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Abstract—Microgrid is considered an important part of the
future zero carbon energy systems. However, the uncertainty
caused by renewable energy source brings huge challenges to
the scheduling of MG and restricts its ability of carbon emission
reduction. In this paper, a novel improved multi-ellipsoidal
uncertainty set modeling method is proposed to better depict
the uncertainty of wind power and reduce the conservativeness
of traditional robust optimization. Probabilistic information from
historical data is utilized to capture the temporal correlation of
forecast error of wind power, as well as the conditional correlation
of forecast error with forecast value, making the uncertainty
set more data-adaptive to variation of forecast results and
more accurate for uncertainty description. A two-stage robust
optimization model of a grid-connected microgrid is established
based on the proposed uncertainty set and solved by column
and constraint generation algorithm. Simulation results based on
actual data illustrate the average unbalanced power of microgrid
between day-ahead trading and real-time power exchange with
utility grid is dropped by nearly 11.16% compared with a
deterministic optimization method, 11.86% with traditional box
uncertainty set-based robust optimization method, and 2.89%
with stochastic optimization method.

Index Terms—Correlation, data driven, improved multi-
ellipsoidal uncertainty set, microgrid robust optimization.

I. INTRODUCTION

BENEFITING from the advantages of renewable energy
integration and management, microgrid (MG) has re-

cently attracted substantial attention and is regarded as an
important solution for zero-carbon transition of energy sys-
tems [1]. However, MG operation faces great challenges
brought by renewable energy sources (RES) due to its in-
termittent and uncertain nature [2]. The way to deal with
the uncertainty of RES has significant influence on system
economy and reliability of MG, especially for day-ahead
decision making process.
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Stochastic optimization (SO) and robust optimation (RO)
are considered the two most popular methods to tackle the
uncertainty of RES. SO seeks for an optimal solution with
expected minimum operation cost based on probability distri-
bution of RES [3]. However, performance of SO depends on
the accuracy of probability distribution of random variables,
which is usually difficult to be precisely estimated with limited
historical data. On the contrary, RO does not require an exact
probability distribution, but uses an uncertainty set to describe
the uncertainties of random variables and aims at finding the
optimal solution for any realization of the given uncertainty
set [4]. However, the solution provided by RO might be too
conservative as it takes into account the worst scenario.

The uncertainty set determines the realization of random
variables, thus has crucial influence on the robustness and
conservativeness of RO model. From this point of view,
many research studies have been carried out to reduce the
conservativeness of RO by improving the uncertainty set. Dif-
ferent approaches for constructing uncertainty sets, including
box uncertainty set (BUS), Polyhedral uncertain sets (PUS),
and Ellipsoidal uncertainty sets (EUS) have been discussed
in [5] based on historical data. The PUS is one of the
most commonly used uncertainty sets since it has a linear
boundary and is easy to be solved in RO problems. A general
way to construct PUS is to add budget constraints in the
form of BUS [6], [7]. The uncertainty set gets smaller than
the original BUS with considering such constraints, making
it less conservative while maintaining a similar robustness
guarantee. For instance, a two-stage RO model was built in [8],
conservativeness is regulated by choosing different uncertainty
budgets according to the risk-averse level of MG operators.
However, this kind of uncertainty set regards the uncertain
information as independent variables, which may lead to a
conservative solution when correlation exists. To this end,
the correlation between neighboring wind farms was obtained
through linear models based on the statistical data in [9]. A
t-distribution was then established to construct a PUS with a
certain confidence level to reduce the conservativeness. Ref-
erence [10] proposed a multi-band uncertainty set with higher
resolution and modeled the spatial/temporal relationships of
uncertainties among multiple narrower bands. Each band is
assigned a weight coefficient reflecting its occurrence possi-
bilities, which provides more flexibility for controlling solution
conservativeness. Reference [11] expanded the multi-band
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uncertainty set by considering linearized temporal correlation
constraints of forecast errors of wind and load, which further
reduces conservativeness by eliminating scenarios with lower
probability. However, parameters such as the number of bands
and the corresponding weight coefficients for formulating the
multi-band uncertainty set are difficult to determine in practice.

The EUS shows better performance than PUS in terms
of formulating the correlation among variables with smaller
regions. In [12], the dynamic spatial correlations between
wind farms were considered and an EUS was established
based on observed wind generation measurements. The sim-
ulation results proved the advantages of EUS over PUS in
conservativeness reduction. A minimum volume enclosing
ellipsoid (MVEE) was employed as a convex hull to in-
volve all the uncertain scenarios for an adjustable robust
security constrained economic dispatch (SCED) model with
wind power uncertainties in [13]. The SCED was cast as
a second order cone programming (SOCP) problem and an
inactive constraint reduction strategy was utilized to reduce the
computational complexity. MVEE was also used in [14] to find
the boundary of the region containing all historical scenarios,
and a scaling factor was used to transform the EUS into
PUS before conducting the economic dispatch of distribution
networks with RES. Reference [15] applied EUS to address the
spatial and temporal correlation of wind power, and utilized
the affine policy to construct a robust transmission-constrained
unit commitment model with adjustable conservatism. The
analytical relationship between the budget value of the EUS
and the actual probability of solution was given to guide
the selection of budget value. While in [16], the EUS was
used to capture the correlation between generation capacities
and demands to address the transmission network expansion
planning problem.

Recently, distributionally robust optimization (DRO) is pro-
posed to overcome the shortcomings of traditional RO. The
DRO extracts probabilistic information from historical data
and construct an ambiguity set of probability distribution of
uncertain variables. Then the decision is made considering
the worst probability distribution [17]. Many approaches such
as moment based [18], [19] and distance based [20], [21],
are applied to formulate the ambiguity set. In [19], a family
of wind power distributions was defined by an ambiguity
set, and solution of the formulated two-stage DRO goes
less conservative with more data. Reference [20] proposed a
Wasserstein metric-based distributionally robust approximate
framework, which has good computational efficiency in case
of a large sample set. [21] utilized Kernel density estimation to
construct ambiguous probability distributions of wind power
and established a data-driven DRO model to dispatch energy
and reserve.

Although the abovementioned literature carried out fruitful
works on reducing conservativeness of RO, there exists a
research gap that most studies ignore the correlation between
forecast error and forecast value of RES power generation,
which does exist in actual data. Fig. 1 shows the relationship
between unified forecast error of wind power and forecast
value from January 2019 to December 2019 provided by
EIRGRID Group [22], where Fig. 1(a) presents the scatter
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Fig. 1. Relationship between wind power forecast error and forecast value.
(a) Scatter diagram of forecast error and forecast value. (b) Probability density
of forecast error.

diagram of forecast error and forecast value and Fig. 1(b)
demonstrates the probability density of forecast error under
different forecast intervals. It can be observed that distribution
of forecast error is more concentrated with smaller value in low
forecast power situations, and becomes dispersed with greater
error in high forecast power situation. This indicates that dis-
tribution characteristics of forecast error has correlation with
the day-ahead forecast value, which needs to be considered to
better capture the uncertainty.

To this end, this paper proposes a novel uncertainty set
modeling method that is data-driven, based on a two-stage RO
is established to address the day-ahead dispatch strategy for
a grid-connected MG with wind power integrated. Compared
with other modeling methods, the proposed method considers
temporal and conditional correlation simultaneously, and op-
timizes the dimension of ellipsoid, as illustrated in Table I.
The main work, as well as the contributions of this paper are
demonstrated as follows:

1) The probabilistic information from historical data of

TABLE I
COMPARISON WITH OTHER UNCERTAINTY SET MODELING METHODS

Description Proposed
method

Traditional
BUS

Traditional
EUS

Traditional
PUS

Temporal correlation
√

×
√ √

Conditional correlation
with forecast value

√
× ×

Dimension optimization
√

× × ×
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forecast wind power and the corresponding forecast error is
utilized to formulate an EUS based on conditional normal
copula (CNC) method, which captures the temporal correlation
of forecast error, as well as the conditional correlation of
forecast error with the forecast value. Under this framework,
the EUS can be updated based on the latest forecast power,
thereby is more data-adaptive to the variation of forecast result.

2) An aggregate index is proposed to evaluate the overall
performance and determine the optimal dimension of EUS via
a rolling modeling method. The high-dimensional ellipsoid is
then decomposed into multiple low-dimensional ellipsoids and
combined with an improved BUS, which significantly reduces
the conservativeness of the uncertainty set.

3) A two-stage RO model is built based on the improved
multi-ellipsoidal uncertainty set (i-MEUS). The RO model is
decomposed into a master problem (MP) and a subproblem
(SP), where the MP is formulated as a mixed integer linear
programming (MILP) problem and the SP is transformed to
a mixed-integer second-order cone programming (MISOCP)
problem via Binary Expansion (BE) and Big-M methods.
The column and constraint generation (CC&G) algorithm is
utilized to solve the two-stage RO model.

4) Numerous comparisons with deterministic optimization
(DO), traditional BUS-based RO, improved BUS-based RO,
EUS-based RO, and SO are conducted to verify the effective-
ness of the proposed i-MEUS-based RO. Results show the
proposed model is able to improve the economy of MG while
maintaining robustness of the decision.

The rest of this paper is organized as follows: Section II
presents the mathematical formulation of the proposed i-
MEUS. Section III gives the two-stage RO model based on
i-MEUS. Section IV details the solution procedure for optimal
dimension of EUS, as well as the two-stage RO model. Case
studies and simulation results are given and discussed in
Section V, followed by the conclusion in Section VI.

II. DATA DRIVEN UNCERTAINTY SET MODELING

A. Conditional Normal Copula Modeling

Define x = [x1, · · · , xn] and y = [y1, · · · , yn] as the actual
value and forecast value of wind power (WP), respectively; n
denotes the dispatch cycle that is usually considered 24 in day-
ahead decision making with time resolution of 1 hour. Define
e = [e1, · · · , en] as the corresponding forecast error that meets
x = y+ e. The joint cumulative distribution of forecast error
and forecast value is formulated as (1) according to normal
copula theory [23]:

fe,y(e,y) = ϕR(zx1
, · · · , zxn

, zy1
, · · · , zyn

)
n∏

i=1

fxi
(ei + yi)fyi

(yi) (1)

where zxi
= Φ−1

0 [Fxi
(ei + yi)] and zyi

= Φ−1
0 [Fyi

(yi)]
are intermediate variables of normal copula. F (·) denotes
the cumulative distribution function (CDF) obtained from
historical data of actual value and forecast value of WP. Φ−1

0 (·)
presents the inverse function of standard normal CDF of Φ0(·).
f(·) indicates the probability density function (PDF). ϕR(·)

means the PDF of standard multivariate normal distribution
with covariance matrix of R. Let zx = [zx1 , · · · , zxn ]

T,
zy = [zy1 , · · · , zyn ]

T, and z = [zT
x , z

T
y ]

T obeys standard
normal CDF, written as z ∼ N(0,R). Covariance matrix R
is calculated as:

R =

[
R11 R12

R21 R22

]
=

[
Rxx Rxy

Ryx Ryy

]
(2)

and

Rxy =

ρ(zx1 , zy1) · · · ρ(zx1 , zyn)
...

. . .
...

ρ(zxn
, zy1

) · · · ρ(zxn
, zyn

)

 (3)

where ρ(zxi
, zyi

) = 2 sin[ρr(xi, yi)π/6]. ρ and ρr are linear
correlation coefficient and spearman correlation coefficient,
respectively. Rxx, Ryx, and Ryy can be calculated in the
same way.

A conditional normal copula (CNC) model of forecast error
is then formulated as:

fe|y(e|y) = fe,y(e,y)/fy(y)

=
ϕR

(
zT
x , zT

y

)
ϕRyy

(
zT
y

) n∏
i=1

fxi
(ei + yi)

= fzx|zy

(
zT
x |zT

y

) n∏
i=1

fxi(ei + yi) (4)

where zy ∼ N(0,Ryy). zx|zy is the conditional distri-
bution of multivariate normal distribution, which is essen-
tially a multivariate normal distribution that meets zx|zy ∼
N(µzx|zy

,Rzx|zy
). According to the nature of conditional

distribution of multivariate normal distribution, the expected
value vector and covariance matrix can be obtained as fol-
lows [24]: {

µzx|zy
= RxyR

−1
yy zy

Rzx|zy
= Rxx −RxyR

−1
yy Ryx

(5)

zx|zy depicts the conditional correlation of the forecast
value and actual value of WP, which enables us to generate
numbers of WP samples denoting possible realization of WP
in the next day based on the latest day-ahead forecast value.
The detailed sampling process is illustrated as follows:

1) Establish marginal distribution of actual value and fore-
cast value of WP in each time period based on historical data.
Calculate the covariance matrix R via (2) and (3);

2) Get zyi
= Φ−1

0 [Fyi
(yi)] according to the latest day-ahead

forecast value;
3) Obtain the expected value and covariance matrix of zx|zy

based on (5);
4) Generate numbers of samples of zx by sampling zx|zy ,

and then the samples of actual value of WP can be obtained
through xi = F−1

xi
[Φ0(zxi)];

The sample vector xs = [x1, · · · , xn]
T achieved by the

aforementioned sampling process considers not only temporal
correlation, but also distribution characteristic of forecast
error under different day-ahead forecast values, thus is more
accurate in describing the uncertainty of WP due to its stronger
data adaptive ability to the forecast results variation.
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B. Formulation for Ellipsoidal Uncertainty Set

An ellipsoidal uncertainty set (EUS) with a given confidence
level αC is established to involve generated samples xs, which
is formulated as:(

xEUS − µx

)T
R−1

x

(
xEUS − µx

)
≤ Cα (6)

where µx and Rx are respectively, the expected value vector
and covariance matrix of xs. Cα is a constant corresponding
to αC. Each sample xs is brought into (7) and the probability
distribution of C can be achieved by considering all the
samples. Let Pr{C ≤ Cα} = αC so we can get the value
of Cα.

C = (xs − µx)
TR−1

x (xs − µx) (7)

The center of EUS is up to µx and shape is mainly influ-
enced by Rx. The covered region of EUS increases along with
the increase of Cα, denoting that EUS is more likely to involve
the possible realization of WP. However, the conservativeness
goes stronger concomitantly as the invalid region of EUS may
increase dramatically to involve the isolated samples.

C. Formulation for i-MEUS

The formulated uncertainty set in Section B is a high-
dimensional EUS that considers the temporal correlation of n
time periods of WP for day-ahead decision making. However,
although a high-dimensional EUS is more likely to cover the
actual realization of wind power, the weak correlation among
distant time periods makes EUS too conservative due to its
large volume. On the contrary, a low-dimensional EUS has
smaller volume but may not involve enough wind power data.
As a result, a trade-off between wind power coverage capacity
and conservativeness should be made in an optimal manner. To
this end, we decompose the high-dimensional EUS into several
low-dimensional EUS by considering the strong correlation in
adjacent time periods. Fig. 2 demonstrates the idea of high-
dimensional ellipsoid decomposition. Suppose the correlation
of TR time periods is considered, R is the number of low-
dimensional EUS and R = n− TR + 1. The low-dimensional
EUS will be created by rolling modeling the EUS via CNC
method. For each EUS, the dimension is reduced from n to
TR, and the MEUS is the intersection of these R ellipsoids.

The r-th TR-dimensional EUS, defined as ΩTR,r, considers
the temporal correlation among time interval [r, r + TR − 1],
1 ≤ r ≤ R, and is used to involve possible realization of wind
power among this time interval, which is expressed as:

ΩTR,r =
{
xEUS
r |

(
xEUS
r − µx,r

)T
R−1

x,r

(
xEUS
r − µx,r

)
≤ Cα,r

}
, r = 1, · · · , R (8)

Then the MEUS is formulated as:

ΩMEUS =

R⋂
r=1

ΩTR,r (9)

The key point for MEUS modeling is to determine the
optimal value of TR that enables the MEUS to involve possible
realization of WP with limited volume. To achieve this goal,
an integrity index and an efficiency index are proposed. Define
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Fig. 2. Rolling modeling method for MEUS.

D as the number of days used to evaluate the performance of
MEUS, and d denotes the day index. The two indexes are
formulated as:

ζ =
1

D

D∑
d=1

Nmax
d

n
(10)

η = 1−
lg
(

1
D

∑D
d=1 V

BUS∩MEUS
d

)
lg
(

1
D

∑D
d=1 V

BUS
d

) (11)

In (10), Nmax
d indicates the maximum number of time

periods that MEUS of day d can cover the actual value of
WP in the same day. The integrity index ζ is defined as
the average value of proportion of Nmax

d , so as to ensure
more actual value of WP is involved in MEUS. In (11), the
efficiency index η reflects the proportional relationship of the
volume between the MEUS and a benchmark BUS. The BUS
constructed in this paper also considers the conditional corre-
lation of forecast error and forecast value in each time period,
corresponding to a one-dimensional CNC model demonstrated
in Section A. Therefore, the BUS is established based on the
WP samples xBUS

s generated by the one-dimensional CNC
model, expressed as:

ΩBUS =
{
xBUS
i |xBUS

i ∈ [bLB,i, bUB,i], i = 1, · · · , n
}

(12)

The lower limit bLB,i and upper limit bUB,i are obtained
from the distribution of the samples xBUS

s and (13) with
confidence level of αC:

Pr
(
xBUS
i ≤ bLB,i

)
= Pr

(
xBUS
i ≥ bUB,i

)
= 1− αC/2 (13)

In (11), V BUS
d denotes the volume of BUS in day d.

V BUS∩MEUS
d represents the volume of intersection of BUS

and MEUS in day d. The formulated efficiency index η,
standardized within a range of[0, 1], can be used to evaluate
the conservation of MEUS. The smaller the efficiency index
is, the more conservative the set will be. Note it is difficult
to obtain the precise volume of V BUS∩MEUS

d . Therefore, an
approximate estimation method based on random discrete
points is applied.

First, a large number of random points are generated in the
BUS of day d, denoted as NBUS

d . Then, the number of points
belonging to the intersection of BUS and MEUS is recorded
as NBUS∩MEUS

d . The approximate expression of the efficiency
index is then formulated as:

η ≈ 1−
lg
(

1
D

∑D
d=1 N

BUS∩MEUS
d

)
lg
(

1
D

∑D
d=1 N

BUS
d

) (14)
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The MEUS would be more efficient with larger value of η,
but also needs to consider the performance of ζ. Therefore,
an aggregate index is established as:

ϑ = aζ + (1− a)η (15)

where a denotes the weight coefficient that is valued within
(0, 1).

The value of TR with best performance of aggregate index ϑ
will be chosen as the solution. To further improve performance
of the uncertainty set and overcome the shortcomings of
MEUS in terms of over conservativeness caused by extreme
scenarios included in the tail, an improved MEUS (i-MEUS)
is finally constructed as the intersection of MEUS and BUS
formulated as (9) and (12) respectively, i.e.:

Ωi-MEUS = ΩBUS ∩ ΩMEUS (16)

III. DAY-AHEAD TWO-STAGE RO MODEL

A typical grid-connected MG consists of controllable dis-
tributed generator (DG), wind turbine (WT), battery energy
storage system (BESS), demand response load (DR), and
conventional load is considered. In this paper, we extend
the traditional RO model to an i-MEUS-based two-stage RO
model to reduce the conservativeness, which is formulated as:

min



maxmin∆t

n∑
t=1


(aDGPDG,t + bDG)

+kBESS

(
Pdis

BESS,t

ηdis + P ch
BESS,tη

ch

)
+kDR

∣∣PDR,t − P ∗
DR,t

∣∣
+πt

(
P buy
UG,t − P sell

UG,t

)




(17)

subject to following constraints:

Pmin
DG ≤ PDG,t ≤ Pmax

DG (18)

0 ≤ P dis
BESS,t ≤ BBESS,tP

dis,max
BESS (19)

0 ≤ P ch
BESS,t ≤ (1−BBESS,t)P

ch,max
BESS (20)

1

ηdis

n∑
t=1

P dis
BESS,t∆t− ηch

n∑
t=1

P ch
BESS,t∆t = 0 (21)

Emin
BESS ≤ EBESS,0 +

t∑
t′=1

(
P ch
BESS,t′η

ch −
P dis
BESS,t′

ηdis

)
∆t

≤ Emax
BESS (22)

n∑
t=1

PDR,t∆t = EDR (23)

Pmin
DR,t ≤ PDR,t ≤ Pmax

DR,t (24)

0 ≤ P buy
UG,t ≤ BUG,tP

buy,max
UG (25)

0 ≤ P sell
UG,t ≤ (1−BUG,t)P

sell,max
UG (26)

P buy
UG,t + P dis

BESS,t + PDG,t + PWT,t =

P sell
UG,t + PDR,t + P ch

BESS,t + PL,t (27)

In (17), the objective is to minimize total day-ahead cost,
including costs for dispatching the DG, BESS, and DR and
cost of trading with utility grid (UG) for any realization
of WP in Ωi-MEUS. ∆t denotes the time resolution of the

optimization problem. aDG/bDG, kBESS, and kDR represent the
cost coefficients of DG, BESS, and DR, respectively. PDG,t,
P dis
BESS,t/P

ch
BESS,t, PDR,t, and P buy

UG,t/P
sell
UG,t express the power

generation of DG, discharge/charge power of BESS, actual
power consumption of DR, and purchasing/selling power of
MG from/to UG at time period t respectively. ηdis and ηch

indicate the discharge and charge efficiency of BESS. P ∗
DR,t

means the expected power consumption of DR at time period t.
πt presents the day-ahead time-of-use (TOU) price of the UG.

Output power of DG is constrained by (18). Constraint (19)–
(22) give the operational constraints of BESS. The maximum
discharge and charge power of BESS are limited by (19) and
(20), where BBESS,t denotes the binary variable that is equal to
1 if BESS is discharging, and equal to 0 otherwise; Constraint
(21) guarantees the remaining capacity at the last time period is
equal to the initial capacity EBESS,0; Constraint (22) ensures
the remaining capacity of BESS at each time period within
the upper bound Emax

BESS and lower bound Emin
BESS. DR loads

can be shifted in time but need to consume a certain amount
of energy within a given time, as demonstrated in (23); EDR

denotes the prescribed energy requirement of DR loads in a
dispatching cycle; Constraint (24) shows the regulating range
of DR at time period t. Constraint (25) and (26) express the
trading power limit between MG and UG, BUG,t is equal to
1 when MG purchases power from UG, and equal to 1 when
MG sells power to UG. Power balance is realized by constrain
(27), PWT,t and PL,t are the output power of WT and power
demand of conventional load at time period t, respectively.

The absolute term in (17) denotes the influence of load man-
agement on users’ comfort, which can be linearized as (28)
by introducing auxiliary variables and associated constraints
(29) and (30) as [8]:

kDR|PDR,t − P ∗
DR,t| = kDR(PDR1,t + PDR2,t) (28)

PDR,t − P ∗
DR,t + PDR1,t − PDR2,t = 0 (29)

PDR1,t ≥ 0, PDR2,t ≥ 0 (30)

The compact form of the two-stage RO model is then
formulated as:

min
xro

{
max

u∈Ωi-MEUS
min

yro∈Ψ(xro,u)
cTyro

}
(31)

subject to:

Dyro ≥ d

Kyro = k

Fxro +Gyro ≥ h

Qyro + u = ûL

yro ≥ 0 (32)

where superscript “ro” denotes variables related to RO prob-
lem. xro and yro represent the binary variable vector and
continuous variables, expressed as (33). To simplify analysis,
only the uncertainty of WP is considered. However, this sim-
plification does not affect the ability of the proposed method
to deal with a variety of uncertain variables. u indicates
the uncertain variable vector related to WP. Ψ(xro,u) is the
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feasible region of yro with fixed xro and u.
xro = [BBESS,t, BUG,t]

T

yro = [PDG,t, P
ch
BESS,t, P

dis
BESS,t, PDR,t,

PDR1,t, PDR2,t, P
buy
UG,t, P

sell
UG,t]

T

t = 1, · · · , n

(33)

In (31) and (32), c is coefficient column vector of objective
function. D, K, F , G, and Q are coefficient matrices of vari-
ables corresponding to the constraints. d, k, and h are constant
column vectors. ûL denotes the forecast value of conventional
load. The first line of (32) corresponds to constraints (18), (22),
and (24); The second line indicates (21), (23), and (29); The
third line involves (19), (20), (25), and (26); The fourth line
denotes (27).

IV. SOLUTION APPROACH

A. Solution Procedure for Optimal Dimension of EUS

The BUS formulated in (12) can be regarded as a special
case of TR-dimensional EUS with TR = 1. Therefore, TR is
an integer valued within the range of [1, n]. The enumeration
method is used to determine the optimal TR based on historical
data. The solution procedure is summarized as follows:

Algorithm 1: Solution procedure for optimal value of
TR

1 Initialize TR = 1, d = 1, set the parameter of αC and
a

2 Obtain WP samples xs according to step 1)–step 4) of
Section II-A

3 while TR ≤ n do
4 while d ≤ D do
5 Establish R TR-dimensional EUS via (6)–(9),

and obtain Nmax
d , NBUS

d , and NBUS∩MEUS
d

for day d
6 d = d+ 1
7 end
8 Calculate aggregate index by (10), (14), and (15)
9 Record the value of aggregate index marked with

TR

10 TR = TR + 1, d = 1
11 end
12 Select TR with maximum aggregate index value

B. Solution Procedure for Two-stage RO Model

The two-stage RO model is solved by the C&CG algo-
rithm [9], which decomposes the model into a master problem
(MP) and a subproblem (SP), and then solves them iteratively.
The formulation of the MP is expressed as:

MP : min
xro

ξ

s.t. ξ ≥ cTyro
l

Dyro
l ≥ d

Kyro
l = k

Fxro +Gyro
l ≥ h

Qyro
l + u∗

l = ûL

yro
l ≥ 0

∀l ∈ O (34)

where ξ is the auxiliary variable. yro
l denotes new variables

generated from the SP and added to the MP. O is the index
set for wind uncertainty scenarios l; u∗

l is the worst-case
realization of WP, obtained from SP in the last iteration.

MP is a MILP problem that can be solved by mature
software. With the solution of MP, the SP below is to find
the worst-case realization of WP:

SP : max
u∈Ωi-MEUS

min
yro∈Ψ(xro∗,u)

cTyro

Dyro ≥ d

Kyro = k

Fxro∗ +Gyro ≥ h

Qyro + u = ûL

yro ≥ 0 (35)

The inner minimization problem of the SP is a linear
problem, thus can be recast into the following single-level
maximization problem based on strong duality theory:

max
u,γ,λ,ν,π

dTγ + kTλ+ (h− Fxro∗)
T
ν + ûT

Lπ − uTπ

s.t. DTγ +KTλ+GTν +QTπ ≤ c

γ ≥ 0,ν ≥ 0 (36)

where γ, λ, ν, and π are dual variable vectors for the
constraints of the first line to fourth line of (35).

The bilinear term uTπ in (36) brings challenges to solve the
problem. In this paper, the Binary Expansion (BE) is used to
linearize this term [25]. The dual variable vector π is expressed
by BE as:

πt ≈ πmin
t +∆π

in∑
i=i1

2ibi,t (37)

where πmin
t denotes the minimum value of π at time period t.

∆π is the step size. bi,t is a binary variable associated with
the i-th exponential term in the BE expression. i1 and in are
integers defining minimum and maximum exponential orders.

The bilinear term uTπ is therefore approximated as:

uTπ = πT
minu+∆π

in∑
i=i1

n∑
t=1

2ibi,tut (38)

where πT
min =

[
πmin
1 , · · · , πmin

n

]T
is a constant vector. ut is

an element of u.
Formula (38) is further linearized by introducing auxiliary

variable αi,t = bi,tut and Big-M method [26] as:
uTπ = πT

minu+ fT
αα

0 ≤ αi,t ≤ bi,tM

ut − (1− bi,t)M ≤ αi,t ≤ ut

(39)

where M ∈ ℜ+ is big enough. The variable α and coefficient
fα are vectors with (in − i1 + 1)n dimension, which are
expressed as:
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α = [αi1,1, · · · , αin,1, αi1,2, · · · , αin,2, · · · ,

αi1,n, · · · , αin,n]
T

fα = ∆π · [2i1 , · · · , 2in , 2i1 , · · · , 2in , · · · , 2i1 , · · · , 2in ]T
(40)

It is worth noting that dual variable π corresponds to the
shadow price of MG, whose value is limited within a small
range. As a result, it will not bring much computational burden
by using BE.

The uncertain variable vector u is bounded by the i-MEUS
of (16), which also makes the model (36) difficult to be solved.
Since R−1

x,r in (8) is a symmetric positive-definite matrix with
the Cholesky decomposition R−1

x,r = LT
r Lr, (9) is transformed

to the following second-order cone form by introducing a
variable vector ωr:

ΩMEUS :=

 ut, t = 1, · · · , n|√
Cαωr = Lr(ur − µx,r)

∥ωr∥2 ≤ 1, r = 1, · · · , R

 (41)

The SP is then cast into the following MISOCP problem:

max
u,γ,λ,ν,π,α,b,Bu

dTγ + kTλ+ (h− Fxro∗)Tν + ûT
Lπ

− πT
minu− fT

αα

s.t. DTγ +KTλ+GTν +QTπ ≤ c

πt = πmin
t +∆π

in∑
i=i1

2ibi,t

0 ≤ αi,t ≤ bi,tM

ut − (1− bi,t)M ≤ αi,t ≤ ut√
Cαωr = Lr(ur − µx,r)

∥ωr∥2 ≤ 1

bLB,t ≤ ut ≤ bUB,t

ut ≥ Bu,tûWT,t

n∑
t=1

Bu,t ≥ n− Γ

γ ≥ 0, ν ≥ 0

t = 1, · · · , n, r = 1, · · · , R (42)

where ûWT,t is the day-ahead forecast value of WP at time
period t. Bu,t is a binary variable associated with realization
of WP. Γ denotes the uncertainty budget that used to regulate
the robustness of decision making [6].

The procedure of the C&CG algorithm is conducted itera-
tively, which is demonstrated as follows:

V. CASE STUDY

The proposed method is tested by actual data from Ref. [22],
where the CNC model is constructed by using four months
data, and performance is tested by another two months data.
All the models are solved by IBM ILOG CPLEX 12.6.3 with
MATLAB R2013a.

A. Temporal Correlation Analysis of Wind Power

The conditional correlation of forecast error and forecast

Algorithm 2: Solution procedure for two-stage RO

1 Initialize worst scenario u∗
l . Set the upper bound

UB = +∞, lower bound LB = ∞, iterations index
l = 0, O ∈ ∅, convergence error ε = 0.01.

2 while UB − LB ≥ ε do
3 Solve the MP (34) based on u∗

l and derive the
optimal solution

(
xro∗
l+1, ξ

∗
l+1,y

ro∗
1 , · · · ,yro∗

l

)
.

Update LB = ξ∗l+1.
4 Solve the SP (42) with xro∗

l+1, and get the optimal
solution

(
yro∗
l+1,u

∗
l+1

)
, then update

UB = min
{
UB, cTyro∗

l+1

}
5 Create new variables yro

l+1 and add corresponding
new constraints given in (34) to MP (l > 0)

6 l = l + 1
7 end
8 Return xro∗

l+1 and yro∗
l+1

value of the testing data has been presented in Fig. 1. Here
the lower triangular Scatter Matrix and marginal histogram
of forecast error of wind power is provided in Fig. 3 to
verify the necessity of considering temporal correlation. The
marginal distribution of forecast error at each time period
obeys normal distribution. Scatter plots represent joint dis-
tribution of forecast error among different time periods. It
can be seen that joint distribution of adjacent time period
centers at the diagonal of the axis, showing strong correlation.
While it becomes dispersed with increase of time interval.
Accordingly, considering the strong temporal correlation is a
benefit to limit the invalid region of uncertainty set and reduce
the conservativeness.

As demonstrated in Section II-C, the optimal dimension is
determined by the aggregate index. Fig. 4 shows the value
of aggregate index under different TR. Weight coefficient a
is set to 0.3, as the efficiency index usually has a significant
impact on the conservativeness of uncertainty set. It shows the
aggregate index increases with increase of TR at the beginning,
which is mainly dominated by the integrity index. However, it
drops quickly once TR is larger than 3. This is caused by the
deterioration of performance of efficiency index, as a larger
volume of uncertainty set is required with the increase of TR.
Therefore, the optimal dimension is determined as 3, and the
MEUS consists of the intersection of 22 ellipsoid sets. Then,
the i-MEUS is constructed by combining MEUS with the box
uncertainty set formulated as (12).

B. Optimization Results of i-MEUS-based RO Model

The formulated two-stage RO model aims at minimizing
the day-ahead cost of microgrid under the “worst scenario”
of wind power. It is worth noting the final cost of microgrid
includes two parts: the day-ahead cost and the balancing cost
caused by the deviation of day-ahead trading and real-time
power exchange with the utility grid. For a certain time period,
if the purchasing power in real-time is larger than in day-ahead
trading plan, the unbalanced power should be compensated by
the microgrid with the real-time selling price of the utility
grid. On the contrary, the microgrid is considered to sell
power to the utility grid with the real-time purchasing price
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Fig. 3. Scatter plots and marginal histogram of forecast error.
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if the purchasing power in real-time is lower than in day-
ahead. Therefore, the optimization model should be evaluated
according to overall performance in day-ahead and real time
operation. In this section, only the day-ahead decision is
analyzed, and the overall performance of the proposed method
is discussed in Section C.

The operational and economic parameters of the microgrid
can be found in [8]. The day-ahead time-of-use price of
the utility grid is presented in Fig. 5. Fig. 6 demonstrates
the dispatch scheme of DG and BESS. The positive value
of BESS indicates discharging, and negative value denotes
charging. The BESS is utilized to transport electricity from
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Fig. 5. Day-ahead time-of-use price of the utility grid.
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Fig. 6. Day-ahead dispatch of DG and BESS.
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low price periods (1 h–3 h, 24 h) to high price periods (20 h–
22 h), thus reducing day-ahead cost. The DG operates with
minimum output power in 1 h–7 h and 24 h, as the day-ahead
prices during these periods are lower than unit generation
cost (¥0.47/kWh VS ¥0.67/kWh). While in the other periods,
DG exports as much power as possible to reduce the cost
of microgrid. Fig. 7 illustrates actual power consumption and
expected power consumption of DR. Electricity demands of
19 h–21 h and 23 h are shifted to 1 h–7 h and 24 h to reduce
cost while meeting the constraint of (23). Results indicate
the rationality of the day-ahead decision made through the
i-MEUS-based two-stage RO model.
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Fig. 7. The actual/expected power consumption of DR.

C. Comparison of Different Optimization Methods
It is clear the day-ahead decision has great influence on

MG economy. Although balancing cost may be reduced with
a conservative day-ahead decision, it always leads to a higher
day-ahead cost and is uneconomic when considering both the
day-ahead and balancing costs. Therefore, an accurate uncer-
tainty modeling is required for the MG day-ahead decision
making. In this Section, six optimization models are compared
to verify the advantages of the proposed i-MEUS, which are
demonstrated as:

1) Deterministic optimization model (DO), where no uncer-
tainty is considered and wind power is equal to the forecast
value.

2) BUS-based RO: the RO model of (31)–(32) is utilized,
but the uncertainty set is replaced by a traditional BUS used
in [8].

3) i-BUS-based RO: the RO model of (31)–(32) is utilized,
but the uncertainty set is replaced by an improved BUS (i-
BUS) defined in (12)–(13), i.e. the conditional correlation
of forecast error and forecast value in each time period is
considered.

4) EUS-based RO: the RO model of (31)–(32) is utilized,
but the uncertainty set is replaced by an EUS defined as (8)
with TR valued as 24.

5) i-MEUS-based RO model proposed in this paper.
6) Stochastic optimization model (SO): the comparative

SO model also considers the temporal correlation and the
conditional correlation. The wind power samples are generated
in the same way with i-MEUS-based RO model. Then, the
k-means cluster method is used to reduce scenarios number
according to the sum of square error (SSE) [27].

Figure 8 illustrates the relationship of SSE with cluster
number. It can be seen that SSE reduces along with increase of
scenarios number, and descending speed becomes very slow
when the number is greater than 10. Therefore, ten scenarios
are considered.
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Fig. 8. SSE with different scenarios number.

Purchasing/selling prices of the utility grid in the real-
time power market are usually lower/higher than in the day-
ahead market [28]. Therefore, real-time purchasing price and
selling price of utility grid are assumed to be 0.5 times and
1.5 times the day-ahead price at the corresponding periods,
respectively [8]. Fig. 9 demonstrates performance of the six
models in terms of day-ahead cost, balancing cost, total cost,
day-ahead purchasing electricity, day-ahead selling electricity,
and balancing electricity of the MG. All results are the daily
average of test data. Balancing electricity means the sum of
absolute value of surplus power and power gap in each period
of MG in real time operation. As no uncertainty risk is con-
sidered in DO, day-ahead purchasing electricity is the lowest
and the day-ahead selling electricity is the highest. Therefore,
the DO makes a decision that is “ideal” with lowest day-
ahead cost (¥1962). However, this day-ahead decision leads to
a huge power gap that needs to be compensated by the MG to
the utility grid, causing highest balancing cost (¥1374). When
uncertainty is considered in the other five models, purchasing
electricity goes higher and selling electricity goes lower in
day-ahead decisions with different variation characteristics.
Among the uncertain optimization models, the EUS-based
RO model shows the strongest conservativeness. Although
balancing cost is the lowest (¥393) due to large income from
the utility grid for surplus power, the overall performance is the
worst due to highest day-ahead cost (¥3122). This is caused
by the weak correlation among distant time periods, which
significantly increases the volume of EUS.

Simulation results also reveal the shortcoming of “over
conservative” of traditional BUS-based robust method. The
total costs of BUS-based RO model and i-BUS-based RO
model are slightly higher than the DO model under the
testing data (increased by 0.42% and 0.12%, respectively).
The performance of i-BUS-based RO model is slightly better
than the BUS-based RO model, which benefits from the
consideration of conditional correlation. The improved BUS
is updated based on the latest forecast value, improving
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Fig. 9. Daily average results of different models.

accuracy of uncertainty modeling. The SO model achieves a
relatively balanced solution in aspects of the day-ahead cost
and balancing cost, showing better performance than the DO,
BUS-based RO, i-BUS-based RO, and EUS-based RO. The
total cost of SO model is reduced by 0.30% compared with
the DO model under the testing data. Compared with the SO
model, the proposed i-MEUS-based RO performs better in
terms of balancing cost, as well as balancing electricity, thus
has the lowest total cost among all the six models (reduced
by 1.26% VS DO model).

The daily average value of balancing electricity of the
six models are demonstrated in Table II. It can be seen the
proposed i-MEUS-based RO model reduces the daily average
balancing electricity by 11.16%, 11.86%, 5.14%, 21.03%,
and 2.89% compared with the DO, BUS-based RO, i-BUS-
based RO, EUS-based RO, and SO, respectively. Accordingly,
overall performance is the best among the comparative models.
Results denote the proposed method can reduce the conserva-
tiveness of traditional RO methods and improve accuracy for
uncertainty modeling, realizing a balance between economy
and robustness for the MG day-ahead decision making.

To better present the advantages of the proposed model,
one day from the testing two months is selected for specific
explanation. Wind power realization of DO, i-BUS-based
RO, SO, and the proposed i-MEUS-based RO in day-ahead
decision making is illustrated in Fig. 10. The corresponding

TABLE II
BALANCING ELECTRICITY OF DIFFERENT MODELS

Method Mean Method Mean
DO (kWh) 1890 EUS-based RO (kWh) 2126
BUS-based RO (kWh) 1905 i-MEUS-based RO (kWh) 1679
i-BUS-based RO (kWh) 1770 SO (kWh) 1729

unbalanced power of each time period is provided in Fig. 11.
In Fig. 10, wind power realization of SO indicates the

expected value of the 10 scenarios. It can be seen that wind
power realization of DO model has large deviation with actual
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Fig. 10. Wind power realization of different models.
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wind power in 1 h–6 h, leading to large unbalanced power
that needs to be compensated in Fig. 11. In the other time
periods, deviation is limited within a small range, denoting
good prediction accuracy of the testing data. Comparing the
i-BUS-based RO with the proposed model, the main difference
is that wind power realization at 21 h is selected as an
independent worse scenario in i-BUS-based RO. While the
proposed model prefers to select continuous periods as worse
scenarios due to the temporal correlation, which reduces the
unbalanced power as shown in Fig. 11 and improves uncertain
modeling accuracy. When compared with the SO, the proposed
model also performs better in many time periods, such as 5 h–
6 h, 8 h–14 h, and 19 h–23 h.

In order to quantitatively compare the effectiveness of
models, indexes such as correlation coefficient (CC), root
mean square error (RMSE), Bias, mean absolute error (MAE),
normalized root mean square error (NRMSE) and scatter index
(SI) are utilized and presented in Table III. These indexes are
formulated as (43)–(48), where P actu

WD,t and ut represent the
actual value of WP and realization of WP at time period t.
P̄ actu
WD and ū are their average values, respectively. The range

of CC is 0–1, and correlation is higher when the value is larger.
RMSE, Bias, MAE and NRMSE are error evaluation indexes
from different perspectives. SI indicates relative dispersion
degree of the error. Fluctuation of error deviation is smaller
when SI is smaller. It is obvious the proposed model has higher
CC, smaller errors and smaller SI, which shows excellent
performance in each aspect.

CC =

∑n
t=1

(
P actu
WD,t − P̄ actu

WD

)
(ut − ū)√∑n

t=1

(
P actu
WD,t − P̄ actu

WD

)2∑n
t=1(ut − ū)2

(43)

RMSE =

√√√√ 1

n

n∑
t=1

(ut − P actu
WD,t)

2 (44)

Bias = ū− P̄ actu
WD (45)

MAE =
1

n

n∑
t=1

∣∣ut − P actu
WD,t

∣∣ (46)

NRMSE =

√√√√√√
∑n

t=1

(
ut − P actu

WD,t

)2
∑n

t=1

(
P actu
WD,t

)2 (47)

SI =

√√√√√√
∑n

t=1

((
P actu
WD,t − P̄ actu

WD

)
− (ut − ū)

)2
∑n

t=1

(
P actu
WD,t

)2 (48)

We also vary the sample size of wind power to further test
performance of different optimization models. Total costs with
different sample sizes are presented in Fig. 12. Total cost of
DO remains unchanged as it does not require the data to train.
As more data are considered, the EUS becomes larger with
higher cost obtained by EUS-based RO model. The costs of
BUS-based RO and i-BUS-based RO also increase slightly
with increase of sample size. The cost of the proposed model
almost remains the same under different sample sizes. Whereas

TABLE III
INDEXES OF WIND POWER REALIZATION OF DIFFERENT MODELS

Index DO i-BUS-based RO i-MEUS-based RO SO
CC 0.728 0.897 0.928 0.814
RMSE 233.684 96.805 80.203 119.069
Bias 79.010 −30.657 −30.188 −40.465
MAE 158.240 73.619 62.190 102.457
NRMSE 0.516 0.214 0.177 0.263
SI 0.486 0.203 0.164 0.247
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Fig. 12. Total costs of different models under different sample sizes.

the total cost of SO reduces when more data is used to generate
scenarios, and it performs better than the proposed model
when there has enough training data.

VI. CONCLUSION

Future zero carbon energy systems are integrated with large
scale of RES, and MG plays an important role in increasing
renewable energy penetration. This paper proposes an i-MEUS
modeling method to address uncertainty brought by RES
and reduce the conservativeness of robust optimization. The
efficiency of the proposed model is verified using numerous
cases, which shows that:

1) The proposed method has higher accuracy for uncertainty
modeling. The day-ahead decision made by the proposed
model is robust and less conservative. Average unbalanced
power is reduced by 11.16%, 11.86%, 5.14%, 21.03%, and
2.89% as compared with the DO, BUS-based RO, i-BUS-
based RO, EUS-based RO, and SO, respectively.

2) The proposed model shows better adaptability for limited
historical data than the SO. Performance of the proposed
model is satisfactory in the case of less training data. There-
fore, it is more suitable for uncertain optimization problems
with limited historical data.

Future work will focus on comparison with the DRO method
that also utilizes probabilistic information of historical data,
and try to combine the advantages of the two methods to
further reduce conservativeness of RO.
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