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Incorporating Optimal Operation Strategies into
Investment Planning for Wind/Electrolyser System

Yi Zheng , Shi You, Henrik W. Bindner, and Marie Münster

Abstract—As a conducive and prevalent technique for pro-
ducing green hydrogen, hybrid wind-based electrolyzer system
requires both effective planning and operation to realize its
techno-economic value. Majority of the existing studies are
focused on either of these two, but none of them sufficiently
emphasize on their interrelationship. In this paper, we pro-
pose a two-stage multi-objective optimization framework to
reveal optimal investment plans considering various operational
strategies, such as economic revenue maximization and green
hydrogen production maximization. The results reveal that: 1)
A trade-off exists between system investment and the capacity
to accomplish optimal operational performance. For example,
the system demands flexibility to boost operational profits, but
this results in high investment costs. 2) Differentiated operation
objectives generate different component capacities during the
planning phase. 3) Regarding a wind-hydrogen system with
gas storage, the Pareto optimal design manifesting the trade-off
between system investment and prime operational performance
can be actualized along the margins of a feasible solution.

Index Terms—Hybrid wind-hydrogen system, multi-objective
optimization, optimal operation, planning, sizing.

NOMENCLATURE

A. Abbreviations

HWHS Hybrid wind hydrogen system.
AEL Alkaline electrolyser.
PEM Proton exchange membrane electrolyser.
SOEC Solid oxide electrolyser.
IRR Internal rate of return.
NPV Net present value.
NPC Net present cost.
RLU Upward ramping rate limit.
RLD Downward ramping rate limit.
GLS GreenLab Skive.
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I. INTRODUCTION

Hydrogen is perceived as a promising energy carrier in
the future energy system mainly due to its intrinsic green
properties and wide use as feedstocks across many indus-
tries [1]. However, most of the hydrogen used currently is
derived from the reforming of methane, and hence, does not
fully qualify as a non-polluting or clean energy [2]. Green
hydrogen, also referred to as clean hydrogen, therefore, has
gained considerable attention in recent years. It refers to
hydrogen produced by pure renewable energy sources without
releasing any CO2 during its total life cycle. Wind energy and
solar energy are primary renewable sources used for producing
green hydrogen and the former accounts for the greater share
of the interest [3]–[5]. Numerous projects and studies on
hybrid wind hydrogen system (HWHS) have been performed
all around the world. These projects mainly focus on system
configuration, demonstration, and techno-economic analysis
to demonstrate the feasibility of the said green hydrogen
production pathway.

HWHSs can be categorized into off-grid and on-grid ones.
Certain studies concentrate on the off-grid configuration in
rural areas considering its profitability of producing green
hydrogen [6], [7]. The associated long-term sizing and plan-
ning problems are also investigated [8]. For an on-grid sys-
tem, inclusion of the power grid significantly affects the
system performance, creating both new opportunities as well
as challenges. For example, electrolysers can be scheduled
to perform energy arbitrage in power markets [9], thereby
reducing operational costs. It is widely believed that the usage
of flexibility in such HWHS could effectively reduce the cost
of green hydrogen [10].

Particularly considering an on-grid HWHS, the design,
operation, and other associated optimizations form the piv-
otal concerns that have been extensively evaluated. Cer-
tain studies investigate the operational strategies of such
systems very closely, that is, given a pre-specified sys-
tem, developing a strategy to achieve certain objectives by
controlling/scheduling/dispatching related energy components.
Gruger et al. proposed an optimal electrolyzer operation to
reduce possible costs in the presence of constraints of hydro-
gen demand [11]. Akbar adopted meta-heuristic approaches
to optimize the operation of a grid-connected hybrid solar-
wind-hydrogen CHP system. The objective was to minimize
the operation and maintenance cost of this system [12]. Other
papers, from another point of view, aim at offering an optimal
sizing to reach maximal yearly benefits under different scenar-

2096-0042 © 2021 CSEE



348 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 2, MARCH 2022

ios [6], [13], [14]. However, in such studies, the design and
operational optimization usually exist as isolated attributes,
which means one of them remains fixed while the other one
is optimized.

Hence, some researchers try to take both of them into
account simultaneously. A general idea is to view the planning
as the first stage, followed by operation. For example, for the
framework of two-stage stochastic programming, the planning
variables, i.e., the installed capacity and the number of units
to be deployed, are called “here and now,” while the operation
variables, such as hydrogen production rate, are called “wait
and see” [15]. The planning decisions need to be determined
before the realization of uncertain parameters, while the
operation decisions can be taken after these parameters are
revealed. These two-stage methods are mature and widely
used [16], [17]. The formulated optimization could either
be solved by analytic approaches [18] (mostly mixed linear
programming) or by heuristic algorithms [19]. Nonetheless,
valuable improvements have been made with respect to this
classical problem. First, the utilized models of the most
important component, electrolysers, are generally based on
a constant efficiency assumption and are not fully validated.
Second, these two-stage approaches primarily aim for a sin-
gle objective—by and large, economic benefit maximization
and strongly interfused planning and operation, signifying
the overall rigidity of the framework. When the operation
objective changes, the problem needs to be recreated in a
holistic manner.

To bridge this gap, in this paper, we concentrate on a typical
HWHS system and offer a flexible multi-objective two-stage
optimization considering both planning and operation. A first
principle-based electrolyser model is established. This model
is able to reveal the non-linear relation between hydrogen
production and power input, which improves the accuracy
compared to those based on linear assumption [12], [20], [21].
Furthermore, a two-stage hybrid optimization is proposed,
in which the inner optimization (inner loop) determines the
optimal operational strategies while the outer optimization
sheds light upon the system planning, i.e., the investment deci-
sions. The two-stage optimization strategy is easily extensible
and can be adopted for analyzing multiple combinations of
investment planning and operational objectives. Furthermore,
the proposed method is implemented in a live industrial park-
GreenLab Skive in Denmark- to validate the feasibility and
provide suggestions to relevant stakeholders.

This paper is organized as follows: Section I provides a brief
introduction of state-of-the-art research on HWHS, followed
by section II that introduces how the involved components are
modelled. A detailed alkaline electrolyser model is described
in this part. In section III, we propose a two-stage optimization
scheme that is utilized in this research. The formulation of
this hybrid optimization problem is also described in this
section. Afterwards, a case study on the real-life industrial
park is studied in detail to test the proposed method. In
section V, we illustrate the optimal operation of the electrolyser
with respect to different operational objectives, i.e., economic
revenue maximization and green hydrogen production max-
imization. We further discuss the influence of planning on

the optimal operation from the perspective of sensitivity and
Pareto optimum. Section VI concludes this study.
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Fig. 1. Schematics for hybrid wind-hydrogen system.

II. SYSTEM MODELING

A. Wind Energy Conversion System

The power output of a wind turbine is formulated as in [22]:

Pw(t) =


0, v < vci

Pf (v), vci ≤ v < vr

Pr, vr ≤ v < vco

0, vco ≤ v

(1)

where vci denotes the cut-in speed (m/s), vco is the cut-out
speed (m/s) and vr is the rated speed (m/s). The wind speed
v (m/s) in this equation is the one at the height of blades, but
wind speed is commonly measured near the ground. The link
between wind speed and height is exhibited as:(

v2
v1

)
=

(
h2

h1

)α

(2)

where v1 is the wind speed (m/s) at the reference height h1

(m) and v2 (m/s) is the speed at the height h2 (m). α is the
Hellman coefficient describing the surface roughness which
varies from 0.128 to 0.160 [23]. Pf (v) is given by the cubic
law as:

Pf (v) =
1

2
ρACpv

3 (3)

where ρ is the air density at the hub height (kg/m3) and Cp

is the power coefficient of wind turbine, which is estimated to
be 0.42 based on [24].

B. Electrolyser

In the studied system, an alkaline electrolyser (AEL) is used
to produce hydrogen. There are currently three electrolysis
technologies available: AEL, proton exchange membrane elec-
trolyser (PEM) and solid oxide electrolyser (SOEC). SOEC
bears the highest theoretical efficiency but is not yet applicable
to large scale applications. AEL and PEM are both well-
developed and have high technology maturity [4]. PEM has
exhibited better flexibility when it comes to transient operation
(feasible load range, start-up time and stand-by lost) [25].
Nevertheless, the investment and lifetime are dominant factors
in the market, which makes AEL more conducive for large-
scale applications [26]. An analytic model is established to
describe the typical polarization curve based on physical
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laws. The polarization curve, also known as the I-V curve
is formulated as in [27]:

Ecell = Erev + Eact + Eohm + Ediff (4)

where Ecell is the voltage of electrolyser (V), and Erev is
the open-circuit voltage (V), the theoretical minimum voltage
that allows water dissociation reaction. Eact, Eohm, Ediff are
overvoltage (V) dominated by different irreversible physical
processes. Erev is formulated by:

Erev = E0
rev +

RT

2F
ln

(
PH2

√
PO2

aH2O

)
(5)

where with E0
rev is the reversible voltage in standard condition

(V), varying with temperature T . The correlation can be
expressed empirically, as shown in (6) [24]. For a hydrogen
and oxygen system, at 293.15K, the E0

rev is 1.229V.

E0
rev(T ) = 1.5184− 1.5421× 10−3T + 9.523× 10−5T ln(T )

+ 9.84× 10−8T 2 (6)

The second part in (5) describes the deviation from the
standard condition, where R is the gas constant (J/(mol K)), F
the Faraday constant (C/mol) and aH2O the thermal dynamic
activity of water (mol/m3).

Activation overvoltage Eact, caused by the activation energy
barrier of electrode reactions, is described by the Butler-
Volmer equation that is formulated as:

I = I0,k

[
exp

(
αkzFEact,k

RT

)
− exp

(
− (1− αk)zFEact,k

RT

)]
(7)

where I is the electrolyser current density (A/m2), I0,k is the
exchange current density (A/m2), and αk is the charge transfer
coefficient that describes the influence of electrode potential on
oxidation and reduction reaction. This transcendental equation
is usually replaced by its simplified forms such as Tafel or
symmetric equation. In this study, it is directly solved by using
the Newton’s method.

Ohmic overvoltage describes the resistance from different
parts of an electrolyser covering electrode, electrolyte, bipolar
plates, etc. Since the resistance from electrolyte is the decisive
factor, other resistances are neglected in this study. Ohmic
voltage is calculated as:

Eohm =
IL

σ
(8)

where L is the thickness of electrolyte (cm) and σ is the
specific electrolyte conductivity (S/cm), which is presented as
in [28]:

σ =0.279844× (100w)− 0.009241× T − 0.000149× T 2

− 0.000905× (100w)× T

+ 0.000114× T 2 × (100w)0.1765

+ 0.069664× T/(100w)− 28.9815× (100w)/T (9)

Here, 100w denotes the mass fraction of potassium hy-
droxide. This nonlinear regression has been validated with
experimental data and the correlation coefficienct (R2) could
reach up to 0.999.

Diffusion overvoltage is the main loss of the electrolyser in
high current density. In this situation, the system reaction is not
limited by charge transfer but is dominated by mass transfer.
By introducing the limited current density Ilim (A/m2), the
diffusion overvoltage can be expressed as (with β as the
empirical coefficient):

Ediff =
RT

2βF
ln

(
1 +

I

Ilim

)
(10)

To obtain the hydrogen production rate, Faraday Law is used
to connect the current density I and hydrogen production rate
ṅH2

(mol/s):

ṅH2
=

ηFnCIA

2F
(11)

where ηF is the Faraday efficiency, and F is Faraday constant.
This efficiency is also called as current efficiency, since it
is triggered by parasitic current losses along the gas ducts.
The parasitic currents rise with decreasing current density. An
empirical expression is given in (12) [29], which can accu-
rately estimate the relationship between Faraday efficiency and
current density. nC stands for the number of cells in series and
A is the cell area (m2).

ηF =
I2

f1 + I2
f2 (12)

with f1, f2 as two constant values. To use this equation, the
unit of I should be (mA/cm2), whereas in other equations
it is (A/m2). When the current density is large enough,
ηF approaches one, indicating that the relationship of the
electrolyser input power and hydrogen production is almost
linear. However, the existence of Faraday efficiency makes the
efficiency curve of the electrolyser nonlinear. The efficiency
is defined as follows, where HHV is the high heat value of
hydrogen (J/mol) and Pele the power (W):

ηele =
ṅH2

HHV
Pele

(13)

Pele = IAEcell (14)

The efficiency and production curves for an electrolyser cell
are shown in Fig. 2, where the former exhibits strong non-
linearity. With lower working temperature, the non-linearity
is enhanced. To further guarantee the accuracy of this model,
we compared the simulation results with real experiment data
from studies at different temperature and varying current loads
(see Fig. 3). By and large, the model successfully describes
the relationship between power demand and current loads. The
way the temperature affects the electrolyser behavior is also
incorporated in this model. It is also observed that under lower
current densities, this model tends to be less accurate, but since
an alkaline electrolyser is typically operated at comparatively
high current density to avoid any instabilities, these deviations
are accepted.

C. Compressor

Since hydrogen is usually utilized (e.g. methanol synthesis)
and transported under high pressure (via trailers), it is crucial
to compress hydrogen before utilization. If the compression
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Fig. 2. Electrolyser efficiency and hydrogen production rate as functions of
input power. The sub-figure reveals the strong non-linearity of electrolyser at
lower current density.
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Fig. 3. The comparison of simulation and experimental results. The real
experiment data are obtained from [30] 55◦C, 65◦C, 75◦C, and from [31] at
35◦C, 53.5◦C, 80◦C.

process is adiabatic, the power consumption pcomp (W) at a
certain mass flow rate ṁH2

(kg/s) is represented as:

pcomp =
RTin

2(γ − 1)ηc

((
Pout

Pin

) γ−1
γ

− 1

)
ṁH2 (15)

where Tin is the inlet temperature of compressor (K), Pin
and Pout represent the inlet and outlet pressure (Pa), γ is
the isotropic exponent, ηc is the efficiency of mechanical
compressor, generally between 0.4 and 0.75 [32].

D. Hydrogen Tank

In the studied system, without loss of generality, it is
assumed that hydrogen is firstly compressed and stored in the
tank and then consumed or transported. Compressed gaseous
hydrogen storage is the most common technique [33]. To
calculate the amount of hydrogen that is stored in a hydrogen
tank, we use the following equation:

MH2,t = M0 +

∫ t

0

(ṅH2,in − ṅH2,out)dt (16)

where MH2,t is the amount of hydrogen in the tank at time
t (mol), and Mo the initial amount (mol). ṅH2,in is the inlet
molar flow rate (mol/s) and ṅH2,out outlet molar flow (mol/s).

III. TWO-STAGE MULTI-OBJECTIVE OPTIMIZATION ON
DESIGN AND OPERATION

A two-stage optimization method is established to re-
veal the interaction between system planning and operation
strategies. System planning refers to a long-term decision of
sizing the components before implementation. System plan-
ning/design/investment are all analogous studies emphasizing
on the problem resolution for optimal sizing/configuration
at the phase of planning/design/investment. System operation
strategies, on the other hand, form the short-term decisions
that deal with the dispatch and scheduling of one or more
components. The operation strategies could vary according to
different objectives. Both planning and operation are coupled
in this two-stage optimization scheme.

Figure 4 illustrates the framework of the two-stage optimiza-
tion. The inner loop aims at providing the system with optimal
operational strategies where different objectives (economic
benefits maximization, green hydrogen maximization, etc.)
could be employed. The outer loop deals with the balance
of long-term system financial profits and inner operational
objectives. The primary variables in this layer are mainly the
sizes of the involved components. Given a specific operational
strategy, the multi-objective optimization algorithm in the
outer layer tends to find the Pareto optimal solutions for system
planning.

The inner and outer optimization in this scheme is decou-
pled, facilitating the execution of planning according to diverse
operational strategies. Previous studies on planning used to
consider one or more selected operation strategies. In the
contemporary energy system, wherein regulations, markets,
and latest services change rapidly, the goal of operation is
also bound to change to adapt to the new environment. This
necessitates the consideration of different operation strategies
into planning.

A. Outer Layer Optimization

The outer layer considers the trade-off between long-term
economic benefits and short-term operational objectives. For
a typical HWHS, five principal components are taken into
account in this study: wind turbine, electrolyser, compressor,
converter and hydrogen tank. To simplify this optimization
problem, while maintaining the foremost planning choice,
the following assumptions are made: 1) It is assumed that
the capacities of the converter and the compressor are both
linearly proportional to the electrolyser capacity. 2) Among
the remaining three variables, the capacity of the wind turbine
is set to be fixed, which could be viewed as a metrics of system
scale. It could be influenced by the wind resources, electricity
and hydrogen loads, as well as by the capacity of transmission
lines. This assumption signifies that the wind turbines have
been already installed and accordingly, the corresponding
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Fig. 4. Two-layer multi-objective optimization: the inner loop focuses on system operational strategies using mixed integer linear programming; the outer
loop solves the multi-objective problem concerning system planning and optimal operation.

electrolyzers and hydrogen storage can be planned. In fact,
for a system planning with three variables, e.g., a, b, c, it
is always feasible to only consider b/a and c/a, and let a
be a predetermined parameter. 3) The total electricity and
hydrogen loads are pre-specified in accordance with wind
turbine capacity. Therefore, the outer layer multi-objective
optimization could be formulated as:

max
Ce,Ct

{IRR,OF}

s.t. Ce,min ≤ Ce ≤ Ce,max (17)
Ct,min ≤ Ct ≤ Ct,max

where Ce and Ct are the capacities of electrolyser and hy-
drogen, respectively (MW and kg), and the upper and lower
bounds rely on the specific conditions in different projects,
such as available space, investment budgets and security
requirements. IRR is the internal rate of return for a specific
project. OF is the operational objective function. The planners
prefer to maximize IRR by choosing appropriate capacity com-
binations, whereas oversizing could yield additional flexibility,
which generally contributes to short-term operational benefits.
The planners are required to make a trade-off. For example,
a larger hydrogen tank may enable higher green hydrogen
production, but would also require a higher initial investment.

IRR is defined as the discount rate ir that makes the system

net present value (NPV) zero.

NPV(ir = IRR) = 0 (18)

where NPV is widely used in capital budgeting and investment
planning to estimate system profitability. By considering all
the revenue flows for the future, NPV represents the difference
between the present value of cash inflows and outflows over
the project lifespan. Increased NPV will result in larger IRR;
if NPV is negative, so would be IRR. To calculate NPV, a
presupposed discount rate is necessary, but it is not possible
to get an accurate forecast of the discount rate in the lifespan
of this project. Meanwhile, since this paper aims at giving a
generic understanding of HWHS, the absolute value of profits
are unnecessary, and thus IRR is employed. The relationship
between NPV and ir is formulated as:

NPV =

Lpro∑
L=1

Profi
(1 + ir)L

− NPC (19)

where Profi is the expected income cash flow for the ith year
(e ); NPC is the net present value of costs (e ); Lpro is the
lifespan of the project (year). Profi is described as:

Profi =
8760∑
t=1

((pu,t + pl,t)π̄t + m̄l,H2,tπ̄H2,t)∆t (20)
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Here, the π̄t and π̄H2,t are the price of electricity (e /MWh)
and hydrogen respectively (e /kg), and ∆t, the time resolution,
is one hour. π̄t varies with time whereas π̄H2,t is presumed
to remain unchanged. The pu,t and pl,t are the electricity sold
to utility grid and to internal consumers (MW). m̄l,H2,t is the
hydrogen consumption at time t (kg/h). NPC is calculated by:

NPC = Ccap + CO&M + Crep − Csalv (21)

with Ccap denoting the present value of capital cost (e ), CO&M
indicating the present value of operation and maintenance
cost (e ), Crep being the present value of replacement cost
(e ), Csalv denoting the residual value or salvage value of
components (e ), which is disregarded in this study. The
capital cost is calculated as:

Ccap =
∑
i

CiCcap,i, i = wt, ele, tank, conv, comp (22)

where Ci and Ccap,i are the capacity and capital cost for
component i. The operation and maintenance cost is:

CO&M =
∑
i

Lpro∑
L=1

CO&M,i
1

(1 + ir)L
(23)

The replacement cost depends on the lifespan of different
components:

Crep =

{∑
i

∑Yrep
Y=1 Crep,i · 1

(1+ir)
Lrep,iY

, Yrep > 0

0, Yrep = 0
(24)

where Lrep,i is the life span of component i and Yrep,i is the
count of replacing component i, expressed as:

Yrep =

⌊
Lpro

Lrep,i

⌋
− 1 (25)

TABLE I
ECONOMIC PARAMETERS FOR INVOLVED COMPONENTS

Component Unit Capital cost
(e /unit)

Annual O&M
cost (e /unit)

Life span
(year)

Wind turbine kW 1547 56 20
Electrolyser kW 1492 60 20
Hydrogen tank kg 854 8 20
Compressor kg/h H2 13338 666 20
Converter kW 126 – 15

The other objective function OF for out-loop is the op-
erational objective that is defined in the inner loop, which
represents the operators’ strategies.

To solve this multi-objective optimization problem, NSGAII
(non-dominated sorting genetic algorithm) is utilized [34]. By
introducing non-dominated sorting and crowd distance sorting,
it is effective to solve multi-objective problems [35]. The flow
diagram is shown in Fig. 5, briefly describing the process.

B. Inner Layer Optimization

1) Environmental Parameters
The wind power, electricity price, power load and hydrogen

load profiles are the most important parameters that should be
taken into account. These parameters are typically viewed as
uncertain ones that can be depicted using stochastic estimation
and Monte Carlo method [36], [37]. As handling the involved

Initialize population size,
number of generations, etc.

Create the first generation
and its offspring

Evaluate individuals by non-
dominated sorting

Select ranked individuals as
next generation by crowd

distance sorting

Generate the next offspring
population by crossover and

mutation

Terminated ?

Chromosome decoding

Start

End

No

Fig. 5. Flowchart of NSGAII algorithm. This method inherits the basic
ideas of mutation and crossover in genetic algorithm. By introducing non-
dominated sorting and crowd distance sorting, it is well designed to cope
with multi-objective optimization problem.

uncertainties is not the primary purpose of this paper, historical
real data of wind speed etc., are simply used to conduct the
inner layer optimization. By considering the yearly environ-
mental data, mixed-integer linear programming is introduced
to optimize the operation.
2) Inner Objective Function

The inner loop objectives are subjective to the choice of
the system operator. It can generally be opted to maximize
multiple profits in the system, or can also be used to produce
additional green hydrogen that is beneficial to sustainability.

OF I = max

T∑
t=1

{pu,tπ̄t∆t+ ṁH2,tπ̄H2,t∆t− pele,tCm,ele∆t

− pcomp,tCm,comp∆t} (26)

As shown in (26), the objective function OF I is expected
to maximize the system operational profits. The definitions
of pu,t,, π̄t, π̄H2,t remain the same with the ones in NPV
calculation. Hydrogen price is assumed to be around 5e /kg
in this paper. pele,t is the electrolyser power (MW) and Cm,ele
is the cost of water that is needed to produce hydrogen
(e /MWh). pcomp,t represents the power of compressor (MW)
and Cm,comp is the corresponding fuel cost (e /MWh).

OF II =

∑T
t=1 ṁH2,t,g∑T
t=1 m̄L,H2,t

(27)

Objective function OF II is expected to maximize the green
hydrogen proportion of hydrogen consumption. ṁH2,t,g is



ZHENG et al.: INCORPORATING OPTIMAL OPERATION STRATEGIES INTO INVESTMENT PLANNING FOR WIND/ELECTROLYSER SYSTEM 353

the green gas production (kg/h), referring to those generated
totally by renewable energy. m̄L,H2,t is the total hydrogen
consumption at time t (kg/h).
3) Constraints for Objective Function I

Equation (28) describes the energy conservation of the
whole system. Note that the transmission loss has been ne-
glected due to short distances.

p̄w,t − pu,t − p̄L,t − pcomp,t − pele,t = 0, ∀t > 0 (28)

where p̄w,t and p̄L,t are wind power and electric loads respec-
tively (MW). The change of hydrogen in the tank is depicted
as follows:

MHt
t −MHt

t−1 = ṁH2,t∆t− m̄L,H2,t∆t, ∀t ≥ 1 (29)

with ṁH2,t denoting the hydrogen production rate (kg/h). As
illustrated in section two, the relation between ṁH2 and pele is
slightly non-linear, which is linearized in the following section.
We have:

ṁH2,t = ṁH2,t(pele,t) (30)

The initial hydrogen in the tank is defined as Mini, that is:

MHt
0 = Mini = MHt

T (31)

Meanwhile, the mass of hydrogen MHt
t (kg) that can be

stored is limited by the SoC (State of Charge) limits of the
tank:

CtSoC ≤ MHt
t ≤ CtSoC (32)

It is also assumed that the initial and final hydrogen levels
should remain the same to assure a continuous operation. Con-
cerning the electrolyser, there are several technical constraints.
The lower bound of electrolyser power could be nearly zero
for PEM or SOEC. However, as far as AEL is concerned,
this bound is important to its safety operation because, at low
current density, the generated hydrogen and oxygen could form
a potentially flammable mixture by gas diffusion [38], [39].
Thus, commercially available AEL generally works above
20% of its nominal current density, as shown in (33). The
power change of electrolyser is limited to its ramping rate, as
presented in (34) and (35), where the RLU represents ramping
rate limit upward and RLD is the downward limit. Both are
rather fast. For example, as indicated in [17], an AEL could
change its power by ±20% of its nominal power per second.
Therefore, this constraint is in fact negligible in terms of an
hourly operation.

0.2Ce ≤ pele,t ≤ Ce, ∀t > 0 (33)
pele,t+1 − pele,t ≤ RLU ∀t > 0 (34)
pele,t+1 − pele,t ≥ −RLD ∀t > 0 (35)

With regard to the compressor, (15) indicates the power
consumed is proportional to hydrogen mass flow rate when
the inlet temperature, pressure and outlet pressure are pre-
designed. This is simply summarized as (37):

p
comp

≤ pcomp,t ≤ p̄comp, ∀t > 0 (36)

pcomp,t = αcṁH2,t, ∀t > 0 (37)

with αc as a constant dependent on working parameters.

4) Constraints for Objective Function II
The green hydrogen and electrolysis should be defined when

considering objective function II. All the constraints listed in
the previous section still apply to this new problem and apart
from these, new constraints regarding green production are
added.

ṁH2,t,g = ṁH2,t,g(pele,t,g), ∀t > 0 (38)

Green hydrogen is produced from renewable energy, whose
production rate, ṁH2,t,g , is also a non-linear function of elec-
trolyser power. pele,t,g should satisfy the following equations:

pele,t,g ≤ p̄w,t, ∀t > 0 (39)
pele,t,g ≤ pele,t, ∀t > 0 (40)

where pele,t,g is an imaginary variable that shows a measure
of the extent to which the energy used by the electrolyser is
green. These two equations are natural description in light of
its definition.
5) Piece-wise Linearization

As shown in Fig. 2, to better simulate the electrolyser
properties, a non-linear model is needed. We introduce a
few integer variables to linearly express the functions in
(30) and (38). A piece-wise linear function with three pieces
is used to approximate the original production curve and
correspondingly, two breakpoints are introduced as bele,1, bele,2.
The boundary points are denoted as bele,0 and bele,3, therefore,
ṁH2,t can be formulated as:

ṁH2,t =

3∑
i=0

wiṁH2,t(bele,i) (41)

with wi representing the weight and it should satisfy:
3∑

i=0

wi = 1, wi ≥ 0 (42)

It should also meet the following requirements:

w0 ≤ z1

w1 ≤ z1 + z2

w2 ≤ z2 + z3

w3 ≤ z3 (43)

where zi is a binary variable and it fulfills:
3∑

i=1

zi = 1 (44)

The above equations ensure that at most two adjacent wi

could be nonzero. More details are available in [40].

IV. CASE STUDY: AN ON-GRID WIND HYDROGEN HYBRID
SYSTEM IN DENMARK

Denmark has been incessantly focusing on renewable green
energy. GreenLab Skive (GLS) is a green energy industrial
park located in western Denmark (see Fig. 6). Thirteen wind
turbines and solar panels are currently being developed in this
area along with several chemical plants that serve as hydro-
gen off-takers. GLS offers a remarkable opportunity for the
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GreenLab

area

RE farm

Fig. 6. Location of GreenLab Skive, Latitude: 56.64 Longitude: 8.97.

analysis and trial of innovative technologies. It incorporates a
complete electrolysis system that serves as the main hydrogen
supplier for the involved stakeholders. The hydrogen is first
produced by an alkaline electrolyser and then compressed to
200 bar, stored in a tank and sold to the users. We examine the
proposed method to evaluate the economics and sustainability
of this HWHS.

Figure 7 shows the annual environmental historical data.
The wind speed data can be found on the website [41] and
the price data come from Nordpool spot market [42]. As the
involved consumers in this area are mostly chemical plants,
both the power loads and hydrogen loads tend to be stable.
Most consumers have their own production schedule and
continuous operation plans. The load profile can be found in
Fig. 8. In this study, the inner layer optimization is firstly
calculated based on these input parameters over a year and
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the daily load profile is identical since the consumption levels are stable.

then the outer loop is employed to find a trade-off between
operational goals and planning objectives. Using prediction
data or scenario-based stochastic optimization in the inner
layer is more realistic. But to keep the optimization framework
simple, the historical data are utilized.

V. RESULTS AND DISCUSSION

A. Inner Layer Optimization Results

The inner loop is expected to optimize system operation
based on different objectives. Since the electrolyser is the
key component in this system, the main issue is determin-
ing its dispatch curve. In the case of maximizing economic
profits, the dispatch curve of the electrolyser is illustrated in
Fig. 9. To clearly show the results, a three-day calculation
is conducted, instead of a whole year. It is observed that to
obtain more revenues in the power spot market, the electrolyser
power is significantly affected by the price signals. When
the electricity price is high (e.g. from hour 10 to 20, 40
to 45 and 60 to 70), the electrolyser tends to consume less
electricity. This tendency does not get affected by wind energy
because with abundant wind energy, the decrease in electrol-
yser power enables the system to sell electricity, while with
insufficient wind energy, the power reduction helps to avoid
using expensive electricity to produce hydrogen. Likewise, for
the lower electricity price (from hour 0 to 10, 20 to 30),
the electrolyser tends to reach its maximal production. The
correlation coefficient between price and electrolyser power is
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Fig. 9. Optimal scheduling of electrolyser with respect to objective of
maximizing profits. It is revealed that price signal has dominant effect on
the results.

0

10

20

30

40

50

60

E
le

ct
ro

ly
se

r 
p
o
w

er
 (

M
W

)

0 10 20 30 40 50 60 70
Time (h)

Tank SoC and electrolyser power

1.0

0.9

0.8

0.7

0.6T
an

d
 S

o
C

0.5

0.4

0.3

Fig. 10. The SoC change during operation

−0.484, which indicates that these two factors are moderately
negatively correlated. As the hydrogen storage is limited, the
correlation coefficient cannot theoretically be −1. It is clearly
shown in Fig. 10 that the hydrogen tank is charged to the
maximum at hour 9, 30, 56, indicating that the flexibility from
hydrogen production is limited.

Figure 11 further presents the electrolyser operational
schedule with the inner objective being green hydrogen max-
imization. In this case, the dominant factor is the amount of
wind energy. It is clearly shown that the electrolyser power
is curtailed to a certain extent by wind power. From hour
0 to hour 10, the electrolyser power is smaller than wind
power, implying the hydrogen produced during this period
is thoroughly green. An unexpected increase of electrolyser
power is observed during hour 10 and hour 20 when wind
energy is almost zero. This growth will definitely reduce the
green hydrogen proportion, but due to the SoC constraints of
the hydrogen tank, the gas needs to be produced. There are
also some unexpected fluctuations along the electrolyser power
curve, which stem from the intrinsic multiple solutions of
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Fig. 11. Optimal scheduling of electrolyser with respect to the objective of
maximizing green hydrogen production. In this case, the renewable energy
dominates the operational strategy.

mixed-integer programming. A hydrogen production decline
occurs even though wind power is sufficient during hour 55
to 60. This is because the SoC of the hydrogen tank is set to
be the same at the start and the end of the operation period,
i.e., a 24-hour time-span, as shown in (31). Based on these
results, it can be deduced that larger gas storage facilitates
increased green hydrogen production by the system, which is
further substantiated by the outer layer optimization.

B. Sensitivity Analysis

The above-mentioned results demonstrate how the system
operates under various objectives and implies that the sizes
of the electrolyser and hydrogen tank have an influence on
the optimal scheduling. Sensitivity analysis further illustrates
the influence of system sizing on operational objective I, as
shown in Fig. 12. With increased tank size and electrolyser
capacity, the optimal annual profit grows marginally. The
optimal value is more sensitive to the electrolyser and tank
of smaller sizes, i.e., optimal value, as a function of these two
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Fig. 12. Influence of system sizing on operational optimal profit.
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sizes, has a larger gradient when the sizes are relatively small.
It is also revealed that when the tank size is extremely small,
the electrolyzer capacity generates only minimal influence on
the inner objective; as the tank size increases, its influence
becomes larger. Overall, the entire trend implies that the profit
is more susceptible to hydrogen storage. It is also observed
that the marginal utility induced by increased size declines as
the size gets larger. That is, to obtain the same amount of
profits, more investment on hydrogen storage and electrolyser
becomes essential. The absolute increase of the optimal profit
is small, which suggests that the ability to improve operational
profits is not so sensitive to these two factors provided that the
system only participates in the spot market.

The sensitivity analysis for inner objective II is depicted in
Fig. 13. It reveals that the maximal green hydrogen proportion
can be acquired when the tank size is large, whereas this
objective is far less sensitive to electrolyser capacity. When
the hydrogen storage is sufficiently large, electrolyser capacity
starts to significantly affect the green hydrogen proportion.
A larger electrolyser enables the system to produce more
hydrogen when renewable energy is abundant, but as shown
in Fig. 11, the tank SoC imposes a stronger constraint on
this system. If the tank size is small, even though a large
electrolyser is installed, the amount of green hydrogen is still
limited. In the studied system, all the hydrogen is firstly stored
in the tank and then consumed, and is not utilized directly.

Optimal green hydrogen proportion
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C. Outer-layer Optimization Results
As suggested in sensitivity analysis, system planning has a

great influence on system operational objectives, and there is
a trade-off between initial investment and operational flexibil-
ity. For instance, larger hydrogen storage, on the one hand,
improves the ability to obtain revenues; on the other hand,
it demands huge initial investment, thereby decreasing IRR.
Taking the inner objective I and IRR as two objectives, Fig. 14
illustrates the result of this multi-objective problem. From
point A to B, the IRR decreases dramatically, whereas the
optimal annual profits rise slowly, and from point B to C
and D, the IRR almost remains the same, while there is a
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Fig. 14. Pareto front of the multi-objective optimization coping with the
trade-off between system investment payback (IRR) and optimal operational
profits.

relatively large increase in annual profits. The sub-figure gives
the corresponding combinations of electrolyser capacity and
tank size. The results indicate that albeit larger sizing allows
the system to derive more benefits from the spot market, it
is not economical due to large initial investment. In reality,
the system should be planned at point A, sacrificing the
flexibility to reduce the initial investment. Interestingly, all
the Pareto optimal solutions fall under the boundary of the
feasible region. By simplifying this multi-objective problem,
a mathematical proof on the necessity is given in appendix A.

Figure 15 displays the result of outer-loop with respect to
inner objective II—optimal green hydrogen proportion. Fewer
Pareto optimal solutions are found in this case. It is observed
that to make the system capable of producing more green
hydrogen, more investments are needed, even though they
reduce the IRR. Point A is the one with the highest IRR,
and correspondingly, the tank size is 2000 kg and electrolyser
capacity is 17 MW. From point B to C, the capacity of the
electrolyser remains the same but the tank size gradually
increases. The result implies that the system planner must
consider the trade-off between green hydrogen production and
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production, shown as a Pareto front.
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the initial investment. To obtain maximal green hydrogen, the
system should be designed at point C. It is also noteworthy
that the largest IRR (5.5%) in this case is less than the one
for the previous result (6.25%), which reflects the different
emphasis of the two operational strategies.

There are two important factors that need to be highlighted.
Concerning the first multi-objective problem, the system gains
more flexibility at a cost of low IRR. However, this flexibility
is only utilized in the spot power market, limiting the scope
of its potential value. It is valuable to shed light upon how the
flexibility could be further priced and used. If, for instance, the
electrolyser can be utilized to provide services in the balancing
market (which is feasible because an electrolyser has a fast
response speed), more revenues could be generated. Utilizing
AEL to improve power system frequency stability is also a
potential option to employ its flexibility. Considering these
possibilities, a more complex relationship between IRR and
system operational flexibility can be obtained. Another issue
is in the green hydrogen premium, which could intensify the
competitiveness for green hydrogen. On the condition that the
price of green hydrogen is larger than its ordinary counterpart,
the IRR and green hydrogen proportion may not be strongly
negatively correlated. New trade-offs will be found under this
assumption. However, these problems are beyond this paper
and demand more comprehensive studies and solutions in the
future.

VI. CONCLUSION

In this study, a two-layer hybrid optimization algorithm is
presented to analyze the trade-off between system operation
and planning for a typical HWHS. This optimization is firstly
carried out with respect to the system operation and then
applied to system planning. Two operational objectives are
taken into account.

It was found that based on an operational purpose, the
dispatch of the electrolyser exhibits different tendencies. The
electrolyser considerably responds to price signals when the
operational objective is to maximize the profits, whereas it
is more susceptible to the amount of green renewable energy
in the case of producing more green hydrogen. The system
operational flexibility depends on its design. The sensitivity
analysis on the influence of sizing reveals that both the increase
of the electrolyser installed capacity and hydrogen storage
size result in enhanced system performance irrespective of
the chosen objective. It is actually the flexibility conferred
by the design that enables the system to operate in a better
way. Nevertheless, this flexibility comes at the cost of a larger
initial investment. It is reasonable to conclude, to some extent,
that the trade-off between system operation and planning is the
one between initial investment and potential flexibility.

The outer-layer multi-objective optimization based on NS-
GAII clearly illustrates this balance. However, the result con-
cerning operational objective of economics suggests that the
additional flexibility is uneconomical and the system should
be sized to get the highest IRR (i.e., 14 MW electrolyser
and 2000kg hydrogen storage in this paper). This conclusion
is limited to the fact that the added flexibility is only used

for energy arbitrage in the spot market. The optimized results
on the trade-off between IRR and green hydrogen production
reflect the same trend. To gain an increase of 10% in green
hydrogen proportion, the IRR decreases by 1.2%. Whether this
is beneficial relies on the choice of stakeholders. For example,
to gain the maximum green hydrogen, the electrolyser and
hydrogen storage should be about 25 MW and 6,000 kg,
respectively, although the IRR is relatively small. It is also
essential to note that no green hydrogen premium is consid-
ered, which could further affect the conclusions.

Forthcoming research will emphasize on the pricing of the
added flexibility and sustainability, as well as the inclusion of
other planning and operation objectives in order to achieve a
more comprehensive understanding of the trade-off between
strategies and objectives deployed at operation and planning
phases. Employing forecast and stochastic optimization to
further analyze this problem in broad terms will be an ad-
vancement of this work.

VII. ACKNOWLEDGEMENT

The authors would like to acknowledge financial support
from “Synergies Utilising renewable Power Regionally by
means of Power to Gas project”, which received funding in the
framework of the joint programming initiative ERA-Net Smart
Energy Systems’ focus initiative Integrated, Regional Energy
Systems, in collaboration with support from the European
Union’s Horizon 2020 research and innovation program under
grant agreement No. 775970.

APPENDIX

As shown in Fig. 14, all the Pareto solutions fall along the
boundary of the feasible region. In this section, a brief proof
is given by simplifying the objective function. Let:

E ∈ [Ce,min, Ce,max] (45)
T ∈ [Ct,min, Ct,max] (46)

F = E × T = {(e, t)|e ∈ E, t ∈ T} ⊂ R2 (47)

F is the feasible region of the optimization problem, which is
a subset of R2. The objective is to demonstrate that all Pareto
solutions, in the form of (f1, f2) ∈ F , are located on the
boundary of F . We assume in the following a logistic shape
of the out-layer and inner-layer objective function:

Obj1(f⃗) = −c1f1 − c2f2 + c3Obj2(f), ci > 0

Obj2(f⃗) = A
(
1− e

−α1f1−α2f2
β

)
, α1, α2, β > 0

(48)

Obj1(f⃗) briefly describes the relation between system NPV
and f1, f2. Since maximizing IRR is identical with finding
maximal NPV, the optimal solutions of Obj1(f⃗) are the same
as those for the primal problem. Obj2(f⃗) is an estimate of
inner objective function based on the sensitivity analysis. It
does not have to be applicable for the entire F . As long as the
inner objective function could be approximated by a function
in the form of Obj2(f⃗) in an infinitesimal closed set of F , the
following demonstration will make sense.
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Given an infinitesimal increment of f, df⃗ = (df1, df2), we
have:

∆Obj1(f⃗) = −c1df1 − c2df2 +∆Obj2(f) (49)

∆Obj2(f⃗) = −Ae
−α1f1−α2f2

β

(
−α1df1

β
− α2df2

β

)
=

A

β
e

−α1f1−α2f2
β (α1df1 + α2df2) (50)

The method of proof by contradiction has been used to show
there is no such f⃗∗ satisfying f⃗∗ /∈ ∂F and f⃗∗ is a Pareto
optimal solution (f⃗∗ ∈ PF ) of this problem. Assuming ∃f⃗∗ =
(f∗

1 , f
∗
2 ) ∈ PF and (f∗

1 , f
∗
2 ) /∈ ∂F , we have:

If
α2

α1
>

c2
c1

(51)

Then:

∃df2∗ > 0 and df1
∗ = −c2

c1
df2

∗ < 0 (52)

Such that:

f⃗∗
1 = (f∗

1 + df∗
1 , f

∗
2 + df∗

2 ) ∈ F (53)

∆Obj2 =
A

β
e

−α1f1
∗−α2f2

∗
β

(
α2 −

α1c2
c1

)
df2

∗ > 0 (54)

∆Obj1 = c3∆Obj2 > 0 (55)

Thus, we found f⃗∗
1 ∈ F and Obj1(f⃗

∗
1 ) > Obj1(f⃗

∗),
Obj2(f⃗

∗
1 ) > Obj2(f⃗

∗). This contradicts the assumption that
f⃗∗ = (f∗

1 , f
∗
2 ) ∈ PF because we found another f⃗∗

1 ∈ F that
dominates f∗.

If
α2

α1
<

c2
c1

(56)

Then:

∃df1∗ > 0 and df2
∗ = −c1

c2
df1

∗ < 0 (57)

Such that:

f⃗∗
1 = (f∗

1 + df∗
1 , f

∗
2 + df∗

2 ) ∈ F (58)

∆Obj2 =
A

β
e

−α1f1
∗−α2f2

∗
β

(
α1 −

α2c1
c2

)
df∗

1 > 0 (59)

∆Obj1 = c3∆Obj2 > 0 (60)

Again, f⃗∗
1 dominates f⃗∗, which contradicts the assumption.

REFERENCES

[1] H. Ishaq and I. Dincer, “Evaluation of a wind energy based system
for co-generation of hydrogen and methanol production,” International
Journal of Hydrogen Energy, vol. 45, no. 32, pp. 15869–15877, Jun.
2020, doi: 10.1016/j.ijhydene.2020.01.037.

[2] S. Bourne, “The future of fuel: The future of hydrogen,” Fuel Cells
Bulletin, vol. 2012, no. 1, pp. 12–15, Jan. 2012.

[3] M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, “Power to
Gas projects review: Lab, pilot and demo plants for storing renewable
energy and CO2,” Renewable and Sustainable Energy Reviews, vol. 69,
pp. 292–312, Mar. 2017, doi: 10.1016/j.rser.2016.11.130.

[4] M. Thema, F. Bauer, and M. Sterner, “Power-to-Gas: Electrolysis and
methanation status review,” Renewable and Sustainable Energy Reviews,
vol. 112, pp. 775–787, Sep. 2019, doi: 10.1016/j.rser.2019.06.030.

[5] O. M. Balan, M. R. Buga, A. Brunot, A. Badea, and D. Froelich,
“Technical and economic evaluation of Power-to-Gas in link with a 50
MW wind park,” Journal of Energy Storage, vol. 8, pp. 111–118, Nov.
2016, doi: 10.1016/j.est.2016.10.002.

[6] I. Firtina-Ertis, C. Acar, and E. Erturk, “Optimal sizing design of an
isolated stand-alone hybrid wind-hydrogen system for a zero-energy
house,” Applied Energy, vol. 274, pp. 115244, Sep. 2020.

[7] S. M. Muyeen, R. Takahashi, and J. Tamura, “Electrolyzer switching
strategy for hydrogen generation from variable speed wind generator,”
Electric Power Systems Research, vol. 81, no. 5, pp. 1171–1179, May
2011.

[8] S. Rahimi, M. Meratizaman, S. Monadizadeh, and M. Amidpour,
“Techno-economic analysis of wind turbine-PEM (polymer electrolyte
membrane) fuel cell hybrid system in standalone area,” Energy, vol. 67,
pp. 381–396, Apr. 2014, doi: 10.1016Zj.energy.2014.01.072.

[9] C. Jørgensen and S. Ropenus, “Production price of hydrogen from grid
connected electrolysis in a power market with high wind penetration,”
International Journal of Hydrogen Energy, vol. 33, no. 20, pp. 5335–
5344, Oct. 2008.

[10] O. J. Guerra, J. Eichman, J. Kurtz, and B. M. Hodge, “Cost competi-
tiveness of electrolytic hydrogen,” Joule, vol. 3, no. 10, pp. 2425–2443,
Oct. 2019.

[11] F. Griiger, O. Hoch, J. Hartmann, M. Robinius, and D. Stolten, “Op-
timized electrolyzer operation: Employing forecasts of wind energy
availability, hydrogen demand, and electricity prices,” International
Journal of Hydrogen Energy, vol. 44, no. 9, pp. 4387–4397, Feb. 2019.

[12] A. Maleki, H. Hafeznia, M. A. Rosen, and F. Pourfayaz, “Optimiza-
tion of a grid-connected hybrid solar-wind-hydrogen CHP system for
residential applications by efficient metaheuristic approaches,” Applied
Thermal Engineering, vol. 123, pp. 1263–1277, Aug. 2017.

[13] J. G. G. Clua, R. J. Mantz, and H. De Battista, “Optimal sizing of a grid-
assisted wind-hydrogen system,” Energy Conversion and Management,
vol. 166, pp. 402–408, Jun. 2018.

[14] Z. H. Deng and Y. W. Jiang, “Optimal sizing of wind-hydrogen system
considering hydrogen demand and trading modes,” International Journal
of Hydrogen Energy, vol. 45, no. 20, pp. 11527–11537, Apr. 2020.

[15] G. M. Yang, Y. W. Jiang, and S. You, “Planning and operation of a
hydrogen supply chain network based on the off-grid wind-hydrogen
coupling system,” International Journal of Hydrogen Energy, vol. 45, no.
41, pp. 20721–20739, Aug. 2020, doi: 10.1016Zj.ijhydene.2020.05.207.

[16] A. Dolatabadi, R. Ebadi, and B. Mohammadi-Ivatloo, “A two-stage
stochastic programming model for the optimal sizing of hybrid
PV/diesel/battery in hybrid electric ship system,” Journal of Operation
and Automation in Power Engineering, vol. 7, no. 1, pp. 16–26, May
2019.

[17] S. Balderrama, F. Lombardi, F. Riva, W. Canedo, E. Colombo, and S.
Quoilin, “A two-stage linear programming optimization framework for
isolated hybrid microgrids in a rural context: The case study of the “El
Espino” community,” Energy, vol. 188, pp. 116073, Dec. 2019.

[18] M. H. Shams, H. Niaz, J. Na, A. Anvari-Moghaddam, and J. J. Liu,
“Machine learning-based utilization of renewable power curtailments un-
der uncertainty by planning of hydrogen systems and battery storages,”
Journal of Energy Storage, vol. 41, pp. 103010, Sep. 2021.

[19] P. Hou, P. Enevoldsen, J. Eichman, W. H. Hu, M. Z. Jacobson, and Z.
Chen, “Optimizing investments in coupled offshore wind -electrolytic
hydrogen storage systems in Denmark,” Journal of Power Sources, vol.
359, pp. 186–197, Aug. 2017, doi: 10.1016/j.jpowsour.2017.05.048.

[20] W. P. Zhang, A. Maleki, M. A. Rosen, and J. Q. Liu, “Sizing a stand-
alone solar-wind-hydrogen energy system using weather forecasting
and a hybrid search optimization algorithm,” Energy Conversion and
Management, vol. 180, pp. 609–621, Jan. 2019.

[21] L. B. Jaramillo and A. Weidlich, “Optimal microgrid scheduling with
peak load reduction involving an electrolyzer and flexible loads,” Applied
Energy, vol. 169, pp. 857–865, May 2016.

[22] V. N. Dinh, P. Leahy, E. McKeogh, J. Murphy, and V. Cummins,
“Development of a viability assessment model for hydrogen production
from dedicated offshore wind farms,” International Journal of Hydrogen
Energy, vol. 46, no. 48, Jul. 2021, doi: 10.1016/j.ijhydene.2020.04.232.

[23] S. H. Pishgar-Komleh, A. Keyhani, and P. Sefeedpari, “Wind speed and
power density analysis based on Weibull and Rayleigh distributions (a
case study: Firouzkooh county of Iran),” Renewable and Sustainable
Energy Reviews, vol. 42, pp. 313–322, Feb. 2015.

[24] R. Hosseinalizadeh, H. Shakouri G, M. S. Amalnick, and P. Taghipour,
“Economic sizing of a hybrid (PV-WT-FC) renewable energy system
(HRES) for stand-alone usages by an optimization-simulation model:
Case study of Iran,” Renewable and Sustainable Energy Reviews, vol.
54, pp. 139–150, Feb. 2016.



ZHENG et al.: INCORPORATING OPTIMAL OPERATION STRATEGIES INTO INVESTMENT PLANNING FOR WIND/ELECTROLYSER SYSTEM 359

[25] A. Buttler and H. Spliethoff, “Current status of water electrolysis for
energy storage, grid balancing and sector coupling via power-to-gas
and power-to-liquids: A review,” Renewable and Sustainable Energy
Reviews, vol. 82, pp. 2440–2454, Feb. 2018.

[26] J. Brauns and T. Turek, “Alkaline water electrolysis powered by renew-
able energy: A review,” Processes, vol. 8, no. 2, pp. 248, Feb. 2020.

[27] P. Olivier, C. Bourasseau, and P. B. Bouamama, “Low-temperature
electrolysis system modelling: A review,” Renewable and Sustainable
Energy Reviews, vol. 78, pp. 280–300, Oct. 2017.

[28] D. M. See and R. E. White, “Temperature and concentration dependence
of the specific conductivity of concentrated solutions of potassium
hydroxide,” Journal of Chemical & Engineering Data, vol. 42, no. 6,
pp. 1266–1268, Nov. 1997.

[29] Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers: A system
simulation approach,” International Journal of Hydrogen Energy, vol.
28, no. 1, pp. 21–33, Jan. 2003.

[30] M. Sánchez, E. Amores, L. Rodrı́guez, and C. Clemente-Jul, “Semi-
empirical model and experimental validation for the performance eval-
uation of a 15 kw alkaline water electrolyzer,” International Journal of
Hydrogen Energy, vol. 43, no. 45, pp. 20332–20345, Nov. 2018.

[31] Z. Abdin, C. Webb, and E. M. Gray, “Modelling and simulation of an
alkaline electrolyser cell,” Energy, vol. 138, pp. 316–331, Nov. 2017.

[32] C. H. Li, X. J. Zhu, G. Y. Cao, S. Sui, and M. R. Hu, “Dynamic modeling
and sizing optimization of stand-alone photovoltaic power systems using
hybrid energy storage technology,” Renewable Energy, vol. 34, no. 3,
pp. 815–826, Mar. 2009.

[33] J. Andersson and S. Gr’́onkvist, “Large-scale storage of hydrogen,”
International Journal of Hydrogen Energy, vol. 44, no. 23, pp. 11901–
11919, May 2019.

[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[35] S. R. Salkuti, “Day-ahead thermal and renewable power generation
scheduling considering uncertainty,” Renewable Energy, vol. 131, pp.
956–965, Feb. 2019, doi: 10.1016/j.renene.2018.07.106.

[36] A. Turk, Q. W. Wu, M. L. Zhang, and J. Østergaard, “Day-ahead
stochastic scheduling of integrated multi-energy system for flexibility
synergy and uncertainty balancing,” Energy, vol. 196, pp. 117130, Apr.
2020, doi: 10.1016/j.energy.2020.117130.

[37] U. Akram, M. Khalid, and S. Shafiq, “Optimal sizing of a
wind/solar/battery hybrid grid-connected microgrid system,” IET Renew-
able Power Generation, vol. 12, no. 1, pp. 72–80, Jan. 2018.
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