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Abstract—The complexity and uncertainty in power systems
cause great challenges to controlling power grids. As a popu-
lar data-driven technique, deep reinforcement learning (DRL)
attracts attention in the control of power grids. However, DRL
has some inherent drawbacks in terms of data efficiency and
explainability. This paper presents a novel hierarchical task
planning (HTP) approach, bridging planning and DRL, to the
task of power line flow regulation. First, we introduce a three-
level task hierarchy to model the task and model the sequence
of task units on each level as a task planning-Markov decision
processes (TP-MDPs). Second, we model the task as a sequential
decision-making problem and introduce a higher planner and
a lower planner in HTP to handle different levels of task
units. In addition, we introduce a two-layer knowledge graph
that can update dynamically during the planning procedure to
assist HTP. Experimental results conducted on the IEEE 118-
bus and IEEE 300-bus systems demonstrate our HTP approach
outperforms proximal policy optimization, a state-of-the-art deep
reinforcement learning (DRL) approach, improving efficiency by
26.16% and 6.86% on both systems.

Index Terms—Knowledge graph, power line flow regulation
reinforcement learning, task planning.

I. INTRODUCTION

TO control a power system safely usually requires a
sequence of operations that need to be performed with-

out interruption. As a typical task in power systems, power
line flow regulation relies heavily on power operators to
dispatch power generation according to pre-determined power
generation schedules and requires a number of humans with
domain experience [1]. However, a massive amount of power
equipment raises difficulty to traditional adjustment methods
and causes power line flow regulation to be more difficult.

In recent years, deep reinforcement learning (DRL) methods
have been becoming a powerful technique [2] in a wide range
of applications, including video games [3] and continuous
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robot control [4], and obtain an impressive performance for
the complex and uncertain power grid control problem [5]–
[11]. Most of these works consider the power grid as a
single-region system and employ DRL methods, e.g., deep
Q-network (DQN) and proximal policy optimization (PPO),
to solve the power grid control problem. Tang et al. [7]
divided the power grid into multiple regions and established
an online hierarchical optimization structure for the dispatch
problem. However, there are still some limitations in real-
world applications due to drawbacks of DRL as: 1) Data
(Interactive) efficiency — a large quantity of interaction data
between agents and environments is required to train DRL
agents [12], [13]; 2) Difficulty of reward design — the reward
function generally consists of multiple reward items which
need to be carefully balanced; 3) Lack of explainability —
introduction of black-box artificial neural networks increases
the risk of decisions in the real world [14]. With the purpose of
handling the above drawbacks of DRL, to combine planning
and DRL is a promising framework to enhance DRL agents
in many fields of applications.

Planning methods can effectively solve the problem of data
efficiency by introducing a model containing prior knowl-
edge in an entirely knowable environment [15], [16]. Faust
et al. [15] enabled long-range navigation to control the
robot under the direction of path planning with probabilistic
roadmaps. Additionally, hierarchical planning structure can
provide a certain degree of explainability for the planning [17],
[18]. Therefore, to bridge planning and DRL with a hierarchi-
cal structure is a promising scheme to enable fast and accurate
control of real-world objects. Different from existing hierar-
chical methods, e.g., the work [7] that introduces hierarchical
methods for handling multiple regions, our work focuses on
the dynamic control process of the power grid, and seeks to
divide the control process into multiple fine-grained tasks and
achieve automatic regulation of power lines through planning
on these fine-grained tasks.

In this paper, we build a hierarchical task planning system
called hierarchical task planner (HTP) for the task of power
line flow regulation. We first formulate a three-level task
hierarchy that consists of task, sub-task, and atomic task,
and formulate a sequence of task units on each level as the
task planning-Markov decision process (TP-MDP); then we
introduce a higher planner and a lower planner in HTP to
fuse planning and DRL agents. We also build a two-layer
knowledge graph to assist the proposed HTP.

In summary, our contributions are four-fold:
1) We introduce a three-level task hierarchy, including task,
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sub-task, and atomic task, to structure the task of power line
flow regulation and model a sequence of task units on each
level as the task planning-Markov decision processes (TP-
MDPs).

2) We model the task as a sequential decision-making
problem and propose a two-level hierarchical task planner
(HTP), which consists of a higher planner and a lower planner
to handle the sequence of sub-tasks and atomic tasks, respec-
tively.

3) We introduce a two-layer knowledge graph consisting
of three types of knowledge to assist HTP. Update of the
knowledge graph benefits performance improvement of task
planning.

4) We evaluate the proposed HTP in the task of power line
flow regulation on the IEEE 118-bus and 300-bus systems.
HTP improves average efficiency and control error by 26.16%
and 19.17% on the IEEE 118-bus system and by 6.86% and
12.68% on the IEEE 300-bus system, compared with PPO, the
state-of-the-art DRL method.

The rest of this paper is organized as follows: Section II
presents a brief overview of related work. Section III describes
the proposed HTP approach to the power line regulation
task. Section IV provides experimental results, and Section V
concludes the paper.

II. RELATED WORK

A. Power System Operation

The power grid is a highly regulated system that must
balance power supply and demand instantly. A large number
of operations are necessary in power grid management and
control. Regulating line flows is a vital operation for system
operators. A variety of approaches have been proposed, includ-
ing traditional automatic generation control (AGC) [19] and
data-driven artificial intelligence methods [5]–[8]. As for emer-
gency control of a power grid, traditional control approaches,
including generation redispatch or tripping, load shedding,
controlled system separation (or islanding), and dynamic brak-
ing [20], are usually executed by automatic protection systems.
Recently developed machine intelligence methods, such as
DRL, have the ability to solve sequential decision-making
problems in real-time [21]. Dong et al. [19] investigated a
developing adaptive emergency control scheme based on DRL
and demonstrated the adaptiveness and robustness of the IEEE
39-bus system.

B. Task Planning

In general, planning is an important approach to the sequen-
tial decision-making problem, which is commonly formalized
as Markov decision process (MDP) optimization [16]. As a
large research field within artificial intelligence [2], planning
takes a model as input and produces a policy for interacting
with a modeled environment [12]. There have also been a
number of works on planning methods. For combination of
the task planning problem and practical mobile robot control
in realistic environments, Hanheide et al. [22] presented a
planning system named “Dora” with a structured knowledge
schema, which introduces a switching planner that can perform

effective planning with hypotheses. Combining planning and
RL has also attracted the attention of researchers. Faust
et al. [15] presented a hierarchical method named PRM-
RL for long-range navigation task completion based on the
combination of sampling-based planning and RL. RL agents
perform a short-range policy, and the planner performs long-
range roadmaps that can be navigated by RL agents.

The power grid is a very complex system, and control of
this system can be formalized as a sequential decision-making
problem and solved by a task planning system. In addition, the
power grid consists of a variety of electrical quantities and
runs based on physical rules, which can be formalized with
knowledge graph. In this work, we propose a hierarchical task
planner with assistance of knowledge graphs to perform an
efficient regulation of power line flow in a power grid. This
work addresses the two following issues: 1) how to model task
hierarchy in the task of power line flow regulation? and 2) how
to deal with uncertainty of power grids in the planning?

III. METHODOLOGY

A. Overview

This work addresses the task of power line flow regulation
for power systems. Suppose we have a power grid consisting
of Nb buses, Nld loads, Nle power lines and Ng generators
(one is considered as the slack node). This task is to dispatch
generators to regulate line flow with the purpose of balancing
loading rate of power lines. Meanwhile, we hope transmission
loss on power lines is small enough and output of slack node
meets the requirement.

Deep reinforcement learning is a popular learning paradigm
and has been introduced in the control of power systems [5]–
[11], [23]–[26]. Usually, a reward function needs to specify the
goal for DRL agents. This work employs a commonly used
reward function as follows:

r = λthrth + λtrrtr + λslrsl (1)

where rth, rtr and rsl denote rewards in terms of thermal limit,
transmission loss and slack limit, respectively, λth, λtr and λsl
are three coefficients to balance the three rewards.

However, to a traditional single DRL agent, it’s difficult to
balance weight of multiple rewards in a joint reward function.
Due to the inherent disadvantage of DRL, this work introduces
multiple DRL agents implemented with the PPO algorithm
for control of power grids and proposes a planning algorithm
to plan working of different agents. In addition, traditional
planning methods require a complete state transition model of
the environment [16]. However, in a power grid, power line
flow is unknown before the process of power flow calculation.
Therefore, how to model a transition model of a power grid
is a challenge for applying planning methods.

Our main purpose is to learn a policy that can generate
a sequence of predefined fine-grained tasks to complete the
whole task, i.e., regulation of power line flow. However, in
a complex and uncertain power system, the execution effect
of a fine-grained task at a time slice is unknowable before
execution, and thus, environment dynamics are unknowable
to the planner. Most traditional planners [17] did not address
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this uncertainty. This work introduces a task planning-MDP
(TP-MDP) to formulate the problem of power line flow
regulation and proposes a hierarchical task planner (HTP)
for completing the task as shown in Fig. 1. Meanwhile, we
introduce a multi-layer knowledge graph to assist HTP, which
can be updated according to the planning procedure to model
environment dynamics. In brief, the work consists of three
steps: 1) selecting an initial power line flow to be adjusted, 2)
repeating to plan multiple fine-grained tasks with assistance of
knowledge graph until the goal is satisfied, and 3) extracting
experience obtained during the planning process to update the
knowledge graph.

B. Task Planning-Markov Decision Process

Control of a power grid can be considered a sequential
decision-making problem and is formulated as a TP-MDP with
a tuple (S,A, R, P, I,G).
S denotes state space, being the state at time t. We define

St as follows:

St = (Spower,t,Splan,t) (2)

In TP-MDPs, Spower,t is formulated as a vector representing
electrical quantities of a power grid to describe its state and
defined as follows:

Spower,t = {L1:Nle,t, P1:Nld,t, lk,t, Ps,t} (3)

where Li,t denotes loading rate of line i, Pj,t is active power
output of generator j, lk,t is active power consumed by load
k and Ps,t denotes active power of slack node outputs. Splan,t

indicates state of task planning and can be represented as a
set of assignments of values to variables, including execution
effects of each fine-grained task, which describe status of
planning procedure. We demonstrate a typical Splan as:

Splan,t = {v1 = e1, v2 = e2, · · · }, v1, v2, · · · ∈ V (4)

where V is variable space, vi ∈ V and ei are variable and
value, respectively.
A represents a set of actions, each specifying a fine-grained

task executed on St. Each fine-grained task has two types
of properties: precondition pre(task) and execution effect
eff(task). Precondition and effect are also sets of assignments
of values to variables and have the same form as Splan. A
fine-grained task can be executed only if its precondition is
satisfied. A fine-grained task may have multiple effects, and
different fine-grained tasks may have the same preconditions.
In addition, some fine-grained tasks perform operations to the
power grid, and then Spower,t will change accordingly.
R denotes the reward function in planning and is defined as

a cost function C : A 7→ R+ for an action. Each fine-grained
task at t has an execution cost, which represents time it takes
to execute the task. Therefore, reward Rt at t is defined as:
Rt = −ct.
P denotes state transition. When an action At is taken

on St, the system will find itself a new plan state Splan,t+1

according to execution effect of At and a new St ∈ S power
state Spower,t+1 after power flow calculation.
Sinit indicates initial state of the task of power line flow

regulation. An initial state Sinit ∈ Splan will be specified at
each start of task planning.

Sgoal represents goal state of the task of power line flow
regulation. Goal state is terminated state in TP-MDPs, that is,
task planning will be finished when it is reached.

If a task is performed in T steps, return of task planning
can be defined as follows:

G =

T−1∑
t=0

γt(Rt) (5)

where γ is discounting factor and T is terminate step. To solve
a sequential task planning problem formulated by the TP-MDP,
we need to learn a policy π to maximize return G.
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Fig. 1. Overview of the hierarchical task planner and the knowledge graph.
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C. Hierarchical Task Planner Framework
1) Task Model

In this work, we model a task using a hierarchical structure
with three layers: a) task (τ ), which refers to large-scale tasks
with an independent purpose; b) sub-task (τst), which refers
to small-scale and usually reusable tasks contained in a task τ
with explicit and complete functionality. A sub-task is a subdi-
vision of a task τ with respect to specific functionality and may
have uncertain or unknown execution effects; c) atomic-task
(τat), which refers to the most fine-grained tasks that cannot
be subdivided and can be directly executed for completing
a sub-task. Sub-task and atomic-task can be considered as a
fine-grained task mentioned in Section III-B. We formulate the
three layers of tasks as follows.

Task:

τ(Sinit,Sgoal), τ ∈ T ,Sinit,Sgoal ∈ S (6)

A task τ ∈ T specifies an initial state Sinit and a goal state
Sgoal. Each task creates a TP-MDP for the planner to solve.

Sub-task:

τst(pre(τst), eff(τst),Sinit,Sgoal), τst ∈ Tst,Sinit,Sgoal ∈ S
(7)

A sub-task τst ∈ Tst consists of four terms: precondition
pre(τst), effect eff(τst), initial state Sinit and goal state Sgoal.
Each sub-task also creates a TP-MDP for planner to solve.

Atomic task:

τat(pre(τat), eff(τat)) τat ∈ Tat (8)

An atomic task τat in atomic task space Tat consists of
precondition pre(τat) and effect eff(τat). Atomic task is the
most fine-grained unit that a planner can execute, and every
atomic task has a determinate execution effect on Splan.

For the task of power line flow regulation, we demonstrate
task hierarchy as shown in Fig. 2 and show details in Table I.
We divide the task of power line flow regulation into 6
sub-tasks, i.e., “data prepare”, 3 DRL regulation sub-tasks
(“thermal limit”, “slack limit” and “transmission loss”), “data
analysis” and “output”. Each sub-task can be subdivided into
1 or 2 atomic tasks, where “thermal limit”, “slack limit” and
“transmission loss” are performed with 3 DRL agents that can
control power line flow. Other sub-tasks and atomic tasks are
auxiliary fine-grained tasks required to complete the whole
task of power line flow regulation.
2) Task Planning System

We propose HTP as illustrated in Fig. 1. This framework
consists of two modules: 1) a two-level planner consisting of a
higher planner πH and a lower planner πL, and 2) a two-layer
knowledge graph, called power system domain knowledge
graph K, to assist the two-level planner.

First layer of K, called planning knowledge graph Kp,
stores task-related knowledge irrelevant to a specific power
grid; second layer, including a power grid knowledge graph
Kd and a dynamic planning knowledge graph Kdp, stores the
knowledge of a specific power grid that needs to be controlled.
Kp and Kdp both store preconditions and execution effects
of sub-task and atomic task, which can be used to model

task hierarchy

task power flow regulation

data prepare

belongs to

belongs to

select power flow run power flow thermal agent slack agent loss agent extract data update KG output

thermal limit slack limit transmission loss data analysis output

DRL agents
thermal agent

slack agent

loss agent

power state
generator output

NN

sub-task

atomic-task

Fig. 2. The task hierarchy for the task of power line flow regulation.

TABLE I
THE DESCRIPTION OF TASK UNITS

Hierarchy Task name Task description
Task power line flow regulation Regulate the power line flow with multiple DRL agents

Sub-task

data prepare Select the base power line flow
thermal limit Regulate the power line flow to control the power lines’ loading rate
slack limit Regulate the power line flow to control the slack node output
transmission loss Regulate the power line flow to minimize the transmission loss
data analysis Analysis knowledge and update knowledge graph in the planning procedure
output Output control actions

Atomic-task

select power flow Select a base power flow
power flow calculation Run the power flow calculation
thermal agent Call the thermal limit DRL agent to output the control action to the power grid
slack agent Call the slack limit DRL agent to output the control action to the power grid
transmission agent Call the transmission loss DRL agent to output the control action to the power grid
extract data Extract the knowledge data from the planning procedure
update KG Update the Kdp with knowledge data
output Output all control actions to the power grid



WANG et al.: HIERARCHICAL TASK PLANNING FOR POWER LINE FLOW REGULATION 33

state transition of the power gird environment. The difference
between Kp and Kdp is that the former is a fixed knowledge
graph and models state transition of the environment on Splan,
while the latter can be updated with execution effects, which
are uncertain or unknown before the planning process, on
Spower of sub-tasks. Update of Kdp can make state transition
model of environment more accurate.

To handle uncertainty of the effect of a sub-task on Spower,
we present a two-level planner consisting of a higher planner
working on sub-task level and a lower planner on atomic-
task level. Action of higher planner πH is the sub-task to be
executed in next step, where a sub-task has its initial state and
goal state. Therefore, we can define a new TP-MDP on the
atomic task level with initial state and goal state specified by
the sub-task. Then, lower planner πL will get involved to solve
the atomic task level TP-MDP and accomplish this sub-task
output by the higher planner πH. Action of πL is the atomic
task to be executed, and a sequence of atomic tasks will be
generated and executed sequentially until goal state of the sub-
task is reached. Two levels of planners will perform alternately
until goal state of the whole task of power line flow regulation
is reached.

D. Two-level Planner
1) Higher Planner

Higher planner πH is a switching planner, which consists
of a classic planner πc, an abstract planner πa and a state
abstraction module. Classic planner πc works for sub-tasks that
have a determinate effect; πa works for sub-tasks that have
an indeterminate effect on Spower; state abstraction module
transforms power state Spower to an abstract power state
Sabstract. Both classic planner and abstract planner can output
the next sub-task to be executed:

At ← πc(Splan,t) (9)
At ← πa(Sabstract,t,Splan,t) (10)

Classic planner. Classic planner πc works on task planning
state Splan. When a task τ is required to be completed,
corresponding Sinit and Sgoal are then specified and a TP-MDP
will be established. πc will work to determine the sub-task
τst that should be executed in the next step if this sub-task
does not change power state Spower and its effect depends only
on Splan.

State abstraction module. When preconditions of more than
one sub-task are satisfied and their effects can change Spower,
we need to predict effects of each sub-task on Spower and
make planning based on predicted effects. However, Spower is
a numeric vector and lacks semantic meaning, so it is difficult
to model transition of the state Spower. As a solution, we
transform numerical Spower vector into an abstract state Sabstract
expected to possess the semantic meaning and then predict
transition of abstract states. We introduce a state abstraction
module to map power state to an abstract power state based
on power grid knowledge graph:

Sabstract ← stateAbstraction(Spower,Kd) (11)

Knowledge power grid knowledge graph specifies abstract
information we focus on in the task. State abstraction module

can build an abstract state Sabstract, consisting of multiple
preconditions and execution effect pairs on abstract state,
by extracting corresponding information from Spower. In the
dynamic planning knowledge graph, we make hypothesis
about effect of each sub-task execution on abstract state, and
then we can predict the transition model of abstract states and
build an abstract TP-MDP regarding abstract state.

Abstract planner. Abstract planner πa works on abstract
power state Sabstract. We define a TP-MDP, called abstract TP-
MDP, regarding the abstract state, which will be established
with the initial state specified by current Sabstract and goal state
specified by Kd. State transition on Sabstract can be modeled
by Kdp, and we have an abstract TP-MDP that can control
power line flow from current Sabstract to goal state. Abstract
planner πa will solve abstract TP-MDP and make planning to
determine which sub-task should be executed in the next step.
2) Lower Planner

After higher planner chooses a sub-task to be executed,
an atomic-level TP-MDP will be initialized while specifying
corresponding initial state Sinit and goal state Sgoal according
to the sub-task, and determining state transition by Kp. A
classic planner πc is employed as lower planner to solve
atomic-level TP-MDP.
3) Planning Algorithm

We implement both classic and abstract planners based on
Monte-Carlo tree search (MCTS), a widely used heuristic
search algorithm used in many applications [27], [28].

When a task τ is specified, the task planning system will
create a TP-MDP on planning state and trigger a higher
planner πH. When a sub-task is determined with πH, an
atomic-level TP-MDP will be created, and the lower planner
will start to make planning at the atomic level. When a sub-
task is completed by the lower planner, πH will determine
the next sub-task until the whole task τ is completed. When
more than one sub-task is specified, the abstract planner πa
belonging to the higher planner πH will interpose. First, a state
abstraction module will map power state Spower to an abstract
state Sabstract and an abstract TP-MDP based on Sabstract will be
created, where the state transition in the abstract TP-MDP is
approximated by Kdp. Then, πa will determine which sub-task
needs to be executed. The planning procedure is illustrated in
Algorithm 1.

E. Power System Domain Knowledge Graph

Knowledge graph is a semantic knowledge base that struc-
turally describes relations between entities with a graph model.
A knowledge graph is a collection of triplets (h1, r, h2), where
h1 and h2 are two entities and r denotes the relation between
them.

In the power system domain, operations of a power grid
require a variety of expert experiences and rules. We intro-
duce a two-layer knowledge graph to model knowledge and
experience of power system domain. Fig. 3 illustrates a part
of the knowledge graph used in this work. Fig. 3(a) depicts a
representative planning knowledge graph in this study, where
red dashed lines with arrows indicate relations across different
levels in task hierarchy, black lines with arrows illustrate initial
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Algorithm 1: HTP Planning Procedure
Input: Task τ ;

1 create TP-MDP base on the task τ ;
2 repeat
3 Higher planner outputs a sub-task τst with the

classic planner via (9);
4 if the classic planner is failed then
5 Generate abstract state Sabstract via (11);
6 Create the abstract TP-MDP;
7 Higher planner outputs a sub-task τst with

classic planner via (10);
8 end
9 repeat

10 Create an atomic-level TP-MDP for the
sub-task τst;

11 Lower planner outputs an atomic task τat with
the classic planner via (9);

12 Execute the atomic task τat;
13 until the sub-task τst is completed;
14 until the task τ is completed;
15 return

states and goal states of predefined task and each sub-task,
as well as preconditions and execution effects of each sub-
task and atomic task. Fig. 3(b) shows power grid knowledge
graph, which contains goal and abstract state of predefined
task, i.e., power line flow regulation. Fig. 3(c) illustrates
a typical knowledge triplet in dynamic planning knowledge
graph, which can be updated during the planning process.
1) Planning Knowledge Graph

Planning knowledge graph Kp models task hierarchy, and
preconditions/effects of sub-tasks and atomic task. Typical

triplets in knowledge graph Kp are shown as follows:

(τst, has-effect, eff(τst)) ∈ Kp

(τst, has-precondition,pre(τst)) ∈ Kp (12)

which denote sub-task τst has an effect eff(τst) and a precon-
dition pre(τst).
2) Power Grid Knowledge Graph

For a given power grid, power grid knowledge graph Kd

specifies goal of power line flow regulation and defines ele-
ments an abstract state consists of (cf. Fig. 3). Typical triplets
in knowledge graph Kd are shown as follows:

(power grid, has-goal, goal) ∈ Kd

(power grid, has-abstract, abstract) ∈ Kd (13)

We then extract the value of each element in abstract state
from power state Spower and then obtain abstract state Sabstract.
3) Dynamic Planning Knowledge Graph

We introduce a dynamic planning knowledge graph to
continuously update the experience in the planning process.
Dynamic planning knowledge graph Kdp stores the effects
and preconditions of those sub-tasks that can change power
state. Typical triplets in knowledge graph Kdp are shown as
follows:

(τst, has-precondition,pre(τst)) ∈ Kdp

(τst, has-effect, eff(τst)) ∈ Kdp (14)

which denote that sub-task τst has an effect eff(τst) and a
precondition pre(τst). In this work, effects and preconditions
in Kdp are specified for elements of abstract states defined
in Kd, and thus eff(τst) and pre(τst) have the same form as
Sabstract.

has precondition

data_prepare is True
runpf is True

select_power_grid is True
specify_goal is True

Splan

Sabstract

has init state has goal state

belongs to

power line flow
regulation task

thermal_limit is True
runpf is True

slack_node is True
runpf is True

transmission is True
runpf is True

update KG is True
data extract is True
output is True

thermal limit
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has effect

belongs to

thermal agent
atomic-task

slack agent
atomic-task

transimission agent
atomic-task

run power flow
atomic-task

atomic-task
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task
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transimission
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max power line
loading rate
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slack node
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transmission loss
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max power line
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sub-task

max transmission
loss is 50

power system domain knowledge graph

(a)

(b) (c)

Fig. 3. Part of the power system domain knowledge graph in this work. (a) Planning knowledge graph Kp. (b) Power grid knowledge graph Kd. (c) Dynamic
planning knowledge graph Kdp.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setting

For the task of power line flow regulation, we set a goal that
meets the following conditions: 1) loading rate of each power
line must be maintained within thermal limit; 2) power output
of slack node should not exceed limitation; 3) transmission
losses should be minimized.

We define the three reward terms in (1) as follows:

rth = 1− max
i=1,2,··· ,173

(Li,t)
2 (15)

rtr =

173∑
i=1

(1− (Li,t)
2) (16)

rsl =


1− Ps,t

Pmax
, Ps,t ∈ (Pmax,+∞)

0, Ps,t ∈ [Pmin, Pmax]
Ps,t

Pmin
− 1, Ps,t ∈ (−∞, Pmin)

(17)

where Li,t is loading rate of line i; Ps,t is active power
generated by slack node, Pmax and Pmin are maximum and
minimum limit of active powers of slack node, respectively.
We also define actions to regulate power line flow in the
following form:

A = (∆P1,t,∆P2,t, · · · ,∆P53,t) (18)

where ∆Pj,t is active power increment of generator j at time t.
Active power outputs of generators are then set to Pj,t+∆Pj,t,
j = 1, 2, · · · , 53.

In experiments, we employ proximal policy optimization
(PPO) [4], soft actor-critic (SAC) [29], and twin delayed
deep deterministic policy gradient (TD3) [30] as the compared
methods, which are denoted by RL-PPO, RL-SAC, and RL-
TD3, respectively. In implementation of compared methods,
we set all coefficients in (1) equal to 1, which means each
DRL agent learned by jointly optimizing the three objectives
in (1).

Each actor and critic network in PPO, SAC, and TD3 are
implemented by 3 fully connected hidden layers with 512
ReLU neurons. In the actor network of all compared methods,
input is a vector representing state of the power grid and output
is action vector. In the critic network of SAC and TD3, input
is the concatenation of a state vector and an action vector,
output is state-action value of input. For PPO, input of critic
network is a state vector and output is state value of input.
In the training process, learning rate is set to 10−4 for critic
network and 10−5 for actor network. Discounting factor is set
to 0.95 and batch size in SAC and TD3 is set to 128.

Based on evaluation of the three compared methods, we
found the PPO agent can obtain the best performance. In our
approach HTP, we employ PPO as the base algorithm for
executing sub-tasks.

Our approach (HTP): We train 3 PPO DRL agents sepa-
rately, each for an objective in (1) by setting the coefficient
of the corresponding objective to 1 and other two to 0. Three
DRL agents can output actions to regulate power line flow
corresponding to three atomic tasks, i.e., thermal agent, slack
agent and transmission agent as shown in Table I.

B. A Case of Knowledge Graph

There are a variety of established rules and prior knowledge
for power line flow regulation in the power system domain. We
formulate these rules and knowledge into triplets and structure
them into Kp and Kd.

Planning knowledge graph: In the task of power line flow
regulation, Kp stores preconditions and effects of sub-tasks
and atomic tasks. We demonstrate a part of Kp as shown in
Fig. 3(a).

Power grid knowledge graph: We store the goal of the task
in Kd in terms of three following items: 1) goal for max
loading rate of all power lines; 2) goal for power output by
slack node; and 3) goal for transmission loss in the power
grid. Kd is utilized to map power state into an abstract power
state. We demonstrate a part of Kd in Fig. 3(b).

Dynamic planning knowledge graph: Before task planning,
the effect of each sub-task regulating the power line flow
(i.e., involving a DRL agent in the execution) is unknown.
We may initialize Kdp by assigning an assumption about
execution effects for each of the three sub-tasks. As task
planning procedure progresses, more knowledge of the effects
is extracted, and execution effects can be estimated more
accurately. A part of Kdp is shown in Fig. 3(c).

C. Results of Planning on IEEE 118-bus System

We employ the IEEE 118-bus system as study case as
shown in Fig. 4, where red squares enclosing the generator
indicate renewable units. The system consists of 54 generators
including 28 renewable units, 173 transmission lines and 99
loads, where renewable units has variable output power. We
design a total of 9 patterns regarding loads and renewable
units. We totally collect 60,480 samples as a dataset, 57,600
for training and the rest 2,880 for test.

We designate 3 different goals for the task of power line
flow regulation. Goal 1—max loading percent: 100%; max
slack node output: 150 MW; max transmission losses: 50 MW.
Goal 2—max loading percent: 80%; max slack node output:
65 MW; max transmission losses: 40 MW. Goal 3—max
loading percent: 80%; max slack node output: 55 MW; max
transmission losses: 35 MW. From goal 1 to 3, difficulty
increases to achieve successful regulation.

In the task of the power flow regulation, we do not have
a strict limit in terms of computational time. We are more
concerned about number of control steps required and regula-
tion accuracy. Therefore, we design two evaluation metrics as
follows:

1) Control steps: We define control steps as the steps an
agent takes to reach the goal of regulation. Control steps can
intuitively reflect efficiency of regulation.

2) Control error: We define control error as follows:

E =
e(lth, gth)

gth
+
e(lsl, gsl)

gsl
+
e(ltr, gtr)

gtr
(19)

where e(l, g) = |l− g| denotes absolute error between value l
achieved in regulation and goal value g, and subscripts “th”,
“sl”, and “tr” refer to the terms of loading rate, power output
of slack node, and the transmission loss, respectively. Control
error reflects accuracy of power line flow regulation.
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Fig. 4. Node diagram of the IEEE118-bus system in this work.
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Fig. 5. The training curves in terms of the episode return for (a) RL-PPO, (b) RL-SAC, (c) RL-TD3, and (d) the thermal agent, slack agent and transmission
agent in our HTP (cf. Table I).

Figure 5 shows training curves in terms of episode return
for the three compared methods and 3 agents used in our
approach HTP. We can figure out episode return for all agents
gradually increases and converges, which indicates the agents
have learned an effective policy.

We demonstrate an example of planning process in Fig. 6.
At beginning of the task, higher planner πH outputs sub-
task “data prepare” to select an initial power state, and lower
planner πL outputs atomic tasks of “select power flow” and
“run power flow” to complete “data prepare” sub-task. Next,
classic planner πc in πH outputs 3 sub-tasks, i.e., “thermal
limit”, “slack limit” and “transmission loss”. Then, state

abstraction module starts to map power state to an abstract
power state: 1) max loading percent: 116%; 2) slack node
output: 300.5 MW; 3) transmission loss: 88 MW. We build
the abstract TP-MDP with current abstract state as initial state.
After that, abstract planner πa determines optimal sub-task to
be executed and starts lower planner πL to plan on atomic task
level. The above steps will be repeated until goal is reached.

Figure 7 shows an illustration of planning result. Upper part
in the figure shows how abstract state changes (in the form
of percentage) as a series of sub-tasks and atomic tasks are
executed in the planning procedure. We can find execution
of the three sub-tasks regulating the power grid indeed drive
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Fig. 6. Example of planning procedure on IEEE118-bus system.
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Fig. 7. Illustration of the planning result.

abstract state to the goal of the task. Lower part shows how
the sub-tasks are completed by execution of atomic tasks.

In Table II, we compare our approach with baselines
on 2,880 test examples and report the mean and standard
deviation of control steps taken to reach the goal. Table
shows that RL-PPO outperforms the other two DRL compared
methods as a whole. Moreover, results clearly demonstrate
our HTP approach takes fewer steps on average than the
three compared DRL methods, and exhibits a smaller standard
deviation. As difficulty of regulation goal increases (i.e., from
goal 1 to goal 3), RL-PPO, RL-SAC, and RL-TD3 exhibit
a significant increase in number of control steps necessary

TABLE II
MEAN AND STANDARD DEVIATION (SHOWN IN BRACKETS) OF THE
CONTROL STEPS TO REACH THE GOAL ON IEEE 118-BUS SYSTEM

Goal RL-SAC RL-TD3 RL-PPO HTP
initial Kdp updated Kdp

goal 1 13.59
(8.196)

23.94
(19.773)

14.60
(3.362)

14.26
(1.036)

14.12
(1.156)

goal 2 20.19
(15.087)

41.43
(11.002)

18.82
(12.779)

15.41
(2.569)

15.38
(2.540)

goal 3 35.29
(18.142)

45.65
(3.770)

29.88
(17.700)

17.50
(5.381)

17.22
(5.068)

to reach the goal. In contrast, HTP effectively maintains its
efficiency by consistently taking fewer control steps across
all goals. Furthermore, we also assess performance of HTPs
with initial Kdp and updated Kdp, and observe incorporation
of updated experience during the planning process slightly
enhances efficiency of regulation. Specifically, HTP reduces
average number of steps by 25.48% compared with RL-PPO
when taking initial Kdp, and by 26.16% with introduction of
updated Kdp.

We compare our approach with baselines in terms of control
error on 2,880 test examples and report mean and standard
deviation in Table III. We notice our HTP approach with

TABLE III
MEAN AND STANDARD DEVIATION (SHOWN IN BRACKETS) OF THE

CONTROL ERRORS TO REACH THE GOAL ON IEEE 118-BUS SYSTEM

Goal RL-SAC RL-TD3 RL-PPO HTP
initial Kdp updated Kdp

goal 1 0.162
(0.045)

0.113
(0.048)

0.179
(0.037)

0.163
(0.009)

0.164
(0.008)

goal 2 0.118
(0.039)

0.111
(0.059)

0.107
(0.032)

0.091
(0.016)

0.089
(0.015)

goal 3 0.076
(0.032)

0.185
(0.085)

0.074
(0.031)

0.041
(0.017)

0.038
(0.016)
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updated Kdp achieves smallest control error on average, and
reduces average control error across all three goals by 19.17%
compared with RL-PPO.

Figure 8 illustrates performance of baselines and our ap-
proach on an example, where each column corresponds to
a goal, and each row to an objective of the goal, and the
dashed line indicates steps the corresponding approach takes
to reach the goal. Each colored dashed line denotes the steps
that the corresponding approach takes to reach the goal, and
the missing lines indicate that the corresponding approach does
not reach the goal within the maximal number of steps shown
in Fig. 8. We find in each case, HTP takes fewer steps than
baseline RL-PPO. In addition, HTP can reduce distance to
goal state more rapidly in most cases. We also illustrate the
effect of dynamic planning knowledge graph Kdp on the task.
Compared with HTP with initial Kdp (HTP-init Kdp), HTP
with updated Kdp (HTP-updated Kdp) can reach the goal in
fewer steps.

D. Results of Planning on IEEE 300-bus System

The IEEE 300-bus system consists of 69 generators in-
cluding 19 renewable units, 304 transmission lines, and 195
loads. We designed a total of 9 patterns regarding loads and
renewable units. We totally collected 60,480 samples as a
dataset, 57,600 for training and the rest 2,880 for test.

We designate 3 different goals for the task of power line
flow regulation as follows. Goal 1—max loading percent:
100%; max slack node output: 250 MW; max transmis-
sion losses: 200 MW. Goal 2—max loading percent: 100%;
max slack node output: 150 MW; max transmission losses:
180 MW. Goal 3—max loading percent: 100%; max slack
node output: 100 MW; max transmission losses: 150 MW.
Difficulty increases to achieve successful regulation across
goal 1 to goal 3.

We compare our approach with baselines on 2,880 test
examples. Table IV illustrates average performance in terms of
mean and standard deviation of control steps and control errors
across all the three goals. Table IV shows RL-PPO is superior
to the other two DRL baselines. Moreover, HTP takes fewer
steps than the other two DRL baselines and exhibits a smaller

TABLE IV
MEAN AND STANDARD DEVIATION (SHOWN IN BRACKETS) OF THE

CONTROL STEPS AND CONTROL ERRORS TO REACH THE GOAL ON IEEE
300-BUS SYSTEM

RL-SAC RL-TD3 RL-PPO HTP
initial Kdp updated Kdp

control
steps

22.35
(14.452)

28.74
(18.424)

14.28
(11.942)

18.42
(10.311)

13.30
(12.109)

control
errors

0.262
(0.168)

0.235
(0.195)

0.205
(0.157)

0.259
(0.383)

0.179
(0.162)
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Fig. 8. Performance comparison between our approach and 3 compared approaches for 3 different goals on the IEEE 118-bus system. (a) Distance to goal 1.
(b) Distance to goal 2. (c) Distance to goal 3.
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standard deviation. Furthermore, we assess performance of
HTPs with initial Kdp and updated Kdp, and observe the latter
leads to an improvement in terms of both metrics compared
with the former, which indicates incorporation of updated
experience during the planning process helps accomplish regu-
lation more effectively and more efficiently. Specifically, HTP
with updated Kdp reduces average control steps by 6.86% and
the average control errors by 12.68% compared with RL-PPO.

V. CONCLUSION

In this paper, we has proposed a hierarchical task planner
(HTP) approach for the task of power line flow regulation.
We first introduce a three-level task hierarchy to model the
task. In the proposed HTP, we introduce a higher planner
and a lower planner working alternately to plan execution
of task units on different levels. In addition, we introduce a
two-layer knowledge graph to assist planners. Experimental
results conducted on the IEEE 118-bus and 300-bus systems
demonstrate the proposed HTP outperforms state-of-the-art
DRL algorithm. HTP improves average efficiency and control
error by 26.16% and 19.17% with default dynamic planning
knowledge graph, and by 6.86% and 12.68% with update of
knowledge graph on IEEE 118-bus and 300-bus system.
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