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Abstract—In this paper, we propose an analytical stochastic
dynamic programming (SDP) algorithm to address the optimal
management problem of price-maker community energy storage.
As a price-maker, energy storage smooths price differences, thus
decreasing energy arbitrage value. However, this price-smoothing
effect can result in significant external welfare changes by reduc-
ing consumer costs and producer revenues, which is not negligible
for the community with energy storage systems. As such, we
formulate community storage management as an SDP that aims
to maximize both energy arbitrage and community welfare. To
incorporate market interaction into the SDP format, we propose a
framework that derives partial but sufficient market information
to approximate impact of storage operations on market prices.
Then we present an analytical SDP algorithm that does not
require state discretization. Apart from computational efficiency,
another advantage of the analytical algorithm is to guide energy
storage to charge/discharge by directly comparing its current
marginal value with expected future marginal value. Case studies
indicate community-owned energy storage that maximizes both
arbitrage and welfare value gains more benefits than storage
that maximizes only arbitrage. The proposed algorithm ensures
optimality and largely reduces the computational complexity of
the standard SDP.

Index Terms—Analytical stochastic dynamic programming,
energy management, energy storage, price-maker, social welfare.

NOMENCLATURE

A. Functions

D/Dall Community/Market load curve function.
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f Probability density distribution.
gt Marginal value function starting from time t.
J Supply curve function.
rt Reward function at time t.
Vt Optimal value function at time t.
Wc/Wd Community welfare gains during charging/dis-

charging states.

B. Variables

pc,t/pd,t Ex-post charging/discharging price at time t.
ut/wt Charging/Discharging power at time t.
Xt Storage level at time t.

C. Parameters

at/a
all
t Community/Market maximum load at time t.

b/ball Price elasticity of the community/market load.
C Energy storage capacity.
dt/d

all
t Community/Market load at time t.

et/ht Intercept/Slope of the local linearization of the
aggregate supply curve around the forecast market
price at time t.

NSOC Number of discrete intervals of storage levels.
NRES Number of discrete intervals of renewable gener-

ation.
NPrice Number of discrete intervals of market price.
pt (Ex-ante) market price before storage operation at

time t.
pt,min/
pt,max

Minimum/Maximum electricity price values at
time t.

qt Renewable generation in the community at time t.
qt,min/
qt,max

Minimum/Maximum renewable energy values at
time t.

ρ The capital cost of the storage.
T Number of stages.
ηc/ηd Charging/Discharging efficiency.

I. INTRODUCTION

A. Background and Motivation

LOCATED close to consumers and distributed energy
resources, a community energy storage system serves

as a buffer to mitigate impact of stochastic energy resources
and integrate them into the smart grid [1]. The community
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energy storage system can be a single energy storage system,
a group of geographically dispersed energy storage systems
coordinated as a virtual power plant, or a deferrable demand
cluster. With increasing scale of energy storage [2] and devel-
opment of local energy market, energy storage is encouraged
to participate in the market and play a role in price-setting [3],
as announced in market access policies such as the Federal
Energy Regulatory Commission’s Order 841.

Price-maker community energy storage has a complex in-
teraction with the electricity market. On one hand, it takes
advantage of differences in market prices for energy arbitrage.
On the other hand, it smoothes price differences by decreasing
on-peak loads and increasing off-peak loads, resulting in
reduction of arbitrage opportunities. In addition, this price-
smoothing effect has a significant impact on social welfare,
as it reduces market prices for consumers and profits for
producers [4]. This welfare impact is critical for storage-
owned communities, as they typically own both consumers
and renewable-type producers.

Although energy storage is now allowed to participate in
both wholesale energy markets and emerging local energy
markets, current bidding and control strategies for energy
storage are still under development. Considering the capability
of forecasting, decision-making of energy storage may depend
on information available up to that time slot, but not on the
results of future observations. This is a basic requirement
of non-anticipativity, which is not fully addressed in current
mechanisms, particularly for price-maker storage. Besides, the
control strategy of community energy storage will lead to
significant welfare changes to the community, which is also
inadequately addressed under the non-anticipatory mechanism.
Moreover, limited computing power is another challenge for
storage participation. Therefore, there is an urgent need to
create an efficient bidding and dispatch strategy for price-
maker community energy storage.

This paper proposes an analytical stochastic dynamic pro-
gramming (SDP) algorithm to solve energy management of
price-maker community energy storage. Considering the price-
maker role and non-anticipativity requirements, the main chal-
lenges are (i) characterizing interaction between uncertain
environment and storage, (ii) modeling welfare impact in SDP
format, and (iii) designing a fast analytical algorithm.

B. Literature Review

Energy management structures for energy storage can be
classified into three categories: (i) one-shot model, which sets
storage dispatch and prices over the entire scheduling period at
once, (ii) two-stage model, which sets here-and-now decisions
before uncertainties and determines wait-and-see dispatch vari-
ables after observing uncertainties, (iii) rolling-window model,
also called multi-stage model, which sets dispatch levels and
prices sequentially based on market information forecasts
for several future intervals [5]. Extensive literature has in-
vestigated the one-shot model. Some neglect environmental
uncertainty [6], [7], while others address this issue using
stochastic programming, robust optimization [8], etc. While
these models are often elegant and easy to solve, they ignore
non-anticipativity constraints, relying on hindsight knowledge

of future uncertainty realization, or do not fully utilize random
information available at that time epoch. Although the two-
stage model represents an improvement, it still ignores the
non-anticipativity at second stage [9].

When considering various uncertainties in the market,
the rolling-window model becomes appealing since non-
anticipativity is essential for improving strategies. Two rep-
resentative methods in rolling-window dispatch are model
predictive control (MPC) [10] and SDP [11]. The former
solves an open-loop optimal control problem on a finite time
window for each sampling time, while the latter derives an
explicit feedback law for the entire planning horizon. From
the perspective of optimality, SDP conducts optimization over
the entire period, making it more suitable for energy storage
management with time correlation characteristics. However,
the drawback of SDP is it is difficult to solve due to the
curse of dimensionality [12]. To overcome this issue, various
techniques are proposed, such as analytical solution structures
based on duality theory [11]–[14] and policy and value func-
tion approximations [15], [16]. The above literature focuses
on a price-taker setting. However, there is still a lack of SDP
formulation and corresponding effective algorithms designed
for a price-maker setting.

Managing community storage in a price-maker setting poses
two major modeling challenges, especially under the SDP
framework. The first challenge is capturing interaction be-
tween storage operations and market environment, which is
inherent in the price-maker setting. The second challenge is
modeling community welfare, which represents the external
value of storage operations.

The difficulty of price-maker setting is estimating uncertain
market information, such as market prices, aggregate sup-
ply curves, and market demand. One typical method is to
assume perfect knowledge or forecasting of supply-demand
profiles [17]. Such an assumption is usually adopted in perfect
information games like the Stackelberg game. Although this
approach represents interaction between market price and en-
ergy storage in sophisticated ways, it requires complete market
information sometimes difficult for a single market player
to obtain. Another approach is to predict price quota curve
(PQC). Construction of a PQC requires partial knowledge of
the market, including aggregate supply curves, market prices,
and demand [18]. In [19], optimal strategies for a price-
maker hydro producer were derived from a set of known
PQC scenarios. Work in [19] proposed robust optimization
for price-maker energy storage to manage the uncertainty risk
associated with forecasted PQCs. These contributions mainly
consider impacts of storage operation on price in the one-
shot, two-stage, or MPC-type models. However, incorporating
the price-maker setting into the SDP framework remains a
challenge.

When it comes to community welfare modeling, there is
extensive literature maximizing social welfare for a storage-
owned system [6], typically from the perspective of a com-
munity operator or a market manager. This formulation is
intuitive, as operator seeks to maximize social welfare of pro-
ducers, consumers, and energy storage. Since storage operation
naturally affects market price, it further influences social wel-
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fare of producers and consumers. However, when considering
energy storage dispatch, limited literature attributes welfare
changes to energy storage usage. Their storage operations
only maximize energy arbitrage and ignore social welfare
gains [11]–[16], which do not sufficiently reflect the value of
storage use, especially for community-owned storage. While
reference [4] provides an insightful study of welfare impacts
from storage use, simplified market settings and lack of uncer-
tainty analysis may hinder application of models to practical
electricity markets. Furthermore, adapting welfare impacts to
the SDP framework is still under development.

In summary, Table I outlines different types of research
conducted on storage management, as well as key points
discussed in this paper.

TABLE I
TYPES OF RESEARCH CONDUCTED ON OPTIMAL STORAGE

MANAGEMENT

Ref. Dispatch
structure Solution method

Impact on
the market
price

Market
information

Welfare
impacts

[6] One-shot No – No
[17] One-shot – Yes Complete No
[18] One-shot – Yes Partial No
[9] Two-stage – Yes Partial No
[10] MPC – No – No
[12] DP-MPC – No – No
[11] SDP Analytical form No – No
[13] SDP Analytical form No – No
[14] SDP Analytical form No – No
[15] SDP Approximation No – No
[16] SDP Approximation No – No
This
paper SDP Analytical form Yes Partial Yes

Note: If storage management has no impact on market price, market infor-
mation only requires price, thus using “–” for simplicity. For one-shot, two-
stage, or MPC dispatch structures, commercial solvers can be used to solve
the problem, thus using “–” in the column for the solution method.

C. Contributions

This paper proposes an analytical SDP algorithm for the en-
ergy management of price-maker community energy storage.
The main contributions are threefold:

1) This is the first paper that proposes an analytical SDP
algorithm for price-maker storage management. We show a
rigorous threshold structure of optimal policy. Specifically,
by applying KKT conditions, derivative of the future value
function can be represented exactly as a piecewise linear
function, which avoids state discretization as in standard SDP
algorithm, thus accelerating computation speed. The analytical
algorithm can guide energy storage to charge/discharge by
directly comparing its current marginal value with expected
future marginal value.

2) To adapt to the SDP model, we present a simple bidding
scheme for price-maker energy storage. Inspired by the PQC
method, the scheme requires only partial market information,
including real-time price forecast, slopes of aggregate supply
curve, and slope of market demand curve. It provides a
reasonable balance between fidelity and tractability of the
model.

3) We quantitatively characterize impacts of storage oper-
ation on social welfare changes and tailor them to the SDP

model. Hence, operation strategy of storage maximizes both
arbitrage profits and community welfare gains. It enlarges
social welfare of the whole community that shares this storage.
Such a strategy will help the community more fully assess the
value of energy storage.

II. SYSTEM SETUP

A. System Structure

There are three parties in the community: (local) consumers,
renewable energy, and energy storage. The community acts
as a prosumer participating in the real-time market, which
sells/buys power to/from the electric grid at real-time prices.
Energy storage has a relatively large scale such that it influ-
ences market price. In this study, we focus on valuation and
impacts of energy storage operations, rather than economic
values of excess generation sales or load cost in the commu-
nity.

There are mainly two kinds of operational valuation
of price-maker energy storage, namely, energy arbitrage
gains [20] and community welfare gains [4]. Energy arbitrage
takes advantage of price differences by buying and storing
energy when prices are low and discharging and reselling it
when prices are high. To understand social welfare changes,
we have Fig. 1. It shows interaction between energy storage,
electricity market, and social welfare. When market price is
low, energy storage tends to charge, then the price will rise
and flexible demand falls, thus consumer surplus will decrease
and producer surplus increases, and vice versa. In Fig. 1, we
differentiate the electricity market environment into ex-ante
and ex-post stages. Ex-ante and ex-post refer to stages before
and after storage operation, respectively.

Charge

Discharge

Social Welfare

CS gains & 
PS loses 

Ex post 
Market

Price rises &
Demand falls

Price falls &
Demand rises

Ex ante  
Market

High price

Low price
CS loses & 
PS gains

Fig. 1. A general structure of financial impacts among energy storage
behaviors, the electricity market, and social welfare. CS is short for consumer
surplus, while PS is short for producer surplus.

Assume both renewable energy and storage discharging
have zero marginal costs, while storage charging is considered
to have highest marginal utility due to its ability to smooth
market price. Therefore, for arbitrage profits analysis, there is
no difference between considering renewable energy/storage
bidding in the market (front-of-meter) and directly supplying
load (behind-the-meter). However, this is not the case for
welfare analysis. Since energy storage itself has no surplus, if
its behaviors are behind the meter, community welfare changes
will be miscalculated. Hence, in this paper, we consider
renewable, load, and energy storage bid in front of meters,
that is, they bid separately in the market.

B. Market Setting

We present essential market elements in the energy storage
management problem. The scope of this paper does not
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include designing predicting techniques for stochastic market
information. However, with historical market data available, it
is reasonable to assume renewable energy, market price, and
local slopes of supply curve are predictable. In this paper,
we utilize the ARIMA method. Other advanced forecasting
techniques, such as those introduced in [21] and [22], can
also be employed.
1) Community Load and Total Market Load

Denote community load by dt and assume it consists of two
parts:

dt = D(pt) =

{
at − bpt pt ≤ pmax

t

0 pt > pmax
t

(1)

where pt is market price and at represents community max-
imum load. If pt is larger than highest acceptable price level
pmax
t , loads will decrease to zero. b is related to price elasticity

of community load. at, b > 0. Subscript t refers to time index
and will be used throughout the rest of the paper. Similar
formulations are applied to total market load dallt with structure
Dall and parameters aallt , ball, pall,max

t .

dallt = Dall(pt) =

{
aallt − ballpt pt ≤ pall,max

t

0 pt > pall,max
t

(2)

2) Stochastic Community Renewable Energy
Define qt as renewable generation in the community. We

model renewable generation as a random process {qt} with the
probability density distribution f(qt). For clarity and simplic-
ity, assume f(qt), t = 1, 2, · · · , T , are stagewise independent,
which is a common assumption in stochastic dual dynamic
programming [23]. Note a Markovian form of dependence
where qt depends on qt−1 is also applicable in our model.
3) Stochastic Market Price

The intersection of aggregate supply curve and load curve is
market price pt. Similar to community renewable energy, we
model market price as a random process {pt} with probability
density distribution f(pt) and f(pt), t = 1, 2, · · · , T , are
stagewise independent.
4) Local Slopes of the Supply Curve

Denote gt = J(pt) as aggregate supply curve, where gt
is aggregate generation. Shape of J(·) depends on market
structure and generator offers. It can be (approximately) poly-
nomial, piecewise linear, and stepwise [24]. Accurately esti-
mating J(·) is difficult. Fortunately, we do not need to know
complete information about J(·). We aim to quantitatively
estimate effects of storage charging/discharging behaviors on
market prices, thus local information on supply curve around
the forecasted market price is enough. An intuitive yet useful
idea is to make the first-order Taylor expansion around the
forecasted market price Ept:

gt = J(pt) ≈ J(Ept) + J ′(Ept)(pt − Ept)
⇒ pt = Ept + (gt − J(Ept))/J ′(Ept) = et + htgt (3)

where E denotes expectation. et and ht are intercept and
slope of local linearization of aggregate supply curve around
Ept. We assume J(·) is non-decreasing, thus, ht ≥ 0. Our
main focus is to obtain information on local slope ht, which

addresses the relationship between a supplier’s change in
quantity and resulting change in price.
Remark 1 (ht is approximately constant but et is often
stochastic). Note in the electricity market, suppliers are
mainly traditional generators and RESs. Since marginal prices
of traditional units are higher than those of RESs, aggregate
supply curve can be divided into two parts: RES-aggregation
part and traditional generator-aggregation part. Due to high
uncertainty of RES, RES-aggregation part changes greatly. For
traditional units, bidding strategies are more stable. Since there
are many generators in the market, the strategic change made
by a single unit has a relatively small effect on traditional
generator-aggregation part. Thus, sensitivity of this part to
price can be regarded as unchanged. That is, slope of the local
linearized curve ht is approximately constant [24]. In contrast,
intercept of the local linearized curve et is stochastic due to
shifts of RES-aggregation part.

Based on the proposed system setup and market setting,
we present a control scheme of energy storage illustrated in
Fig. 2. There are three parts to the scheme: at the beginning,
uncertainty forecasting is conducted based on historical data.
Then, storage management is presented to derive a lookup
table of optimal state-action pairs. After obtaining the lookup
table, community operates storage in the real-time market.

Market 
price

Community 
renewable energy

Local slopes of the 
supply curve

Make a lookup table: optimal state-action pairs 
for storage management

Storage: at time t, given current forecast price and  
renewable generation, find out the corresponding 

action
Real-time 
operation

ISO: at time t, clear the market based on bids and  
offers from participants (including storage), reveal the 

market price

t= t+1

Uncertainty 
forecasting

Storage 
management

Fig. 2. The control scheme of energy storage in the real-time market.

III. ENERGY MANAGEMENT OF COMMUNITY
ENERGY STORAGE

In this section, we first illustrate the energy storage model
and analyze community welfare gain, and then formulate the
storage management problem as an SDP.

A. Energy Storage Model

The energy storage model can be characterized by the
following metrics:

1) Energy capacity: size of storage, denoted by C.
2) Round trip efficiency: ratio of energy discharged to

demand to energy charged from the system over each cycle. In
this paper, two specific conversion loss efficiencies are used;
namely, charging efficiency ηc and discharging efficiency ηd.
ηc, ηd ∈ (0, 1).

Denote ut as charging power and wt as discharging power.
Due to conversion losses, η−1c ut MW of energy should be
purchased from the market to ensure ut MW is stored in
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storage. Correspondingly, ηdwt MW of energy can be received
by the grid if storage discharges wt MW.

B. Community Welfare Gains

For clarity, we divide community behaviors into three
possible states: i) Ex-ante state, ii) Ex-post-charging state and
iii) Ex-post-discharging state. We use subscripts c and d to
represent charging and discharging states, respectively. Under
each state, market equilibrium is intersection of total demand
curve and aggregate supply curve.

pt = (Dall)−1(dallt ) ≈ et + htgt, gt = dallt − qt (4)

pc,t = (Dall)−1(dallt ) ≈ et + htgc,t,

gc,t = dallt − qt + η−1c ut (5)

pd,t = (Dall)−1(dallt ) ≈ et + htgd,t,

gd,t = dallt − qt − ηdwt (6)

where market prices pc,t and pd,t are defined as ex-post
charging price and discharging price, respectively. pt can be
regarded as an ex-ante price. According to (4)–(6), expressions
of pc,t and pd,t are given as

pc,t = pt + htη
−1
c ut/(1 + ballht) (7)

pd,t = pt − htηdwt/(1 + ballht) (8)

According to [4], changes in market prices and total load
will result in welfare changes for both consumers and gen-
erators in charging and discharging states. Fig. 3 depicts
community welfare changes of prosumer-oriented community.
Note Fig. 3 only shows when demand is larger than renewable
energy. A similar analysis could be conducted when renewable

(c) Ex-post-discharging state (b) Ex-post-charging state 

Price

Demand

pt

qt

(a) Ex-ante state 

Total load curve Dall

Community load curve D

Supply curve slope

Renewable surplus 

Consumer surplus 

Net welfare

Aggregate supply curve 

Price

Demand

pt
pd,t

qt

discharging

Price

Demand

pt

pc,t

qt

charging

Fig. 3. Ex-ante and ex-post market equilibrium. (a) Ex-ante market equilib-
rium with community load and renewable bid. (b) Ex-post market equilibrium
with community load, renewable, and storage charging bid. (c) Ex-post market
equilibrium with community load, renewable, and storage discharging bid.
Note that welfare changes due to storage use. The charging behavior of
the storage will lift the price, thus decreasing the consumer surplus, but
increasing the renewable surplus. Discharging helps lower the price, increase
the consumer surplus and decrease the renewable surplus.

energy plays a dominant role. We are interested in storage
effects on community welfare gains Wc(·) and Wd(·) during
charging and discharging states:

Wc(ut|qt, pt)

= qt(pc,t − pt)︸ ︷︷ ︸
Renewable surplus

−
∫ pc,t

pt

D(p)dp︸ ︷︷ ︸
Community consumer surplus

= −(at − bpt − qt)
htη
−1
c

1 + ballht
ut +

1

2
b

(
htη
−1
c

1 + ballht

)2

u2t

(9)
Wd(wt|qt, pt)

= −qt(pt − pd,t)︸ ︷︷ ︸
Renewable surplus

+

∫ pt

pd,t

D(p)dp︸ ︷︷ ︸
Community consumer surplus

= (at − bpt − qt)
htηd

1 + ballht
wt +

1

2
b

(
htηd

1 + ballht

)2

w2
t

(10)

C. Problem Formulation

Energy storage is operated periodically. To avoid plundering
opportunity costs from the next period, it is commonly as-
sumed energy storage should return to its initial storage level
at the end of the last stage of the current scheduling period:

XT+1 = X1 (11)

where X is storage level and T is number of stages in a period.
Storage level changes with charge and discharge behaviors:

Xt+1 = Xt + ut − wt (12)

Charging action ut and discharging action wt are limited
by:

0 ≤ ut ≤ C −Xt (13)
0 ≤ wt ≤ Xt (14)

Charging and discharging behaviors of energy storage can-
not be conducted simultaneously. Hence, there is a com-
plementary constraint utwt = 0, which makes the prob-
lem strongly nonconvex. However, if we consider conversion
losses, according to [25], the complementary constraint can be
eliminated directly without sacrificing feasibility and optimal-
ity of the original problem, under the assumption the market
price is positive. Intuition is charging and discharging storage
simultaneously is not economic if considering conversion loss.
Sometimes, negative prices occur in the market, and a simple
method is to force storage not to discharge when the price is
negative, which is also consistent with many practical market
settings [26].

wt = 0 if pt < 0 (15)

The storage management problem in real-time market is
a rolling-window decision-making problem, which can be
characterized as an SDP.

In our SDP format, actions can be expressed in two ways.
One is ut and wt. The other is Xt+1 − Xt. Those two
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expressions are interchangeable, since ut = Xt+1 − Xt and
wt = Xt −Xt+1. However, careful selection is necessary for
ease of analysis.

System states include 1) endogenous state variable, current
storage level Xt, and 2) exogenous stochastic state variables,
renewable generation qt, and market price pt. Reward function,
denoted as rt, can be divided into two components based on
charging and discharging states: rc,t and rd,t. These compo-
nents encompass both arbitrage profits and community welfare
gains:

rt(ut, wt|qt, pt) = rd,t(wt|qt, pt)− rc,t(ut|qt, pt) (16)

where

rc,t(ut|qt, pt)
= η−1c utpc,t︸ ︷︷ ︸

Arbitrage cost

−Wc(ut|qt, pt)︸ ︷︷ ︸
Community welfare loss

=
(
η−1c pt + htη

−1
c (at − qt − bpt)/(1 + ballht)

)
ut

+

(
htη
−2
c

1 + ballht
− 1

2
b

(
htη
−1
c

1 + ballht

)2
)
u2t

rd,t(wt|qt, pt)
= ηdwt · pd,t︸ ︷︷ ︸

Arbitrage profit

+Wd(wt|qt, pt)︸ ︷︷ ︸
Community welfare gain

=
(
ηdpt + htηd(at − qt − bpt)/(1 + ballht)

)
wt

−

(
htη

2
d

1 + ballht
− 1

2
b

(
htηd

1 + ballht

)2
)
w2

t

After analyzing the above actions, states, and reward func-
tion, storage management problem is formulated as follows:

max
ut,wt

E

(
rT (·) +

T−1∑
t=1

rt(·)

)
s.t. (11)–(15) (17)

Corresponding Bellman equations are given by:

Vt(Xt+1|Xt, qt, pt) = maximize
ut,wt

rd,t(·)− rc,t(·)

+ Eqt+1,pt+1
Vt+1(Xt+1|qt+1, pt+1)

VT (XT+1|XT , qT , pT ) = rd,T (XT −X1|qT , pT )
− rc,T (X1 −XT |qT , pT ) (18)

where Vt(·) is optimal value of optimal action Xt+1 in storage
level Xt, renewable state qt, and market price pt for a finite-
horizon problem starting at time t and ending at time T . VT (·)
is terminal profit.

IV. ANALYTICAL SDP ALGORITHM

SDP models suffer from the “curse of dimensionality”,
which makes them computationally intractable to obtain op-
timal solutions; that is, to obtain the optimal solution by
backward induction, states need to be highly discretized, in
that complexity of backward induction grows exponentially
as size of states increases. To tackle this problem, in this
section, we show reward function rc,t(·) and rd,t(·) are convex
on Xt+1, and value function Vt(·) is concave on Xt. Then,

by manipulating KKT conditions, future value function can
be represented exactly as a piecewise linear function. Hence,
optimal non-anticipatory policy is shown to have a threshold
structure, which reduces discretization in the backward induc-
tion process from Vt+1 to Vt.
Proposition 1. For every ut, wt, and t = 1, · · · , T ,
rc,t(ut|qt, pt) is convex on ut; rd,t(wt|qt, pt) is con-
cave on wt; rc,t(·) and rd,t(·) are convex on Xt+1;
Vt(Xt+1|Xt, qt, pt) is concave on Xt under the condition of
∇Xt+1

rd,t(·)|Xt+1=Xt
≥ ∇Xt+1

rc,t(·)|Xt+1=Xt
.

Proof : See Appendix for the proof.
Denote gt(·) , ∇XtVt(·), which represents marginal value

starting from time t. Similarly, gt+1(·) , ∇Xt+1Vt+1(·). In
the following Theorem 1, we derive a threshold structure of
optimal policy based on Proposition 1. Threshold is to compare
∇wt

rd,t or ∇ut
rc,t with gt+1(·) for given Xt, qt and pt.

Theorem 1. Threshold structure of the optimal policy for
stage t is

(w∗t , u
∗
t ) =

(Xt, 0), if ∇wtrd,t(·)|wt=Xt > gt+1(·)|Xt+1=0

(0, C −Xt), if ∇ut
rc,t(·)|ut=C−Xt

< gt+1(·)|Xt+1=C

(x, 0), if ∇wt
rd,t(·)|wt=Xt

≤ gt+1(·)|Xt+1=0

and ∇wt
rd,t(·)|wt=0 ≥ gt+1(·)|Xt+1=Xt

,

where x = sup{x : ∇wt
rd,t(·)|wt=x

≤ gt+1(·)|Xt+1=Xt−x}
(0, y), if ∇utrc,t(·)|ut=0 ≤ gt+1(·)|Xt+1=Xt

and ∇utrc,t(·)|ut=C−Xt ≥ gt+1(·)|Xt+1=C ,

where y = sup{y : ∇ut
rc,t(·)|ut=y

≤ gt+1(·)|Xt+1=Xt+y}
(0, 0), otherwise.

(19)

Proof : See Appendix for the proof.
According to Theorem 1, optimal control u∗t , w

∗
t depends on

balance between expected future marginal value and current
marginal value, as shown in Fig. 4. Charging behavior will

Xt+1Xt

Marginal value

C0

Expected future 
marginal value gt+1 

Discharge Charge

Current marginal 
value Ñw  rd,t  

Current marginal 
value Ñut rc,t  

①

②

③
⑤

④

t

Fig. 4. Expected future marginal value gt+1 vs. current marginal value
∇wtrd,t or ∇utrc,t. Redline segments are current marginal values. Blue
lines and dots represent expected future marginal value curves in five possible
conditions. The optimal control u∗

t , w
∗
t is depicted by black spots and marked

as ¬®¯°, which are illustrated in (19) in sequence.
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increase current marginal value but decrease expected future
marginal value; discharging is the opposite. Scenario ¬ tells us
if the current marginal value is no less than expected future
value, even though energy storage is fully discharged, then
energy storage will prefer current profits and thus discharge
to empty. In contrast, if current marginal value remains lower
than expected future marginal value even in the fully charged
situation, storage will charge to full state to obtain enough
reserves for future sale, which is Scenario . If future marginal
value intersects with current marginal value; i.e., in Scenar-
ios ®¯, storage will charge/discharge to the storage state
indicated by intersection point. Otherwise, there will be no
operation under Scenario °.
Corollary 1. The optimal future marginal price for stage t
is exactly a piecewise linear function:

gt(·) =



∇wt
rd,t(·)|wt=Xt

,

if ∇wt
rd,t(·)|wt=Xt

≥ gt+1(·)|Xt+1=0

∇ut
rc,t(·)|ut=C−Xt

,

if ∇utrc,t(·)|ut=C−Xt ≤ gt+1(·)|Xt+1=C

gt+1(·), otherwise.
(20)

Proof : See Appendix for the proof.
Corollary 1 indicates the derivative of the value function

gt(·) is a piecewise linear function of state variable Xt. With
Proposition 1, Theorem 1 and Corollary 1, we propose an
analytical SDP algorithm to solve the energy management
problem. The pseudocode of the analytical SDP is shown in
the Algorithm. Storage levels, renewable energy states, and
price states are discretized into NSOC, NRES, NPrice intervals,
respectively. Minimum and maximum renewable energy values
and electricity price values at time t are qt,min, qt,max, pt,min,
and pt,max, respectively, which are calculated by point forecast
and probability distribution.

Comparing the analytical SDP with the standard SDP,
standard SDP needs to discretize the state variable (next
storage level Xt+1) to construct future value functions. In
contrast, analytical SDP avoids the dimensionality problem by
representing derivative of future value function as a piecewise
linear function exactly (Corollary 1). Therefore, the optimal
policy has a threshold structure (Theorem 1), which can
be applied to the analytical SDP to largely accelerate the
computational speed.

V. CASE STUDIES

In this section, we use numerical examples to demonstrate
our theoretical results. There are three cases for comparison:

Case 1: regard storage as a price taker.
Case 2: regard storage as a profit-maximizing strategic

resource. That is, its objective considers only energy arbitrage.
Case 3: regard storage as a welfare-maximizing strategic

resource. That is, the objective includes energy arbitrage and
community welfare.

Assume charging/discharging efficiency of the invested stor-
age is 0.9. Rated capacity of energy storage is 20 MWh.
Number of intervals of energy storage level is 20. Forecasted

Algorithm 1: Analytical SDP
Input: X1 ← const, q1 ← const, p1 ← const, storage

discretization {Xt,0 = 0, · · · , Xt,NSOC = C},
renewable energy discretization
{qt,0 = qt,min, · · · , qt,NRES

= qt,max},
electricity price discretization
{pt,0 = pt,min, · · · , pt,NPrice

= pt,max},
f(qt), f(pt)

1 for t = T to 1 do
2 for i = 0 to NSOC do
3 for j = 0 to NRES do
4 for l = 0 to NPrice do
5 Use Monte Carlo methods to generate

training scenarios based on given qt,j ,
pt,l, f(q), f(p)

6 if t == T then
7 if X1 > Xt,i then
8 gt(·) = ∇ut

rc,t(·)|ut=X1−Xt,i

9 else
10 gt(·) = ∇wtrd,t(·)|wt=Xt,i−X1

11 end
12 else
13 gt+1(·) = Eqt+1,pt+1

gt+1(·)
14 Compute w∗t (·), u∗t (·) using (19)
15 Compute gt(·) using (20)
16 end
17 end
18 end
19 end
20 end

real-time prices are chosen from [27] during Sep. 1 to Sep. 24,
2020. Supply curve slopes are based on [28]; we scale them
in Table II. Price elasticity for total market load is chosen
to be ball = 0.5. Parameters for community load are set as
at = 10, b = 0.2. Based on the dataset from [29], we take
maximum load of 11 residential consumers as community
maximum load at. Community renewable data is obtained
from the 2014 global energy forecasting competition, where
wind power can be predicted based on several kinds of weather
predictors such as 10-meter U wind, 10-meter V wind, 100-
meter U wind, 100-meter V wind, etc. The dataset we select
is from Jan. 1st, 2012, to Nov. 30th, 2013 in Zone 1. To
match real-time price, we interpolate load and renewable
energy into 5-minute granularity. Forecast real-time prices and
community renewable production are depicted in Fig. 5. All
tests are implemented on a laptop with an Intel Core i5-72000
central processing unit. Optimization problems are solved with
MATLAB.

A. Periodicity and Initial Storage Level Settings

Periodicity refers to scheduling period of storage. Initial
storage level refers to storage level at the beginning of the
cycle.

To choose the most suitable values of periodicity and initial
storage level for energy management, we test optimal values
of different periodicities under different initial storage levels.
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TABLE II
TYPICAL SLOPES OF THE SUPPLY CURVE IN REAL-TIME MARKET

Period Ex-ante price Slope Period Ex-ante price Slope
1 0–2 0.004 4 25–38 0.166
2 2–16 0.131 5 38–57 0.665
3 16–25 0.043 6 57–240 6.02
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Fig. 5. Forecast real-time prices and community renewable power profile.

Number of sampling points in 1/4 day is 72 since load is
collected once every 5 minutes. Finally, periodicity is set as
(1, 2, 3, 4, 5, 6) ∗72. That is, periodicity is chosen as 0.25,
0.5, 0.75, 1, 1.25, and 1.5 days.

Figure 6 shows results. Optimal value is calculated as the
quarter of the daily profit. For example, if periodicity is
selected as one day, we calculate average revenue of one day
for the whole planning horizon and divide average revenue
by 4 to obtain the quarter of the daily profit. As periodicity
changes, optimal value changes largely, because real-time
price is volatile. Fig. 6 displays setting one day as the planning
horizon gives the best revenue. The reason is our data show
in most cases, real-time prices in the first half of the day are
low, while prices in the second half are high and volatile; thus,
storage tends to charge first and then discharge to earn profits.

100
20

50015 400Initial storage level

30010

Periodicity

200

O
p
ti

m
al

v
al

u
e 

($
)

2005 100
0 0

300

Fig. 6. Optimal values versus periodicity and initial storage levels.

Moreover, in Fig. 6, influence of initial storage levels on
optimal value is not significant. Fig. 7 further validates this
phenomenon. Although initial storage levels vary from 0 to
20, storage levels become the same from the 3rd time slot to
the 42nd time slot. The reason is that optimal control decisions
become independent of initial levels after several time slots
and will become dependent again on initial levels at the end
of the operation horizon since the final storage level must be
equal to the initial storage level. According to (19), optimal
decisions are piecewise linear; hence, mapping from current
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Fig. 7. Storage levels change with different initial storage levels.

storage level Xt to the next storage level Xt+1 is piecewise
linear with coefficients not greater than 1. Therefore, initial
storage level will only manifestly affect storage levels of the
first few time slots.

In the following discussion, we choose initial storage level
as 0 and periodicity as 4∗72(∗5 min). Those parameters
provide best revenues under the selected data.

B. Price Maker Versus Price Taker

Figure 8 compares optimal values versus capacity in Cases
1, 2, and 3. From Case 1 and Case 2, it can be concluded
the price maker gains more value than price taker. This
is consistent with our theoretical analysis: as price taker
neglects impacts of its operations on market prices, it will
misestimate actual income during optimization. Moreover, as
storage capacity increases, price-taker assumption becomes
even more impractical. In price-maker scenarios, i.e., Case 2
and Case 3, optimizing both energy arbitrage and community
welfare brings more benefits than merely considering energy
arbitrage. It will help the community more fully assess the
value of energy storage.

−100

0

100

200

300

400

500

5 8 11 14 17 20

O
p
ti

m
al

 v
al

u
e 

($
)

Capacity (MWh)

Case 1 Case 2 Case 3

Fig. 8. Optimal values versus capacity under Cases 1, 2 and 3.

C. Energy Arbitrage Gains versus Community Welfare

Figure 9 shows optimal actions under Cases 2 and 3.
Different layouts come out in the two cases. In general, storage
tends to charge when market price is predicted to be low
and discharge when the price is forecasted to be high. From
Fig. 10, we can see storage acts as a filter that smooths the
price pattern and reduces arbitrage opportunities.

In addition, we analyze arbitrage gains and welfare gains
in Cases 2 and 3, respectively, as shown in Fig. 11. Although
price-smoothing effects due to storage use reduce arbitrage
value, benefits from community welfare enhance value of
energy storage. Note even if Case 2 does not optimize com-
munity welfare, community welfare still changes because it is
a byproduct of arbitrage. Along the period, total value, i.e.,
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summation of arbitrage profits and welfare gains, in Case 2 is
always smaller than in Case 3 since the objective in Case 3 is
exactly total value, yet in Case 2 it is a part of total value (i.e.,
the arbitrage part). If storage belongs to a merchant, the profit-
maximizing purpose in Case 2 is a good choice. However, if
storage is owned by prosumers (or consumers/producers), the
welfare-maximizing purpose in Case 3 will help gain more
benefits, which may exceed 40%.

D. The Proposed Algorithm Versus the Standard SDP

We investigate performance of the proposed algorithm and
standard SDP in terms of optimality and computational effi-
ciency under variation of capacity C. Set value of NSOC to
5 C.

Optimality and computational efficiency of the algorithm
are illustrated in Fig. 12. The figure shows the proposed
analytical SDP achieves the same optimal value as the standard
SDP. However, the proposed algorithm is much faster than
the standard one. As capacity increases, computation cost
of standard SDP increases exponentially, while that of the
analytical SDP grows much slower. The computational burden
of standard SDP is mainly due to the high granularity of
state discretization. While the proposed algorithm avoids state
discretization, hence accelerating the execution process.
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E. Sensitivity Analysis and Optimal Capacity
Figure 13 shows the change in optimal values with storage

capacity and efficiency. We can see as capacity increases,
expected profits grow fast at the beginning but tend to be
saturated eventually. Furthermore, storage will earn more
profits if it has higher efficiencies.
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In addition, we can derive optimal capacity from Fig. 13.
Suppose capital cost of storage is ρ. Adding investment cost
to the objective function, we have

maximize
C

U(C)− ρC (21)

where U(C) is the value-capacity function plotted in Fig. 13
under a given efficiency. Taking the derivative of (21), we have
U ′(C∗) = ρ. Thus, optimal capacity C∗ can be obtained.

VI. CONCLUSION

In this paper, we have proposed an efficient analytical SDP
algorithm to solve the price-maker community energy storage.
We show the following:
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1) The proposed analytical SDP is appealing to price-maker
energy storage due to its ease of implementation and efficient
computation. The structure has a simple form to make optimal
decisions by comparing current marginal value with expected
future marginal value. The proposed analytical SDP ensures
optimality and reduces complexity of the SDP algorithm from
O(n2) to O(n) level.

2) Arbitrage behaviors of large-scale energy storage will sig-
nificantly impact market prices and social welfare. Therefore,
for prosumer-oriented community energy storage, optimizing
both energy arbitrage benefits and community welfare gains
becomes crucial, potentially resulting in a 40% increase in
profits compared to profit-maximizing approach.

The proposed method can guide prosumer-based commu-
nities to utilize energy storage for profit-making. Aside from
energy arbitrage and community welfare, participating in aux-
iliary services accounts for another major source of income
for storage, which will be characterized in future work. In
addition, techniques for uncertainty modeling of renewable
sources and market prices also require further exploration.

APPENDIX

Proof of Proposition 1 (Convexity or concavity of current
reward function) Both rc,t(·) and rd,t(·) are quadratic
functions; thus, it is easy to analyze the convexity or concavity
property. Specifically, we need to deduce the positivity or neg-
ativity of the quadratic terms, which is equal to distinguishing
the symbol ±(1 + ballht0.5bht). Note that the slope of the
supply curve ht is nondecreasing; i.e., ht ≥ 0, indicating
that higher prices make power more profitable to produce.
In addition, we have ball > b by definition. Hence, rc,t(·) is
convex on ut, rd,t(·) is concave on wt. That is,∇2

ut
rc,t(·) > 0,

∇2
wt
rd,t(·) < 0.

(The current reward function is convex on the next storage
state) We have ∇2

ut
rc,t(·) > 0, ∇2

wt
rd,t(·) < 0, and

Xt+1 = Xt+ut−wt, thus it is easy to prove that ∇Xt+1
rc,t(·)

and ∇Xt+1
rd,t(·) monotonically increase in the Xt+1-domain.

To obtain that the current reward function increases monoton-
ically for Xt+1, we need to figure out the relative size at
the boundaries of ∇Xt+1

rc,t(·) and ∇Xt+1
rd,t(·), that is, to

prove ∇Xt+1
rd,t(·)|Xt+1=Xt

≥ ∇Xt+1
rc,t(·)|Xt+1=Xt

. It is to
determine whether η−1c pt + htη

−1
c (at− qt− bpt)/(1+ ballht)

is greater than ηdpt + htηd(at − qt − bpt)/(1 + ballht). The
determination depends on lots of factors. One main factor is
the market price. Since (15) enforces storage not to discharge
when the market price is negative. We only need to consider
a positive price here. As the renewable energy qt increases,
the slope of the supply curve ht usually decreases, thus we
believe ∇Xt+1

rd,t(·)|Xt+1=Xt
≥ ∇Xt+1

rc,t(·)|Xt+1=Xt
holds.

(The value function is concave for the current storage state)
Note that Vt(·) = rt(·)+Eqt+1,pt+1

Vt+1(·). To prove that Vt(·)
is concave with for Xt, which means ∇2

Xt
Vt(·) < 0, we prove

∇2
Xt
rt(·) < 0 and Eqt+1,pt+1

[∇2
Xt
Vt+1(·)] < 0, respectively.

1) If charging at time t, ∇2
Xt
rt(·) = −∇2

Xt
rc,t(·) =

−∇2
ut
rc,t(·) < 0; if discharging, ∇2

Xt
rt(·) = ∇2

Xt
rd,t(·) =

∇2
wt
rd,t(·) < 0. In summary, ∇2

Xt
rt(·) < 0.

2) Next we use induction to prove Eqt+1,pt+1
[∇2

Xt
Vt+1(·)]

< 0. For the terminal profit VT (·), according to 1), ∇2
XT
VT (·)

= ∇2
XT
rT (·) < 0. From t = T − 1 to 1, ∇2

Xt
Vt+1(·) =

∇2
Xt+1

Vt+1(·)×∇2
Xt
Xt+1 < 0. Hence, Eqt+1,pt+1

∇2
Xt
Vt+1(·),

the weighted mean of ∇2
Xt
Vt+1(·), is also less than zero. 1)

and 2) conclude the proof.
Proof of Theorem 1 The value function of the energy

management problem with complete dual variables is shown
below

Vt(·) = maximizeut,wt
rd,t(·)− rc,t(·) + EVt+1(·)

subject to
ψ : XT+1 = X1

(µ
t
, µt) : 0 ≤ ut ≤ C −Xt, ∀t

(ξ
t
, ξt) : 0 ≤ wt ≤ Xt, ∀t
λt : Xt+1 = Xt + ut − wt, ∀t

(A1)

Remember that gt(·) = ∇XtVt(·) and gt+1(·) = ∇Xt+1

Vt+1(·). Optimal solutions of the problem (A1) satisfy KKT
conditions:

−∇utrc,t(·)− µ∗t + µ∗t − λ∗t = 0, ∀t (A2)

∇wtrd,t(·)− ξ
∗
t
+ ξ
∗
t + λ∗t = 0, ∀t (A3)

gt+1(·) + λ∗t = 0, ∀t (A4)

0 ≥ µ∗
t
⊥µ∗t ≤ 0, ∀t (A5)

0 ≥ ξ∗
t
⊥ξ∗t ≤ 0, ∀t (A6)

0 ≤ u∗t ≤ C −Xt, ∀t (A7)

0 ≤ w∗t ≤ Xt, ∀t (A8)

Xt+1 = Xt + u∗t − w∗t , ∀t (A9)

According to the five scenarios shown in Fig. 4, we analyze
the corresponding optimal solutions.

1) If ∇wtrd,t(·)|wt=Xt > gt+1(·)|Xt+1=0, according to (A4)
and (A3), ξ∗

t
− ξ∗t > 0, thus w∗t = Xt;

2) If ∇utrc,t(·)|ut=C−Xt < gt+1(·)|Xt+1=C , according to
(A4) and (A2), µ∗

t
− µ∗t > 0, thus u∗t = C −Xt;

3) If ∇wtrd,t(·)|wt=Xt ≤ gt+1(·)|Xt+1=0 and ∇wtrd,t
(·)|wt=0 ≥ gt+1(·)|Xt+1=Xt

, then ξ∗
t
−ξ∗t ≤ 0 and ξ∗

t
−ξ∗t ≥ 0,

thus w∗t = sup{x : ∇wt
rd,t(·)|wt=x ≤ gt+1(·)|Xt+1=Xt−x};

4) If ∇ut
rc,t(·)|ut=0 ≤ gt+1(·)|Xt+1=Xt

and ∇ut
rc,t

(·)|ut=C−Xt
≥ gt+1(·)|Xt+1=C , then µ∗

t
− µ∗t ≥ 0 and

µ∗
t
− µ∗t ≤ 0, thus u∗t = sup{y : ∇utrc,t(·)|ut=y ≤ gt+1

(·)|Xt+1=Xt+y};
5) If ∇wtrd,t(·)|wt=0 < gt+1(·)|Xt+1=Xt and ∇utrc,t

(·)|ut=0 > gt+1(·)|Xt+1=Xt
, then ξ∗

t
−ξ∗t < 0 and µ∗

t
−µ∗t < 0,

i.e., ξ∗
t
< 0 and µ∗

t
< 0, thus w∗t = 0 and u∗t = 0.

Based on Proposition 1, we know that for Xt+1, rc,t(·)
and rd,t(·) are convex, and Vt+1(·) is concave. Hence, there
is at most one intersection of {∇wt

rd,t(·),∇ut
rc,t(·)} and

gt+1(·), showing that the storage cannot charge and discharge
simultaneously. And we have Theorem 1.

Proof of Corollary 1 We make a sensitivity analysis of
Vt(·) to Xt:

∇Xt
Vt(·) = gt(·) = µ∗t − ξ

∗
t − λ∗t (A10)

Substituting (A4) into (A10), we have gt(·) = gt+1(·) +
µ∗t − ξ

∗
t . The following three conditions hold:

1) If µ∗t = 0 and ξ
∗
t = 0, then gt(·) = gt+1(·);



502 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 2, MARCH 2024

2) If µ∗t 6= 0 and ξ
∗
t = 0, then u∗t = C−Xt and gt(·) = gt+1

(·) + µ∗t = ∇ut
rc,t(·)|ut=C−Xt

;
3) If µ∗t = 0 and ξ

∗
t 6= 0, then w∗t = Xt and gt(·) = gt+1

(·)− ξ∗t = ∇wtrd,t(·)|wt=Xt .
We have Corollary 1.
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