pre-learning of the MSGP-CQ strategy in area A.

A. And the value of CPS1 and the value of CPS2 are also
improved by 0.77%–2.17% and by 1.24%–2.10% respectively.
It can be seen that the MSGP-CQ controller has a significant
control effect on frequency with less output fluctuation, which

TABLE II
THE CONTROL PERFORMANCE STATISTICS OF THE FOUR ALGORITHMS

UNDER WHITE NOISE DISTURBANCE

Area Algorithm |∆f | (Hz) |ACE| (kW) CPS1 (%) CPS2 (%)

Area A

MSGP-CQ 0.0158 8.64 199.04 98.28
EPCC 0.0187 10.19 198.27 97.04
HQL 0.0404 15.67 198.01 97.26
WPH 0.0493 17.57 196.87 96.18

Area B

MSGP-CQ 0.0175 9.06 198.84 99.10
EPCC 0.0189 10.57 198.05 97.25
HQL 0.0398 15.94 197.59 96.96
WPH 0.0452 18.29 196.03 96.07

can provide better control performance for AGC units in the
condition of reducing control costs and the unit abrasion.

B. The Interconnected Power System of IDN Groups

In this paper, a model of the three-area interconnected power
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Fig. 6. The effect of MSGP-CQ under white noise disturbance.

system in the IDN groups with a large-scale distributed energy
and load is built, which includes photovoltaic (PV), wind farm
(WF), electric vehicle (EV), small hydropower (SH), micro-
gas turbine (MT), diesel generator (DG), biomass energy (BE)
and fuel cell (FC). It is shown in Fig. 7 that the model structure
of the interconnected power system in IDN groups includes
three areas: IDN 1, IDN 2 and IDN 3. The regulating power
of the interconnected power system model in IDN groups
are 2,350 kW, 2,590 kW and 2,350 kW, respectively. Each
generator unit is regarded as a different agent, and the weighed
factor bwv of the agents is set to 1. The parameters of the
model and the AGC generator units are set according to [31]–
[33].
1) Impulsive Load Disturbance

The impulsive load disturbance is introduced to simulate the

regular sudden increase and decrease of the load in the power
system. The output power of each generator unit is regulated
by the AGC controller and its own governor. The control
performance of four intelligent algorithms MSGP-CQ, EPCC,
HQL and WPH is tested with the impulsive load disturbance
of 10,000 s. It shows the controller output in the different
intelligent algorithms under the impulsive load disturbance in
Fig. 8. It can be obviously seen that MSGP-CQ has smoother
and faster regulation commands. The algorithm can reach
better control effects, with faster dynamic optimal rate and
stronger convergence.

Meanwhile, it is also shown in Fig. 9 that MSGP-CQ
can decline |∆f | by 19.62%–53.80% and |ACE| by 11.69%–
56.06%. The value of CPS1 and the value of CPS2 are also
improved by 0.72%–6.34% and by 2.15%–9.02% respectively.
It fully proves that the control performance statistics of MSGP-
CQ algorithm are better than that of the other algorithms with
the impulsive load disturbance. And it also manifests that the
MSGP-CQ controller has superior relaxation characteristics
and better control performance.
2) The AGC Control Performance Under a Strong Stochastic
Disturbance

The stochastic impulsive load disturbance is applied to the
model of the interconnected power system in the IDN groups
in order to verify the application effect of MSGP-CQ in a
strong stochastic environment. Similarly, the long-term control
performance in the four intelligent algorithms MSGP-CQ,
EPCC, HQL and WPH under the strong stochastic environ-
ment is tested with the stochastic impulsive load disturbance
for 24 hours.

The statistical results are shown in Table III, in which the
generation cost is the sum of the total regulation cost of all
generator units within 24 hours. It can also be calculated
that MSGP-CQ can decline the cost of power generation by
US$3,335–US$22,152 and |∆f | by 28.24%–58.78%. It also



XI et al.: AUTOMATIC GENERATION CONTROL BASED ON MULTIPLE-STEP GREEDY ATTRIBUTE AND MULTIPLE-LEVEL ALLOCATION STRATEGY 289

∑
+

Power
Limiter

Power
Limiter

Power
Limiter

Power
Limiter

Power
Limiter

Power
Limiter

⋮

⋮

GUG 1

1

350

∑
1

KGS / 1/s

Turbine

R1

∑

+

+

+

∑

350

/

∑∑ KT

Lmax

+

GUG 2

⋮

∑

350

+
/

GUG 3

∑
+

⋮

⋮

350

/

∑
+

⋮

⋮

GUG 4

350

∑ KGS

R1

/ 1/s

∑

+

+

+

∑
+

⋮

350

/

∑

⋮

∑

+

+

+

+

+

GUG 5

GUG 6

∑

∑

∑

+

+

∑
s

2πT23

IDN 1 

IDN 2 

IDN 3 

⋮

⋮

⋮

∆PSH

∆PWF

∆PMT

∆PEV

∆PFC

∆PPV

∆fIDN1

+

+

+

+

+ +

+

+

∆PIDN1

∆fIDN1

∆PIDN1

∆fIDN1

∆PIDN1

∆fIDN1

∆PIDN2

∆fIDN2

∆PIDN2

∆fIDN2

∆PIDN2

∆fIDN2

GovernorTime delay

Inverter

+

Time delay Governor

Governor

Governor

Governor

Time delay

Time delay

Time delay

Time delay

Rate
Limiter

Rate
Limiter

Rate
Limiter

Rate
Limiter

Rate
Limiter

Rate
Limiter

Turbine

Turbine

Turbine

Turbine

1+sTSH

1

1+sTMT

1

1+sTGM

1

1+sTFC

1

1+sTSH

1

1+sTBE

1

1+sTDG

1

1+sTGD

1

1+sTMD

1

1+sTMB

0.4

1+sTGB

2sTSD+1

sTSD+1

1

1+sTGS

1

1+sTMM

1

1+sT1

1+sTGS

1−sTMS

1+0.5sTMS

1+sTR

sR2TR

sKF+1

sTF+1

1+sTR

sR2TR

1−sTMS

1+0.5sTMS

∆PEV

∆PBE

∆PDG

∆PWF

∆PSH

∆PPV

∆fIDN2

0.02sTSB+1

sTSB+1

Kp

1+sTp

Kp

1+sTp

s

2πT12

Fig. 7. The interconnected power system model of IDN groups.



290 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 1, JANUARY 2022

0 2000 4000 6000 8000 10000

0

1000

Time (s)

O
u
to

u
t 

(k
W

)

0 2000 4000 6000 8000 10000
Time (s)

0

1000

O
u
tp

u
t 

(k
W

)

HQL WPH

EPCCMSGP-CQ

Fig. 8. The controller output in the different intelligent algorithms under the impulsive load disturbance.

0.0127

0.0158

0.0238

0.0294

0

0.01

0.02

0.03

(a)

17.61
19.94

31.72

40.07

0

15

30

45

(b)

198.21
197.49

193.61

191.87

185

190

195

200

 C
P

S
1
 (

%
)

(c)

97.54

95.39 94.73

88.52

85

90

95

100

(d)

MSGP-CQ
EPCC
HQL
WPH

|Δ
f 

| (
H

z)

|A
C

E
| (

k
W

)
C

P
S

2
 (

%
)

Fig. 9. The control performance in the different intelligent algorithms.

TABLE III
THE DATA STATISTICS UNDER STRONG STOCHASTIC DISTURBANCES

Area Algorithm |∆f | (Hz) |ACE| (kW) CPS1% CPS2% Generation cost (× 104 US$)

IDN 1

MSGP-CQ 0.0216 16.73 199.21 99.67 15.0431
EPCC 0.0301 23.47 196.08 95.03 15.3766
HQL 0.0393 29.65 192.99 91.93 16.5142
WPH 0.0524 35.82 187.81 87.22 17.2583

IDN 2

MSGP-CQ 0.0199 15.83 199.42 99.14 16.3723
EPCC 0.0327 21.55 197.15 94.31 16.5960
HQL 0.0399 29.98 191.57 90.42 16.9793
WPH 0.0547 34.77 189.37 88.37 18.3902

IDN 3

MSGP-CQ 0.0231 17.29 199.01 99.01 15.0286
EPCC 0.0382 23.02 196.36 93.22 15.4853
HQL 0.0460 30.59 192.95 90.63 16.5540
WPH 0.0537 36.37 185.21 86.57 17.1517
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declines |ACE| by 28.72%–53.29% and improves the values
of CPS1 and CPS2 by 3.31%–11.40% and by 4.64%–12.45%
respectively, compared with the other intelligent algorithms
in IDN 1. It can reduce the mechanical wear and economic
cost caused by frequent operation in the unit. It can also be
seen in the data analysis that MSGP-CQ has higher economy,
stronger adaptability and better coordination and optimization
control performance than that of the other three intelligent
algorithms. According to the two examples, whether it is
under the circumstance of impulse load disturbance or strong
stochastic disturbance, MSGP-CQ can satisfy the AGC control
performance standards and have more excellent control perfor-
mance. The effectiveness and expandability of the algorithms
referred in this paper have been verified in the experiment
results.

V. CONCLUSION

A novel MSGP-CQ strategy is proposed to achieve the
dynamic optimal control of the total power command for the
distributed AGC and the optimal power allocation for gener-
ator units, so as to solve the problem of the strong stochastic
disturbance caused by the large-scale distributed energy access
to the power grid. Thereby, the overall coordinated optimal
control of the power system is obtained.

The algorithm MSGP with the multiple-step greedy attribute
is combined with the algorithm CQ with collaborative con-
sensus in the proposed strategy. As a control algorithm in
the strategy, MSGP updates the greedy policy of the action
selection by several multiple-step look-ahead iterations, and
quickly converges to the optimal policy. With the interactive
collaboration and self-learning characteristics, CQ is used as
the power allocation algorithm by constructing a hierarchical
power allocation mode. It improves the adaptability of the
consensus algorithm in the dynamic stochastic environment.

The improved model of the IEEE two-area LFC power
system and the model of the interconnected power system
in the IDN groups incorporating large amounts of distributed
energy and load are constructed to simulate and verify the
proposed strategy. The results illustrate that the MSGP-CQ
strategy can reduce the generation cost of generator units,
improve the utilization of distributed energy, and have a
stronger robustness and faster dynamic optimization speed
compared with that of the traditional intelligent algorithms.
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Montréal, Canada, 2018.

[22] L. Xi, Y. D. Li, Y. H. Huang, L. Lu, and J. F. Chen, “A novel
automatic generation control method based on the ecological population
cooperative control for the islanded smart grid,” Complexity, vol. 2018,
pp. 2456963, Aug. 2018.

[23] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol.
8, no. 3–4, pp. 279–292, May 1992.

[24] R. S. Sutton and A. G. Barto, “Reinforcement learning: an introduction,”
IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054, Sep.
1998.

[25] Q. Y. Sun, R. Y. Fan, Y. S. Li, B. N. Huang, and D. Z. Ma, “A dis-
tributed double-consensus algorithm for residential WE-energy,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4830–4842,
Aug. 2019.

[26] G. Merlet, T. Nowak, H. Schneider, and S. Sergeev, “Generalizations
of bounds on the index of convergence to weighted digraphs,” Discrete
Applied Mathematics, vol. 178, pp. 121–134, Dec. 2014.



292 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 1, JANUARY 2022

[27] L. H. Ji, Y. Tang, Q. Liu, and X. F. Liao, “On adaptive pinning consensus
for dynamic multi-agent networks with general connected topology,”
in 2016 International Joint Conference on Neural Networks (IJCNN),
Vancouver, BC, Canada, 2016.

[28] L. Sun, F. X. Yao, S. C. Chai, and Y. G, Xu, “Leader-following
consensus for high-order multi-agent systems with measurement noises,”
in 2016 8th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), Hangzhou, China, 2016.

[29] L. Xi, J. N. Wu, Y. C. Xu, and H. B. Sun, “Automatic generation
control based on multiple neural networks with Actor-Critic strategy,”
IEEE Transactions on Neural Networks and Learning Systems, 2020,
doi: 10.1109/TNNLS.2020.3006080.

[30] G. Ray, A. N. Prasad, and G. D. Prasad, “A new approach to the design
of robust load-frequency controller for large scale power systems,”
Electric Power Systems Research, vol. 51, no. 1, pp. 13–22, Jul. 1999.

[31] L. Xi, L. Zhang, J. C. Liu, Y. D. Li, X. Chen, L. Q. Yang, and S. X.
Wang, “A virtual generation ecosystem control strategy for automatic
generation control of interconnected microgrids,” IEEE Access, vol. 8,
pp. 94165–94175, May 2020.

[32] A. K. Saha, S. Chowdhury, S. P. Chowdhury, P. A. Crossley, “Modelling
and simulation of microturbine in islanded and grid-connected mode as
distributed energy resource,” in 2008 IEEE Power and Energy Society
General Meeting-conversion and Delivery of Electrical Energy in the
21st Century, Pittsburgh, PA, USA, 2008.

[33] L. Xi, L. Zhou, L. Liu, et al., “A deep reinforcement learning algorithm
for the power order optimization allocation of AGC in interconnected
power grids,” CSEE Journal of Power and Energy Systems, vol. 6, no.
3, pp. 712–723, 2020.

Lei Xi received the M.S. degree in Control Theory
and Control Engineering from Harbin University of
Science and Technology, and the Ph.D. degree in
Electrical Engineering from South China University
of Technology, China, in 2016. Currently, he is
an associate professor in the College of Electrical
Engineering and New Energy, China Three Gorges
University. His research interests include load fre-
quency control, artificial intelligence techniques and
automatic generation control.

Le Zhang received the bachelor degree in Electrical
Engineering from Southwest University of Science
and Technology, China, in 2018. He is currently
pursuing his M.S. degree at the College of Electrical
Engineering and New Energy, China Three Gorges
University. His research interests include smart gen-
eration control and artificial intelligence techniques.

Yanchun Xu received the Ph.D degree from the
Department of Electrical Engineering, Harbin Insti-
tute of Technology(HIT), Harbin, China, in 2010.
She works at the China Three Gorges University,
Yichang, China. Her research interests include power
quality detection with distributed generation, har-
monics detection of power systems, as well as matric
converters applied in power systems.

Shouxiang Wang (SM’12) received the B.S. and
M.S. degrees from Shandong University, Jinan,
China, in 1995 and 1998, respectively, and the Ph.D.
degree from Tianjin University, Tianjn, China, in
2001, all in electrical engineering. He is currently a
Professor in the School of Electrical and Information
Engineering at Tianjin University. His main research
interests are distributed generation, microgrid and
smart distribution systems.

Chao Yang received the M.S degree in Control
Engineering from China Three Gorges University,
China in 2017. Currently, he is a lecturer in the
College of Electrical Engineering and New Energy
at China Three Gorges University, Yichang, China.
His research interests include Machine vision and
industrial control technology.


