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Abstract—Coordinated vehicle-to-grid (V2G) control strategies
can sustain essential loads of an energy system during island-
ing, thereby increasing resilience. In this context, this paper
investigates the resilience enhancement benefits of smart V2G
control, the value of electric vehicle (EV) owner cooperation
on system resilience, as well as the complementary effects of
PV and EV interaction in an urban multi-energy microgrid
(MEMG). By using a rolling horizon approach to optimize day-
ahead operation of the MEMG and subsequently dispatching
EVs, uncertainties in outage start time, EV arrival/departure
times, and initial state of charge (SOC) are mitigated. Results
show that smart V2G control can provide a substantial essential
load curtailment reduction compared to a non-EV scenario,
meanwhile, non-coordinated grid-to-vehicle (G2V) operation was
shown to slightly burden the system with a slight increase in
non-essential load curtailment. Investigations into the influence
of EV cooperation on resilience showed that a high percentage
of system-prioritized (SP) EVs could help greatly further reduce
essential load curtailment compared to individual-prioritized
(IP) EVs. Finally, the complementary benefits of smart V2G
control and PV were demonstrated, showing a reduction in both
PV and essential load curtailments with increasing numbers of
EVs. Overall, the application of smart V2G control, especially
with cooperation of EV owners, can drive significant resilience
enhancement during islanding, while further benefits can be
obtained through having a sufficient number of EVs to utilize
high PV penetration.

Index Terms—Multi-energy system, renewable energy sources,
resilience, rolling horizon optimization, vehicle-to-grid.

I. INTRODUCTION

CLIMATE change is leading to an increasing number of
high-intensity low-probability (HILP) events which can

cause disruptions to our energy systems. Meanwhile, to shift
reliance from fossil fuels which drive anthropogenic climate
change, electrification of our energy systems is necessary
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and alternative, often renewable, distributed energy resources
(DERs) are required. However, the stochastic natures of DERs
such as wind turbines and PVs are leading to growing pressure
on the electric power system (EPS) to supply loads under
uncertain conditions. Despite this challenge in utilizing DERs,
following HILP events that result in islanding, local networks
can be operated as microgrids to control local resources and
supply local loads — providing a valuable resilience benefit
over traditional long-distance transmission. In this context,
as distributed and increasingly widespread local resources,
electric vehicles (EVs) will play a crucial role in enhancing
resilience during islanding through the provision of vehicle-
to-grid (V2G) services [1], [2].

Approaches to quantify the resilience of a system vary
across literature — references [3] and [4] discuss how re-
silience can be a combination of physical, price and geopolit-
ical security and described in terms such as people served,
economic activity, availability of critical infrastructure, and
load served. Meanwhile, references [1] and [5] employ the
concepts of resilience triangles and trapezoids which assess
resilience across multiple stages of a disruption.

Only limited research has been focused on resilience en-
hancement provided by microgrids [6]–[11]. Amirioun et
al. [6] proposed a framework to quantify resilience for electric-
only microgrids immediately following islanding, while Gou-
veia et al. [7] coordinated frequency and demand response to
improve resilience. Duo Shang [8] also focused solely on an
electricity-based microgrid, but from an economic perspective
to determine effective market pricing strategies. Hussain et
al. [9] used robust optimization to guarantee feasible islanding
against sudden power disruptions. Increase in operation cost
was negligible compared to the significant increase in re-
silience obtained in their case studies, however, their approach
to always be on alert may not be economically feasible for
many microgrid configurations. Gholami et al. [10] increased
resilience against anticipated upcoming disruptions, based on
likely scenarios which were generated from stochastic proba-
bility distribution functions. However, this approach is limited
to scenarios with access to highly accurate data.

Balasubramaniam et al. [11] used corrective control to
scheduled resources to reduce essential load shed for sce-
narios up to the 95% confidence intervals for demand and
renewable generation. Two strategies were used — one where
scheduling was determined at the start of the disruption, and a
second where scheduling was continually updated at each 5-
minute dispatch. Counterintuitively, it was found the schedule
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determined at the start outperformed the continuously updating
schedule. This may highlight the importance of careful and
effective rolling horizon control.

Each of the above references neglect to consider the value
of EV dispatch strategies in improving microgrid resilience,
while many diverse V2G dispatch strategies have been shown
to facilitate operational benefits [12]–[17]. In [12] a decentral-
ized approach was used to dispatch EVs, considering multiple
optimization priorities such as cost, state of charge (SOC),
power system contingency and load levelling. In [13] game
theory was used to optimally control networked charging
stations. In [14] deep reinforcement learning was used to
optimally schedule decentralized EVs under uncertainty. Hus-
sain & Kim [15] compared different multi-objective opti-
mization techniques for energy allocation during disruptions
and it was found that a genetic algorithm had the lowest
performance while carrying a high computational complexity,
highlighting the caution required when using machine learning
techniques. Meanwhile, the lexicographic approach had the
best performance when accurate information was available.
Wang et al. [16] considered EV routing strategies to optimally
distribute EVs in networked microgrids, while Zhou et al. [17]
proved the feasibility of obtaining cooperation of owners and
accurate EV information by developing a mobile app able to
efficiently operate on a city scale.

Consideration of multiple energy vectors has been shown to
enable economic and resilient operation [18]–[27]. In a multi-
energy microgrid (MEMG), the EPS can convert electricity
to heat and cooling, the heat network can shift consumption
between electricity and gas, both heat and cooling loads
can shift electricity consumption temporally, and the gas
network can enable electricity and heat generation independent
of the utility grid often through low emission biogas [18],
and transport, through V2G services can supply electricity
and shift demand [19]. The benefits of considering multiple
energy vectors are quantified in [20] where it was found
that a hybrid electricity-hydrogen approach could significantly
reduce yearly costs in the order of billions per annum.
References [21]–[23] also assessed the advantages of multi-
energy systems and demonstrated reduced cost and increased
resilience of supply, while references [24]–[27] focused on
the optimal operation and design of multi-energy systems.
However, to the best of our knowledge, none of the existing
research has considered multi-energy integrated into a V2G-
focused resilience framework.

Given that multiple energy vectors increase system flex-
ibility and there are still gaps between existing works and
the resilience benefits of V2G control, dispatch strategies and
cooperation of EV owners, this paper extends the conference
paper [28] and is dedicated to assessing these benefits through
the lens of an urban multi-energy microgrid.

Compared to existing works, key contributions of the pro-
posed work are summarized as follows:

1) It assesses the value of coordinated V2G services in
enhancing resilience of urban energy systems. Specifically,
the resilience-driven response capabilities of numerous EVs
during disruptive events are aggregated and fit into a rolling

horizon optimization framework. Additionally, a complemen-
tary EV dispatch strategy is proposed to realize resiliency-
oriented operation based on the optimization results.

2) It uniquely considers the effect of EV owners’ willingness
to support system operation on resilience. Specifically, the im-
pact of the ratio of system-prioritized (SP) EVs to individual-
prioritized (IP) EVs on resilience, is assessed.

3) It investigates the complementary benefits of V2G ser-
vices and PVs for increasing resilience and reducing PV
curtailment. Specifically, the effect of the number of EVs in the
microgrid on PV and essential load curtailment is evaluated.

The rest of the paper is organized as follows: Section II
presents an overview of the MEMG operation, while also
showcasing the methodology for modeling individual and
aggregate EVs, Section III details the rolling day-ahead
optimization of the MEMG, including rolling EV dispatch
strategies and the classification of EV owners’ cooperability
status. Section IV presents and discusses case studies aimed
at assessing the benefits of the three main contributions listed
above and finally conclusions and future works are discussed
in Section V.

II. MODELING AND FORMULATION

A. Multi-Energy Microgrid System with V2G Services

Deep electrification of various urban energy loads estab-
lishes fundamental links between different energy carriers,
bringing opportunities for flexibility sharing across multiple
urban energy sectors. MEMGs, in this context, play an im-
portant role in facilitating the synergies of diversified local
energy sources through appropriate smart control strategies,
and thereby enhancing resilience of urban energy systems.

Figure 1 demonstrates the conceptual MEMG framework
investigated in this work, where various distributed resources
in multi-energy vectors, e.g., electricity, heat, gas, and trans-
port, are considered. In normal operational conditions, the
MEMG is connected with the utility grid through the point
of common coupling (PCC) and interacts with the upstream
electricity system by trading energy and providing system
services, etc. If there is a contingency, the MEMG can operate
in islanded mode to alleviate the operational strains of the
utility grid while the energy management system (EMS)
manages to autonomously maintain uninterrupted, or optimally
deliver compromised, supply of local loads [29]. The predicted
occurrence of the disruptive event resulting in the MEMG
switching from normal mode to islanded mode is normally
within a time interval, but this paper adopts the earliest
possible contingency time for robustness purposes. Although
this conservative prediction may increase economic cost, it can
provide better supply to the local demand.

Due to backup of the utility grid, local generation resources
are typically not able to fully cover local demand. Therefore,
in islanded mode, it is necessary to differentiate the criticality
of different loads so that adverse impacts of disruptive events
can be mitigated by prioritizing the supply of essential loads
with limited local resources. In this context, smart control,
enabling preventive preparation prior to the occurrence of
disruptive events to drive seamless islanding, and exploitation
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Fig. 1. Diagram of the fictional multi-energy microgrid, located in London, UK.

of flexibility of the MEMG to prioritize the supply of essential
load is critical in optimizing the resiliency-oriented operation
of MEMGs.

The availability of local energy sources e.g., PV, combined
heat and power generation (CHP), and distributed generation,
as well as local flexibility e.g., pipe storage that can tempo-
rally shift inflexible generation, fundamentally determines the
resiliency level of a MEMG. As the focus of this work is the
resilience enhancement value of V2G services, the pipe net-
work and buildings are unable to store energy and smart loads
are not considered. Since EVs carry considerable amounts of
energy and can serve as storage through V2G services, they
are characterized as both sources of energy and flexibility,
qualifying them to be promising candidates for enhancing
system resilience. Although their increasing penetration due
to tighter emission regulations and decreasing costs makes
the utilization of EVs a cost-effective option for supporting
the resilient operation of urban energy systems [30], they
present some challenges in their use. Design of an effective
V2G coordination algorithm can alleviate problems such as
increased loads, increased uncertainty, greater control com-
putation burdens, a changing system dynamic to decentralized
distribution, uncertainties in availabilities, diversified customer
preferences, and necessity of aligning individual benefits and
system interests. However, additional challenges associated
with larger reliance on power electronics, increased commu-
nication resources, and increased contract costs to provision
use of these EV services are problems beyond the scope of
this paper and deserve study in their own right.

A general definition of resilience can be stated as “the ability
to withstand and reduce the magnitude and/or duration of
disruptive events, which includes the capability to anticipate,
absorb, adapt to, and/or rapidly recover from such events” [30].

Load curtailment when analysed temporally and categorized
into essential and non-essential is a suitable variable to quan-
tify magnitude (amount and criticality) and duration under
different operational measures which may impact the ability
of the microgrid to anticipate, absorb, adapt to, and rapidly
recover from an outage.

A comparative analysis of similar works verifies the suit-
ability of approaches used in this paper. According to Silvente
et al. [31], approaches to address uncertainty in scheduling
problems can be classified as either proactive or reactive.
The former usually consists of robust and stochastic meth-
ods, which may be overly conservative or incur significant
computational costs, especially in the stochastic case. Reactive
approaches focus on modifying a schedule, often in response
to updated system information. By combining both approaches
in the form of a robust rolling horizon approach, we retain
the benefits of a robust approach, while ensuring we reduce
conservatism as we gain updated information. Regarding EV
aggregation, Gouveia et al. [7] aggregated EVs into a single
homogenous battery. Though their approach was suitable in
their work, using this approach to represent a large number
of diverse EVs with different states of charge, preferences,
and joining/departing times etc., introduces some accuracy
problems. Conversely, [32] models each EV and its system
interactions individually. However, this would become compu-
tationally infeasible with large numbers of EVs. Our approach,
which combines the benefits of those aforementioned, converts
the EVs to an aggregate battery to reduce complexity, while
including aggregate constraints to limit the operation to that
which is feasible. Additionally, real-time dispatch at each
timestep ensures that EVs are updated on an individual level
to preserve model accuracy.
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B. Individual EV Modeling

1) Normal Operation Mode
The feasible operating region of a single EV providing V2G

services is demonstrated in Fig. 2. Specifically, the operation of
each EVi can be described by a series of parameters including
plug-in time tini , plug-out time touti , initial state of charge
SOCini

i , expected state of charge before leaving SOCexp
i ,

and minimum/maximum state of charge SOCmin
i /SOCmax

i .
The feasible SOC region is defined by these parameters as
shown in Fig. 2. Three V2G-associated actions comprising
charging, idling, and discharging are represented by upwards,
rightwards, and downwards arrows. Considering the dynamics
of EV battery operation, five scenarios are distinguished in
Fig. 2. Red arrows represent actions that violate physical
limits associated with battery capacity; blue arrows represent
violations of customers’ requirements; green arrows represent
violation-free actions.

4

2

1

3

5

SOC
i
max

SOC
i
exp

SOC
i
ini

SOC
i
min

t
i
in t

i
out

Fig. 2. Operational limits, scenarios (1-5), and actions (arrows) for an EV.

2) Islanded Operation Mode
In islanded operation mode, local generation sources may

not be able to supply all local demand; in this case, EVs
will be requested to compromise their own energy supplies
to prioritize maintenance of essential load. During islanding,
EVs must still operate within the physical limits (SOCmin

i and
SOCmax

i ), but their willingness to compromise their energy
supply should be categorised into two cases, which must be
willingly contracted to protect EV owners’ rights:

Individual-prioritized (IP) operation: In this case, individual
customers are unwilling to share their energy for system
benefits when their own preference of SOC is not satisfied as a
result of idling or discharging actions. Reaching the preferred
SOC is compromised if the SOC enters the shaded region
(bounded by the dashed line with a slope equal to the charging
rate), as shown in Fig. 2. Depending on how close the SOC
is to entering the shaded region, we can define two scenarios,
4 and 5, to prevent entering this critical region. In scenario 4,
discharging will cause the SOC to enter the shaded region in
the next timestep and violates the customers’ requirements but
charging and idling are allowed. In scenario 5, the current SOC
is closer to the shaded region, so both idling and discharging

are prohibited actions that would cause the SOC to enter the
shaded region and violate the customers’ requirements.

System-prioritized (SP) operation: In this case, individual
customers prioritize system benefits, e.g., reduce the curtail-
ment of essential load, by sharing their energy, disregarding
their own preferences. Unlike IP operation, where idling and
discharging are constrained to avoid violating the customers’
requirements, the actions of EVs in scenarios 4 and 5 are
unconstrained and the EV is allowed to be operated within the
shaded area, as shown in Fig. 2. Note to protect owners’ rights,
only limited EV information such as scenario number and a
single dispatch metric, later described in Section III-B, will be
required to be shared with the microgrid’s central controller.
In addition, rarity of these disruption events alleviates both
privacy and battery health right concerns, which can pose a
large problem during frequent use [33]. An appropriate market
mechanism is essential to incentivize individual EVs to align
their interests with the operator and perform SP operation and
reduce their rights and priority during disruptions [34]. This
will also increase complexity for the central controller, but the
associated economic compensation is omitted as it is out of
the scope of this paper.

Table I summarizes the relationships between EV types with
SOC scenarios and actions.

TABLE I
EV SOC SCENARIOS AND THEIR FEASIBLE ACTIONS

Scenario Individual-Prioritized System-Prioritized
Charge Idle Discharge Charge Idle Discharge

1
√ √ √ √ √ √

2 ×
√ √

×
√ √

3
√ √

×
√ √

×
4

√ √
×

√ √ √

5
√

× ×
√ √ √

Underscoring highlights the key differences between individual-prioritized and
system-prioritized operation modes.

C. Aggregate Characteristics of Numerous EVs

1) Aggregate Response Capability
The aggregate response capability of EVs is defined as

the ability of providing/absorbing extra power at a particular
timestep in response to system requirements during contin-
gencies. It is dependent on the real-time SOC of EVs, i.e.,
the five predefined scenarios. For an individual EV, if its cur-
rent SOC allows it to charge/discharge, then the upper/lower
bounds of its instantaneous response capability are P c

i /P
d
i .

Since numerous EVs can be integrated into a MEMG, it is
essential to evaluate their collective response capability, i.e.,
the maximum combined charging/discharging power P t/P t

of all plugged-in EVs, when providing resilience-associated
services during disruptive events.

Denote the set of individual-prioritized EVs by IIPt and the
set of system prioritized EVs by ISPt . Accordingly, the set of
all plugged-in EVs are It = IIPt ∪ ISPt , where ∪ represents
the union of the two sets. The SOC scenario is represented by
the subscript of the EV sets, e.g., IIPt,k is the set of individual-
prioritized EVs in scenario k ∈ {1, 2, 3, 4, 5}. Then the upper
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bound of the response capability can be formulated in (3).

P
IP

t =
∑

i∈IIP
t \IIP

t,2

P c
i (1)

P
SP

t =
∑

i∈ISP
t \ISP

t,2

P c
i (2)

P t = P
IP

t + P
SP

t (3)

where \ denotes exclusion from a set, while the lower bound
of the response capability is calculated in (6).

P IP
t =

∑
i∈IP

t,1∪IIP
t,2

−P d
i +

∑
i∈IIP

t,5

P c
i (4)

P SP
t =

∑
i∈ISP

t,1∪ISP
t,2∪ISP

t,4∪ISP
t,5

−P d
i (5)

P t = P IP
t + P SP

t (6)

Note the aggregate response capability of the next timestep
is accurate since it is calculated based on current SOC.
However, since a specific EV dispatch is carried out in real-
time, calculation of the response capability in the future has to
be revised considering information updates, therefore, rolling
horizon optimization ideally suits the modeling requirements
and is introduced in more detail later.
2) Aggregate EV Energy

Considering all plugged-in EVs, aggregate EV energy EEV
t

is expressed in (7), while the upper and lower limits for EEV
t

are formulated as (8) and (9) respectively:

EEV
t =

∑
i∈It

SOCi,tCapi, t ∈ T (7)

Et =
∑
i∈It

SOCmin
i Capi, t ∈ T (8)

Et =
∑
i∈It

SOCmax
i Capi, t ∈ T (9)

Et ≤ EEV
t ≤ Et (10)

Since the number of plugged-in EVs is constantly changing
due to the arrival of new EVs and departure of existing EVs,
it is necessary to quantify the impacts of EVs joining/leaving
on variations of aggregate EV energy.

For this purpose, we denote the set of plugging-in EVs at
time t by I int and the set of plugging-out EVs at time t by
Ioutt . To this end, the variations of EV energy in the sets I int
and Ioutt are calculated as:

Ein
t =

∑
i∈Iin

t

SOCini
i Capi (11)

Eout
t =

∑
i∈lout

t

SOCi,tCapi (12)

Additionally, to facilitate EV charging operation so as to
meet customer requirements, EV energy curtailment Ect,EV

t

is defined as the aggregate energy shortage between expected
and actual SOC at plugging-out time, viz.,

Ect,EV
t = Ect,EVIP

t + Ect,EVSP

t (13)

where the energy curtailment of two types of EVs are ex-
pressed as:

Ect,EVIP

t =
∑

i∈IIP
t ,out

(SOCexp
i − SOCi,t)Capi

Ect,EVSP

t =
∑

i∈ISP
t ,out

(SOCexp
i − SOCi,t)Capi

with IIP,out
t and ISP,out

t representing the set of individual-
prioritized and system-prioritized plugging-out EVs, respec-
tively.

III. ROLLING DAY-AHEAD MICROGRID SCHEDULING

A. Day-Ahead Optimization

At subsequent discrete timesteps across the day, day-ahead
optimal operation of the aggregated EVs and the rest of
the microgrid is calculated using robust intervals for un-
certain data, while the rolling horizon approach allows the
current timestep to utilize near to real-time data, mitigating
uncertainties and inherent conservativeness related to arrival
and departure times, outage occurrence and PV generation.
Following this calculation, actual real-time operation follows
the first timestep of the day-ahead optimization which is
performed using current information, while decisions for real-
time dispatch of energy sources and updates of aggregated
EV response capability are calculated based on aggregate EV
discharge during this first timestep. The framework of the opti-
mization is formulated as a mixed-integer linear programming
(MILP) problem, with decision variables {P, PEVc , PEVd , u,
v, PEV, EEV, Ect,EV, Ect,EVIP , Ect,EVSP , Ect,EL, Ect,NEL}
presented as follows.
1) Objective of the Day-Ahead Optimization Problem

The priority list in the framework of resilience enhancement
is minimizing curtailment of essential loads (EL), EV loads,
non-essential loads (NEL), and minimizing operational costs.
Based on this list, the objective function is formulated as:

Objective =
∑
t∈T

[
cELEct,EL

t + cNELEct,NEL
t

+ρPt∆t+ Cct,EV
t

]
(14)

where Ect,EL
t and Ect,NEL

t represent the curtailment of es-
sential and non-essential loads, while cEL and cNEL are the
associated weighting coefficients. ρ is energy price while Pt∆t
is energy consumption for timestep ∆t and their product
represents operation costs.

Particularly, the cost of EV load curtailment Cct,EV
t is

composed of two elements for IP and SP EVs, as given in (15).

Cct,EV
t = Cct,EVIP

t + Cct,EVSP

t (15)

For the curtailment of IP EV load, the associated cost is
formulated as (16):

Cct,EVIP

t = cEVIPEct,EVIP

t (16)

The situation of the curtailment of SP EVs is more compli-
cated.
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From the system perspective, in order to retain more energy
for local use, it is desired that departing EVs do not take
any energy away. To achieve this goal, the system operator
should fully exploit the energy in SP EVs to maximize their
contributions for essential load maintenance. In this context,
we define ISPd

t as the set of SP EVs that should discharge at
the current timestep to minimize the energy removed from the
system by departing EVs.

Specifically, ISPd
t is a subset of ISPt that includes SP EVs

that would enter the shaded region in the next timestep by
charging or idling and is determined based on the assumption
that SP EVs try to drain their energy (reach SOCmin

i ) by
discharging before touti . This concept is shown in Fig. 3
and the black arrow represents the transition from ISPt to
ISPd
t through either a charging or idling action, the green

arrow represents an unconstrained action, and the orange
arrows represent actions that make departing EVs take energy
away thus potentially resulting in additional essential load
curtailment.

SOCi
max

SOCi,t

SOCi,t−1 It
SP

It
SPd

SOCi
exp

SOCi
ini

SOCi
min

ti
in ti

out

Fig. 3. Transition of a system-prioritized EV at t− 1 (belonging to the set
ISPt ) to a subset of EVs I

SPd
t that should consider discharging at t.

In this context, the associated cost for the curtailment of the
SP EV load is formulated as (17):

cct,EVSP

t = cEVIPEct,EVSP

t + cEVSP∆tmax
[
P SP
t − PEV

t , 0
]

(17)

where PEVd
t is actual net discharging power, and the cost

coefficient cEVSP is set far higher than cEVIP to favor dis-
charging of SP EVs for essential load supply, over reducing
EV curtailment.

Particularly, P SPd
t is the required minimum aggregate dis-

charging power of the EVs in the set ISPd
t to reduce essential

load curtailment, considering the limits of available EV power
in the set and remaining essential load not supplied by
generation as given in (18).

P SP
t = min

( ∑
i∈I

SPd
t

P d
i , P

EL
t − P gen

t

)
(18)

where
∑

i∈I
SPd
t

P d
i is the maximum discharge capability of

the set ISPd
t , and PEL

t − P gen
t represents net essential load

curtailment at any time step t.

If
∑

i∈I
SPd
t

Pd
i is higher than the net curtailment of essential

load, as shown on the left of Fig. 4, discharging power from
SP EVs belonging to the set ISPd

t only needs to equal the
net curtailment, since any extra discharging would not supply
essential load and would just result in extra EV curtailment.
If
∑

i∈I
SPd
t

Pd
i is lower than net curtailment, as shown on the

right of Fig. 4, then every SP EV belonging to the set ISPd
t

should be discharged, since this extra EV curtailment will be
used to supply higher priority essential loads.

Net Curtailment

Pt
genPt

gen

∑ Pi
d

i It
SPd

Pt
ELPt

EL

∑ Pi
d

i It
SPd

Fig. 4. Essential load, generation and maximum discharging power of
system-prioritized EVs belonging to the set ISPd

t , which are used to minimize
essential load curtailment over the time horizon.

2) Constraints of the Day-Ahead Optimization Problem
All EVs connected to the grid are represented by an

aggregator, and they are assumed to have homogenous power
ratings and charging/discharging efficiencies. Embedding the
aggregate EV energy and response calculations (1)–(13), the
constraints regarding the operation of EVs are formulated as:

0 ≤ PEVc
t ≤ P t, 0 ≤ PEVd

t ≤ P t (19)

PEV
t = PEVc

t ut − PEVd
t vt

ut + vt ≤ 1

ut, vt ∈ {0, 1} (20)

EEV
t+1 = EEV

t +∆tPEVc
t ηcut +∆t

PEVd
t

ηd
vt

+
(
EEVin

t −
(
EEVout

t − Ect,EV
t

)) (21)

Et ≤ EEV
t ≤ Et (22)

Ect,EV
t = Ect,EVIP

t + Ect,EVSP

t (23)

where (19) and (20) constrains EV response to charging and
discharging components, (21) represents updated EV energy
after each timestep increment ∆t, (22) represents EV energy
limits, and (23) expresses total curtailment as the sum of
individual- and system-prioritized curtailments.

Also considered in the modeling but not a focus of this
work are generation unit constraints, power balance constraints
and thermal energy storage constraints. However, examples of
these can be found in [35], [36].

The summary of the modeling process is shown in Fig. 5.
Following day-ahead scheduling at each timestep, the optimal
aggregate EV response PEV

t is used to inform the dispatch
strategies, as discussed in Section III-B.

B. Real-Time Operation and EV Dispatch
After day-ahead optimization is performed at each timestep,

the microgrid operates according to the first timestep of the
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Generate EV power
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limits

Run day-ahead
optimization

Real-time EV dispatch

t = end?

Output results

Yes
No

t = t + 1, update data

Fig. 5. Modeling algorithm using in this paper.

day-ahead operation, except for the EVs, which are dispatched
in real-time at each timestep. Specifically, the optimal aggre-
gate EV response PEV

t is used to determine the total number
of EVs dispatched, while the selection of these EVs is decided
according to the relevant dispatch strategy, based on real-time
data received from EVs. Particularly, two strategies have been
considered, each designed for either IP or SP EVs. Since
the MEMG includes both types of EVs, EV dispatch uses
a combination of these two strategies.

If day-ahead optimization suggests net charging of EVs, IP
EVs will be charged first, followed by SP EVs if necessary to
reach the desired response. If day-ahead optimization suggests
net discharging of EVs, SP EVs will first be discharged,
followed by IP EVs if further discharging is still required.
When the total response reaches PEV

t the remaining EVs in
set I are idled.

The available response of each EV is governed by its current
scenario from 1–5 (see Fig. 2).
1) Dispatch Strategy for Individual-Prioritized EVs

This strategy respects the fact that IP EV owners are un-
willing to discharge if it would compromise reaching SOCexp

i .
This reflects a dispatch strategy that has to work within the
constraints shown in Fig. 2. However, the system will still
prioritize supplying essential loads over EVs and some EV
curtailment may still occur. EVs in the set IIPt are dispatched
according to the response margin ratio (RMR):

γ = SOCexp
i − SOCi,t (24)

δ = touti − t (25)

RMR =
γ

δ
(26)

EVs with higher RMRs are prioritized for charging, while
EVs with lower RMRs are prioritized for discharging. The

purposes of the strategy are to ensure the SOCs of individual
EVs are as high as possible before departure.
2) Dispatch Strategy for System-Prioritized EVs

This strategy takes advantage of the fact that SP EV owners
are willing to discharge for the benefit of the system, even
if it would compromise reaching SOCexp

i . First, EVs in the
set ISPd

t are discharged according to PSPd
t , for the purposes

of minimizing essential load curtailment. Second, remaining
EVs in the set ISPt are dispatched using RMR in an identical
manner to the IP dispatch strategy but without the idling
or discharging restrictions of IP EVs. However, this strategy
can be further differentiated by encouraging EVs to minimize
the energy they take away from the system when departing,
according to (17). The purpose of this strategy is to utilize the
cooperation of SP EVs to minimize essential load shed.

IV. CASE STUDIES

A. Assumptions and Parameters
In this section, the value of smart V2G services and the

willingness of EV owners to support the system are assessed
in the context of resilience, meanwhile the potential of coordi-
nated operation between EVs and PVs to reduce both PV and
essential load curtailment is investigated for the urban MEMG
depicted in Fig. 1. Specifically, due to a powerful storm a wide-
scale outage of the transmission network is predicted to occur
between 5am and 6am, with a robust predicted occurrence
time of 5am. As a result of the outage, the demand-supply
balance of the system is broken and the microgrid disconnects
at the PCC to ensure supply of local essential loads while
reducing pressure on the recovery of the utility grid. It was
assumed the SOCs of both initial EVs and EVs joining during
the day follow Gaussian distributions with limits SOCmin

i and
SOCmax

i . It was also assumed that disruption and subsequent
islanding was not known about until 0am and that most
EVs were waiting for lower price signals to fully charge.
Therefore, at 0am, EVs had a mean SOC of 60%, whereas
joining EVs had a slightly lower mean SOC of 50%. Battery
capacity was assumed to vary slightly due to different car
models and degradation and followed a Gaussian distribution
with lower and upper bounds and a mean of 60 kWh. The
following values were assumed to be homogenous across all
EVs: charging and discharging capacities P c

i , P d
i of 10 kW,

which represent power transfer to and from the car from the
grid perspective; charging and discharging efficiencies ηc, ηd

of 92%, which adjust power transfer from the EV perspective;
minimum and maximum states of charge SOCmin

i , SOCmax
i

which were 20% and 100%; and expected state of charge
when plugging out SOCexp

i which was 80%, unless the EV
would not be plugged in long enough to reach this value, in
which case SOCexp

i would be the maximum SOC possible
after continuous charging.

The number of EVs in the microgrid at any one time, as
well as the load profiles used in this work, are shown in Fig. 6.
It was assumed that numbers were lower during midday when
EV owners were at work.

Using real-time data updates on a rolling-basis at each 15-
minute timestep, the day-ahead schedule of the microgrid was
optimized, followed by EV dispatch.
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Fig. 6. Essential and non-essential load profiles and number of plugged in
EVs vs time of day.

Throughout the case studies, three distinct cases were con-
sidered for EV operation.

Case 1: No EVs are considered in the MEMG. This is used
as the benchmark.

Case 2: 2000 EVs are considered, but the coordinated
control of these EVs is absent. Specifically, all EVs follow
a fixed charging mode, e.g., continuous charging until the
expected SOC is reached, regardless of the needs of the system
during contingencies.

Case 3: 2000 EVs are considered while the coordinated
control of these EVs is present. The resiliency-oriented EV dis-
patch strategies proposed in Section III-B are used, attempting
to reduce curtailment of essential load during contingencies.
Unless otherwise specified, only IP EVs are used in case
studies.

As discussed in the introduction, the benefits of multi-
energy vectors have been widely analysed, and so to focus
on the benefits of V2G services, results are concerned only
with the electrical aspect of the MEMG.

The proposed method was implemented in the
YALMIP [37] optimization toolbox using MATLAB R2018a
and solved by MOSEK 9.2.35. The numerical experiments
were performed on a computer with an Intel Core CPU
i5-7300HQ processor running at 2.50 GHz and 8 GB of
RAM.

B. Benefits of Coordinated V2G Services

The benefits of coordinated control of EVs in enhancing
system resilience are assessed through comparisons across
Case 1 to Case 3.

In Fig. 7, the MEMG in all three cases is switched to island-
ing mode at 5am due to a contingency. Before the contingency,
local loads are supplied by both imported power and local
generators with the objective of minimizing operational costs.

From initiation of islanding at 5am, until 9am, local energy
resources (thermal generators and PV) cannot fully supply
essential loads. In Case 1 this results in significant curtailment
of both essential and non-essential loads. This is similar in
Case 2, but due to the lack of coordinated control, the charging
demand of EVs squeezes the chance of other loads being
supplied, which further burdens the local energy balance of
the MEMG. In Case 3, due to the presence of coordinated
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Fig. 7. Day ahead operation of the MEMG undergoing islanding (a) Case 1,
(b) Case 2 and (c) Case 3.

control, EVs can charge and discharge in an organized way
from the system perspective, consequently, essential load is
fully supplied, meanwhile non-essential load curtailment is
significantly reduced. It is noted that depleting EV batteries
during this period is important for leaving more storage
capacities to absorb excess PV generation during midday,
which would otherwise be curtailed.

From 9am until 3pm, essential loads are fully supplied,
however, due to high output of PV generation, its effective
accommodation presents a big challenge. In Case 1, thermal
generation output is reduced to prioritize accommodation of
PV generation. In Case 2, EVs can barely absorb excess PV
power, since they are already fully charged by 9am. In Case
3, since EVs are discharged prior to 9am, EVs can be used
to mitigate PV curtailment and additional required energy
is compensated by thermal generation output, thus reserving
more energy for later use. This benefit is clearly observed after
3pm where essential load curtailment is significantly reduced
in Case 3 compared to the other two cases.
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Introduction of EVs improves local energy reserve due to
continuous EV charging before islanding. However, without
coordinated control, the EV-associated energy reserve does not
participate in local energy balance since there is no central
controller to guide individual EVs about when and how much
to supply essential load. On the other hand, when coordinated
control is available, all EVs follow dispatch signals based
on an optimized requirement. Across the total duration of
islanding, Case 2 slightly burdens the system with 3.84%
more non-essential load curtailment compared to Case 1,
while not alleviating any essential load. In Case 3, EVs
provide a moderate 7.84% reduction in non-essential load
curtailment and a significant 73.47% reduction in essential-
load curtailment.

C. Benefits of EV Owners’ Willingness to Support the System
Operation

The willingness of EV owners to support operation of the
microgrid during contingencies can be critical because this can
provide more energy when there is a severe curtailment of
essential load. This case study aims to quantify the benefits of
SP EVs by comparing essential load curtailments for different
percentages of SP EVs.

In Fig. 8 we see a downwards trend in essential load
curtailment as we increase the percentage of SP EVs. SP EVs
sacrifice their preferred states of charge to discharge more
energy to the system, resulting in an essential load curtailment
reduction of 39.75% with 100% SP EVs compared to a case
with only IP EVs, and an 84.01% reduction compared to the
Case 1 baseline. It is important to stress that an effective
incentive mechanism aiming at encouraging customers to help
the system withstand HILP events is the foundation to realize
a high SP to IP ratio.
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Fig. 8. Influence of the ratio of system-prioritized EVs on essential load
curtailment for Case 3 EVs.

D. Complementary Effects of EV and PV

Coordination of PV and EV is crucial during contingencies
because EVs can reduce PV curtailment through charging
and can take advantage of high PV penetrations by tem-
porally shifting generation in cases of severe essential load
curtailment. This case study aims to assess the sensitivity of
resilience to the number of EVs in a high PV penetration
microgrid.
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Fig. 9. The influence of number of EVs on essential load and PV curtailment.

Figure 9 shows the increase in EV number effectively
drives reduction of both essential load curtailment and PV
curtailment. However, essential load reduces at a faster rate.
This is driven by two factors. First, additional EVs allow more
PV energy to be shifted temporally to supply essential load.
Second, EVs bring energy to the system when they arrive
and are able to transfer this to essential loads. When EV
number is above 2500, essential load curtailment plateaus due
to limitations of IP dispatch, which ensures EVs leave the
system with as much energy as possible, resulting in later
negative effects which might be against the benefits of system,
rather than ensuring sufficient EV response is available to
eliminate essential load curtailment. Therefore, the benefit of
an increased number of EVs is saturated.

V. CONCLUSION

Electric vehicles are promising resources for increasing the
resilience of urban multi-energy microgrids. In this paper,
the aggregation of EV response capacity is integrated into a
rolling horizon control framework, which effectively guides
coordinated operation of numerous EVs aimed at enhancing
the resilience of the MEMG through V2G services. Simulation
results demonstrate that EVs, as an important energy carrier
in the MEMG, can facilitate up to a 73.47% essential load
curtailment reduction compared to when EVs are not present
by using the proposed dispatch strategy. Investigations showed
the importance of the influence of EV owner cooperation on
resilience and that a high percentage of system-prioritized
EVs could provide up to a 39.75% further decrease in
essential load curtailment compared to individual-prioritized
EVs. Furthermore, the complementary benefits of PV and
EV were displayed, showing that increasing numbers of EVs
reduced both PV and essential load curtailment. Overall, smart
control of V2G services can provide a substantial resilience
enhancement during islanding, especially if EV owners are
willing to cooperate for the benefits of the system, while
further advantages can be gained through having an adequate
number of EVs to absorb excess PV generation in a high PV
system.

In our future work we aim to explore the benefits of
EV rerouting services for resilience enhancement through
congestion management and the potential for thermal energy
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storage to enhance resilience through dedicated thermal energy
storage, building inherent storage and pipe network storage.
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