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Abstract—Part II of this paper presents a reduced-order
stability region (ROSR) based method to estimate the full-order
stability region (FOSR) of a large-scale power system. First,
we introduce the definitions of FOSR and ROSR, followed by
a comprehensive theory that reveals the relationships between
them. Since the full-order system can be rewritten as a standard
two timescale model and the reduced-order system is regarded
as the slow subsystem of it, the proposed theory is derived based
on the idea of singular perturbation. With rigorous mathematical
proof, the properties of FOSR and ROSR are revealed. Moreover,
a modified Energy Augmented Dynamic (EAD) algorithm and a
constrained equidistant projection (CEP) approach are employed
to estimate the ROSR and FOSR, respectively. The modified EAD
algorithm and CEP form a so-called reduced-order stability re-
gion mapping (ROSRM) method. Finally, the proposed ROSRM
method is applied to the IEEE 10-machine-39-bus power system,
and simulation studies confirm its superiority to the traditional
energy function method in terms of computational speed and
reliability of results.

Index Terms—Large-scale power system, singular perturbation
theory, stability region, sum of squares, transient stability.

I. INTRODUCTION

TRANSIENT stability analysis investigates the dynamic
behavior of power systems after large disturbances, which

is of great significance in power system planning, operation,
and control [1], [2]. Stability region (SR), mathematically
known as domain of attraction, provides a quantitative de-
scription of transient stability [3]. It is defined as an invariant
set such that all trajectories from points in the set converge to
a corresponding asymptotically stable equilibrium point [4].
However, calculating an entire SR is a challenging task. In
particular, for a large-scale power system, no one has yet
been able to realize the derivation of an entire SR, because
the dynamical model of the power system is high-dimensional
and complex [2]. Model reduction has emerged as the most
promising solution [5]. In this paper, we will present a work
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on estimation of SRs for large-scale power systems based on
reduced-order models. Our work is presented in two parts.
Part I introduces how to capture the nonlinear dynamics of a
power system by Koopman operator and derive a low-order
dynamical model with reasonable accuracy. Part II describes
how to use the reduced-order model combined with sum-of-
squares (SOS) programming to approximate a reduced-order
stability region (ROSR) and map it to the full-order state space
to estimate the full-order stability region (FOSR). Below, we
focus on the second part of our work.

Generally, the estimate of a SR is characterized by the
level sets of a Lyaponuv function. For small-scale power
systems, several Lyaponuv function based methods have been
successfully applied [6], including the energy function method
[2], [3], [7], [8], Lur’e type Lyapunov function method [9],
[10], SOS based method [11]–[13] and extended Lyapunov
function method [14], etc. However, these methods are inappli-
cable in large-scale power systems, due to the difficulties and
computational complexity in constructing Lyaponuv functions
and approximating SRs [6]. Nonetheless, to address such a
challenge, the energy function method attempts to construct
numerical energy functions and estimate the local relevant
boundary of a SR rather than the entire SR. This idea has
inspired many approaches such as CUEP [15], PEBS [16]
and BCU [17], but their application to large-scale systems is
remains suboptimal [18], [19]. Besides, paper [6] introduces a
class of connective stability based methods, including the vec-
tor/composite Lyapunov function method [20], [21], dissipa-
tive system theory [22] and input-to-state stability theory [23].
Unfortunately, the strongly-coupled characteristic of power
systems brings enormous challenges to the implementation of
these methods [6]. Consequently, until now, there has been
no feasible method to calculate the entire SR of a large-scale
power system.

In order to address this challenge, we utilize model reduc-
tion to drastically reduce the computational effort. However,
the approach produces a new challenge of exploring the sta-
bility relationship between the reduced-order model and full-
order model. Starting from the Koopman theory introduced
in Part I, we rewrite the full-order system as a standard two
timescale model and the reduced-order system can be regarded
as the slow subsystem of it. Then singular perturbation theory
[21, p.424] is able to build a bridge to analyze the stability
relationship between these two systems. Although standard
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two timescale model has been studied by singular perturbation
theory in [21], [24]–[26], those papers either concentrate only
on specific trajectories, or add impractical assumptions such as
the existence of analytic energy function. Thus, it is required
to improve the existing theory for analyzing the standard two
timescale model.

The contribution of Part II is threefold.
(a) A complete theory is presented to analyze the stability of

the full-order model and reduced-order model, with rigorous
mathematical proofs. By introducing a thorough analysis of the
standard two timescale model, the proposed theory reveals the
correspondence between the trajectory convergence behavior
in the FOSR and ROSR, respectively.

(b) Based on our previous work [13], a modified EAD
algorithm is proposed to estimate the ROSR. Then we recast
the obtained ROSR to the full-order state space to approximate
the FOSR, by introducing constrained equidistant projection
(CEP). The modified EAD algorithm and CEP form a so-called
reduced-order stability region mapping (ROSRM) method.

(c) The proposed ROSRM method is applied to the IEEE
10-machine-39-bus power system case. The estimated FOSR is
compared with that obtained by the traditional energy function
method. Furthermore, we employ time domain simulation to
verify the results.

In Part II of this paper, the concept and theory of reduced-
order stability region are pioneered by us and successfully
applied to large-scale power systems. Our work will open
up a completely new research direction for transient stability
analysis of modern power systems.

Notation: The set of n × m real and complex matrices
are represented by Rn×m and Cn×m respectively. The set
of polynomials and SOS polynomials defined in x ∈ Rn
are denoted by Pn[x] and Sn[x], respectively. col(T ) denotes
the columns of matrix T . T+ is the Moore-Penrose pseu-
doinverse of matrix T . R≥0 := [0,+∞), R<0 := (−∞, 0),
C− := {p ∈ C|Re(p) < 0}. For p ∈ C, Re(p) is the real part
of p, Im(p) is the imaginary part of p, p∗ is the conjugate of p.
For a set A, int (A) is the interior of A, ∂A is the boundary of
A. For a map M : A→ B, we say that M ∈ C0(A;B) if M is
continuous in A. We say that M ∈ Ck(A;B) (k ≥ 1) if M has
kth-order continuous partial derivatives in A. In is the identity
matrix of size n × n, Om is the zero matrix of size m ×m.
Given matricesA1,A2, · · · ,Aq , blkdiag (A1,A2, · · · ,Aq) is
the block-diagonal matrix with diagonal blocks A1,A2, · · · ,
Aq . For a matrix A ∈ Cn×n, Ln(A) is the logarithm of A
[27, p.65]. For q ∈ Rk, Bk(q, ρ) is the k-dimensional close
ball centered at q with radius ρ.

II. STABILITY ANALYSIS OF THE FULL-ORDER MODEL
AND REDUCED-ORDER MODEL

A. Full-order Stability Region and Reduced-order Stability
Region

Suppose that the full-order model is a continuous-time,
autonomous and nonlinear dynamical system:

dx(t)

dt
= f(x(t)) (1)

where x ∈ Rn, f : Rn → Rn and x = [x1, x2, · · · , xn]>.
Assume that x = 0 is an equilibrium point, i.e. f(0) = 0.
Define a finite time-t flow S(t,x(t0)) : x(t0)→ x(t0 + t) =
x(t0)+

∫ t0+t

t0
f(x(τ))dτ . If x = 0 is an asymptotically stable

equilibrium point (ASEP), the corresponding stability region
(SR) is defined as:

D = {x(0) ∈ Rn| lim
t→∞

S(t,x(0)) = 0} (2)

We refer to D as the full-order stability region (FOSR) of
system (1).

According to the Lyapunov stability theory [2], [4], [13],
if there exist an open set Ω ⊆ Rn and a continuously differ-
entiable function V (x) : Ω → R, called Lyapunov function,
such that

V (0) = 0, V (x) > 0, ∀x ∈ Ω\{0}
V̇ (0) = 0, V̇ (x) < 0, ∀x ∈ Ω\{0} (3)

then a set D = {x|V (x) ≤ c, c > 0} ⊂ Ω is guaranteed to be
an invariant subset of the FOSR with respect to x = 0.D can
be regarded as an estimate of D, called the estimated FOSR.

As for the reduced-order model of system (1), we recall
the relevant work in Part I of this paper. Assume that a
transformation matrix T can be found to make

x ≈ Tz (4)

where T ∈ Rn×r, z ∈ Rr and r < n. Then, by the Galerkin
projection method [28], one can derive a reduced-order model:

dz

dt
= T+f(Tz) , g(z). (5)

Reduced-order model (5) evolves in Rr and approximates
the dynamics of full-order model (1) in some sense. Similarly,
assume z = 0 is an ASEP and define a finite time-t flow
Ŝ(t, z(t0)) : z(t0) → z(t0 + t) = z(t0) +

∫ t0+t

t0
g(z(τ))dτ .

Then the reduced-order stability region (ROSR) can be de-
fined as:

D̂ = {z(0) ∈ Rr| lim
t→∞

Ŝ(t, z(0)) = 0}. (6)

From the Lyapunov stability theory, if there exist Ω̂ ⊆ Rr
and V̂ (x) : Ω̂→ R, such that

V̂ (0) = 0, V̂ (z) > 0, ∀z ∈ Ω̂\{0}
˙̂
V (0) = 0,

˙̂
V (z) < 0, ∀z ∈ Ω̂\{0} (7)

then a set D̂ = {z|V̂ (z) ≤ ĉ, ĉ > 0} ⊂ Ω̂ is an invariant
subset of D̂ and can be called the estimated ROSR.

Note that D and D̂ are not topologically conjugate because
they have different dimensions. In practice, we are interested
in D rather than D̂. However, D̂ is easier to compute and can
be employed to deduce the desired D.

B. Mapping Relationships Between the Full-order Space and
Reduced-order Space

Definition 1. Given a set Q ⊆ Rr and a transformation x =
Tz with x ∈ Rn, z ∈ Rr, we define S , {xs|xs = Tzq,

zq ∈ Q} ⊆ Rn and P , {xp| 〈xp,xs〉‖xs‖ = ‖xs‖,xs ∈ S} ⊆
Rn, i.e. P is the normal bundle of S.
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Theorem 1. Given a set Q ⊆ Rr and a transformation x =
Tz, we have the sets S and P based on Definition 1. Then
there exist a bijective map between S and Q, an injective map
from Q to P , and a surjective map from P to Q.

Proof : In the first place, since T ∈ Rn×r, rank(T ) = r
and r < n, T+T = Ir, where T+ = (T>T )−1T>. Thus
T is an injective map from Rr to Rn. As Q ⊆ Rr and
S = T (Q) ⊆ P , T also induces an injective map from Q
to P . In addition, ∀xs0 ∈ S, it is obvious that ∃zq0 ∈ Q,
s.t. xs0 = Tzq0 and zq0 = T+xs0 = T+Tzq0. As a
result, T is a surjective map from Q to S . But because
T is also injective, T is actually a bijective map between
S and Q. Moreover, ∀xp1 ∈ P , according to the theory
of orthonormal decomposition [29], ∃ unique xs1 ∈ S and
xg1 ∈ (span{col(T )})⊥, where (span{col(T )})⊥ is the or-
thonormal complement of span{col(T )}, s.t xp1 = xs1 +xg1.
Then we have T+xp1 = T+xs1 + T+xg1 = T+xs1 +
(T>T )−1T>xg1 = T+xs1 = zq1, i.e., zq1 = T+xp1. Note
that zq1 ∈ Q. Finally, ∀zq2 ∈ Q, Tzq2 ∈ S ⊆ P and
T+Tzq2 = zq2. Therefore, T+ is a surjective map from P
to Q.

From Theorem 1 and its proof, we conclude the mapping
relationships among Q, S and P:

xs = Tzq, zq = T+xs, zq = T+xp (8a)

xs = TT+xp, xp = xs + xg, T
>xg = 0 (8b)

∀zq ∈ Q, xs ∈ S, xp ∈ P

The relationships are also shown in Fig. 1. Note that zq =
T+xs = T+xp and S ⊂ P , which illustrates that the map
from P to Q is many-to-one. If Q = D̂ is the estimated
ROSR, P is not the estimated FOSR D. This is because P is
unbounded, even though all points in P can be projected into
Q. Nonetheless, there exists a D satisfying D ⊂ P .

xp

xs

x=Tz

zq

xg x

z
r

n
0

Fig. 1. Mapping relationships among the sets defined in the full-order space
and reduced-order one.

Furthermore, if set Q is expanded to the entire space,
i.e. Q = Rr, set S is actually a r-dimensional unbounded
manifold defined in Rn and P = Rn. The above-mentioned
mapping relationships remain unchanged.

C. Rewrite the Full-order Model as a Standard Two Timescale
Model

As has been discussed in Part I of this paper, the solution
of (1) initiated at a given point x(0) ∈ D can be expressed
as the linear combination of Koopman eigenfunctions of the
system, that is, ∀t ≥ 0,

x(t) = S(t,x(0)) =

+∞∑
i=1

ηi(x(t))ζi =

+∞∑
i=1

eλitηi(x(0))ζi

(9)

where ηi(i = 1, 2, · · · ) : Rn → C are Koopman eigenfunc-
tions satisfying ηi(x(t)) = eλitηi(x(0)), λi ∈ C− is the ith
Koop-man eigenvalue, and ζi ∈ Cn is the ith Koopman mode.
Sup-pose that the real part of λi decreases as index i increases.
And, the first c (usually c ≥ n) Koopman eigenvalues, together
with their associated Koopman eigenfunctions and Koopman
modes, determine the general dynamic behavior of (1) and can
be obtained via PMK-DMD algorithm proposed in Part I. For
the purpose of model order reduction, the realification process
mentioned in Part I is performed on λi, ηi, ζi (i = 1, · · · , c),
so that (9) can be rewritten as:

x(t) = ΘpΛp(t)ηp(x(0)) + errs

= Θpηp(x(t)) + errs (10)

where Θp has been shown in Part I, η
p
(x) = [Re{η1(x)},

Im{η1(x)}, · · · ,Re{ηc1(x)}, Im{ηc1(x)}, η2c1+1(x), · · · ,
ηc(x)]>,

Λp(t) = blkdiag
([

eν1t cos(ς1t) −eν1t sin(ς1t)
eν1t sin(ς1t) eν1t cos(ς1t)

]
, · · · ,[

eνc1 t cos(ςc1t) −eνc1 t sin(ςc1t)
eνc1 t sin(ςc1t) eν1t cos(ςc1t)

]
, eλ2c1+1t, · · · , eλct

)
νk = Re{λ2k−1}(k = 1, · · · , c1), ςk = Im{λ2k−1}, λ2k =
λ∗2k−1, and errs contains fast decaying terms related to λm,
ηm, ζm (m > c). Note that for ease of discussion, we
assume here that λ1, · · · , λ2c1 are complex eigenvalues and
λ2c1+1, · · · , λc ∈ R<0.

Now suppose further that system (1) possesses two time-
scale dynamics. Specifically, the real part of Koopman eigen-
values λl(l = r + 1, · · · , c) are significantly smaller than
that of λq(q = 1, · · · , r), where r < min{n, c}, indicating
that ηr+1, · · · , ηc decay faster than η1, · · · , ηr. This motivates
the construction of reduced-order model (5), with matrix T
composed of the 1 st∼rth column of Θp. To analyze the
dynamic relations between (1) and (5), we first define

ωs = [Ir,Oc−r]ηp(x)ωf = [Oc, Ic−r]ηp(x)

Ts = Θp[Ir,Oc−r]
>Tf = Θp[Oc, Ic−r]

>

Then, let T = Ts in (4), and from (10) we have

x = Tsωs + Tfωf + errs

z = T+
s x = ωs + T+

s Tfωf + errs (11)

Furthermore, from (11), we rewrite x as:

x = Tsz + Ts(ωs − z) + Tfωf + errs
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= Tsz + Tfωf − TsT
+
s Tfωf + errs

= Tsz + (In − TsT
+
s )Tfωf + errs (12)

If |Re{λl}|(l = r + 1, · · · , c) is of the order of 1/ε,
where ε is a small positive constant playing the same role
as the small parameter in the standard two timescale model in
singular perturbation theory [21, p.424], then the dynamics of
(1) within D can also be described by

dz

dt
= T+

s f(Tsz + (In − TsT
+
s )Tfωf + errs)

dωf

dt
=

1

ε
Ξωf

(13)

where 1
εΞ = 1

tLn([Oc, Ic−r]Λp(t)[Oc, Ic−r]
>). It can be

proved that Ξ is a Hurwitz matrix and actually irrelevant of t.
With the term errs neglected since it decays extremely fast,
(13) has the form of standard two timescale model. Also, by
setting ωf to 0, we can find out that (5) is the slow subsystem
[21, p.424] of (13).

Taking the similarity between (13) and standard two time-
scale model into consideration, we will utilize several proper-
ties of the standard model to establish the links between the
dynamics of (1), (13) and (5).

D. Stability Analysis of a Standard Two Timescale Model

In the following, we will present a thorough analysis of a
standard two-timescale model, focusing on the stability regions
of the slow subsystem, fast subsystem and the entire model.
Although standard two timescale model has been previously
analyzed using singular perturbation theory in [21], [24], [25],
those papers either concentrate only on specific trajectories, or
add impractical assumptions such as the existence of analytic
energy function.

Consider the standard two timescale model shown below,

Σε :


dx

dt
= f(x,y)

ε
dy

dt
= g(x,y)

(14)

where x ∈ Rn, y ∈ Rm, f ∈ C2(Rn+m;Rn), g ∈ C2(Rn+m;
Rm), and ε is a sufficiently small positive parameter. Via the
change of timescale τ = t/ε, (14) can be transformed into

Πε :


dx

dτ
= εf(x,y)

dy

dτ
= g(x,y)

(15)

When ε = 0, (15) becomes the fast subsystem (which is
also called the boundary-layer system [24] of (14))

Π0 :


dx

dτ
= 0

dy

dτ
= g(x,y)

(16)

Also, setting ε = 0 in (14), we can obtain the slow
subsystem

Σ0 :


dx

dt
= f(x,y)

0 = g(x,y)
(17)

Assume that (14) has a hyperbolic asymptotically stable
equi-librium point (xs,ys) located in Γ, where

Γ :

{
(x,y) ∈ Rn+m

∣∣∣∣g(x,y) = 0,Re

{
eig

(
∂g

∂y

)}
< 0

}
The location and hyperbolicity of (xs,ys) ensure that it

is also locally exponentially stable, with respect to (14) and
(17). Denote Γs the connected component of Γ containing
(xs,ys), φΣε(t, (x,y)) the solution of (14) initiated at (x,y),
φΣ0(t, (x,y)) the solution of (17) starting at (x,y), φΠ0(τ,
(x,y)) the solution of (16) initiated at (x,y), φΠε(τ, (x,y))
the solution of (15) starting at (x,y),

Aε(xs,ys) :
{

(x,y) ∈ Rn+m| lim
t→+∞

φΣε(t, (x,y))

= (xs,ys)
}

A0(xs,ys) :
{

(x,y) ∈ Γs|∀t ≥ 0,φΣ0
(t, (x,y)) ∈ Γs

∧ lim
t→+∞

φΣ0(t, (x,y)) = (xs,ys)
}

AF(x0,y
∗) :

{
(x,y) ∈ Rn+m| lim

τ→+∞
φΠ0(τ, (x0,y))

= (x0,y
∗)
}

D0(xs,ys) ,
⋃

0<ε∗<1

⋂
0<ε≤ε∗

Aε(xs,ys)

As for (14), we will provide Theorem 2 and Theorem 3
to reveal the relations between its stability region and that of
(15), (17). First, we briefly discuss the geometric properties
of Γs and A0(xs,ys).
Lemma 1. Γs is a path-connected regular submanifold of
dimension n in Rn+m. Also, Γs is equipped with an atlas
consisting of only one coordinate chart (Γs, π̃x), with π̃x :
Γs → Rn. Moreover, there is a map hs ∈ C2(π̃x(Γs);Rm)
satisfying g(x, hs(x)) = 0 for all x ∈ π̃x(Γs). See [30] [25,
CH.7] for more details.
Lemma 2. A0(xs,ys) is a positively invariant set open in Γs.
That is, ∀(x,y) ∈ A0(xs,ys), ∃r > 0, s.t. Bn+m((x,y), r)∩
C ⊆ A0(xs,ys), where C = {(x,y) ∈ Rn+m|g(x, y) = 0}.
See [30] [25, CH.7] for more details.

Next we discuss an important property of the solutions of
boundary-layer system Π0.
Lemma 3. For any given compact set Ẽ ⊆ Γs, ∃k, γ, ρ0 > 0,
s.t. ∀(x0,y

∗) ∈ Ẽ and y(0) ∈ Bm(y∗, ρ0),

‖y(τ)− y∗‖ ≤ k‖y(0)− y∗‖e−γτ (∀τ ≥ 0)

where (x0,y(τ)) = φΠ0
(τ, (x0,y(0))). In other words, Π0 is

locally exponentially stable, uniformly in x ∈ π̃x(Ẽ). See [21,
P433] for more details.

In the following, we will analyze the solutions of Σε
initiated in the vicinity of (xs,ys) in detail.
Lemma 4. ∃r0 > 0 and ε0 > 0, such that Bn+m((xs,ys),
r0) ⊆ ∩0<ε≤ε0Aε(xs,ys) ⊆ D0(xs,ys).

Proof : See Appendix A.
Next we focus on the dynamics of Σ0 and Σε near Γs.

Lemma 5. A0(xs,ys) ⊆ int (D0(xs,ys)) ∩ Γs.
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Proof : See Appendix B.
Last but not least, we analyze the dynamics of Π0 and Πε

in fast timescale.
Lemma 6. ∀(x0,y

∗) ∈ Γs, ∀(x0,y0) ∈ AF(x0,y
∗), and

∀rF0
> 0, ∃εF0

> 0 and T̃F0
> 0 (irrelevant of ε), s.t. ∀ε ∈

[0, εF0
], φΠε(T̃F0

, (x0,y0)) ∈ Bn+m((x0,y
∗), rF0

). See [25,
CH.16] for more details.

This is a simple consequence of continuous dependence of
solutions of Πε on parameter ε, combined with the fact that
limτ→+∞ φΠ0

(τ, (x0,y0)) = (x0,y
∗).

Theorem 2. If a given point qε lies in the stability region
of fast subsystem (16), and its projection on Γs is in the
stability region of slow subsystem (17), then the solution of
(14) initiated at qε will converge to (xs,ys), as long as ε is
small enough. That is:⋃

(x0,y0)∈A0(xs,ys)

AF(x0,y0) ⊆ D0(xs,ys)

Proof : ∀p∗ = (xp∗,yp∗) satisfying (xp∗,hs( xp∗)) ∈
A0(xs,ys) and (xp∗,yp∗) ∈ AF(xp∗,hs(xp∗)), Lemma 5
ensures that there is a compact small neighborhood Np∗ of p′∗,
where p′∗ = (xp∗,hs(xp∗)), s.t. Np∗ ⊆ D0(xs,ys). Denote
ε∗ = minp∈Np∗,p∈

⋂
0<ε≤εp Aε(xs,ys) εp (Note that a smaller

Np∗ can ensure a positive and larger ε∗). According to Lemma
6, ∃ε∗∗ > 0 and T̃p∗ > 0, s.t. ∀ε ∈ (0, ε∗∗), φΣε(εT̃p∗,
(xp∗,yp∗)) ∈ Np∗. Choose ε? = min{ε∗, ε∗∗, 1}. ∀ε ∈ (0, ε?),

lim
t→+∞

φΣε(t, φΣε(εT̃p∗, (xp∗,yp∗)))

= lim
t→+∞

φΣε(, (xp∗,yp∗)) = (xs,ys)

As a result, p∗ ∈ ∩0<ε≤ε?Aε(xs,ys) ⊆ D0(xs,ys). Notice
that p∗ is chosen arbitrarily in ∪(x0,y0)∈A0(xs,ys)AF(x0,y0),
so that ∪(x0,y0)∈A0(xs,ys)AF(x0,y0) ⊆ D0(xs,ys).
Theorem 3. ∀q = (xq,yq) ∈ ∪(x0,y0)∈A0(xs,ys)AF(x0,y0)
and ∀δ > 0, ∃ε4 > 0, such that ∀ε ∈ (0, ε4], there exists
a t4(ε) > 0 satisfying limε→0+ t4(ε) = 0 to make the
following statement holds:

‖φΣε(t, (xq,yq))− φΣ0(t, (xq,hs(xq)))‖ ≤ δ(t ≥ t4).

This theorem indicates that the solution of (17) can be a
good approximation of the solution of (14).

Proof : A graphical interpretation of Theorem 3 is shown
in Fig. 2. First, notice that µ0 and µ1 in the proof of Lemma
4 can be chosen to make Vl0 ⊆ W ⊆ Bn+m((xs,ys), δ/2).
In addition, Nq given in the proof of Theorem 2 (with p∗
replaced by q) can be chosen to make

Nq ⊆ {(x,y) ∈ Rn+m|(x,hs(x)) ∈ Bn+m(q0, µq0) ∩ Γs,

y ∈ Bm(hs(x), ρq0)}

where q0 = (xq,hs(xq)), and µq0 and ρq0 are defined in
the proof of Lemma 5 (with p0 replaced by q). Moreover, as
the vector field of (15) and (17) are smooth, both φΠε(T̃q, q)
and φΣ0

(εT̃q, q0) are smooth function of ε, where T̃q is
defined in the proof of Theorem 2 (with p∗ replaced by
q). Also, limε→0+

φΠε(T̃q, q) ∈ Bn+m(q0, ρq0) ∩ AF(q0),

(xq, yq)

(xq, hs(xq))

(xs, ys)

Γs
F (xq, hs(xq))

0 (xs, ys)
0
 (t, (xq, hs(xq)))

 (t, (xq, yq))

0
 (τ, (xq, yq))

Fig. 2. A graphical interpretation of Theorem 3.

limε→0+
φΣ0

(εT̃q, q0) = q0 ∈ Bn+m(q0, ρq0) ∩ AF(q0).
Based on Tikhonov’s Theorem on Finite Interval [21, p.434],
as well as the continuous dependence of solutions of (17) on
initial conditions, ∃ε4 ∈ (0, 1), s.t. ∀ε ∈ (0, ε4], ∃tδ0(ε) > 0,
s.t. ∀t ∈ [tδ0(ε), Tq0 ],

‖φΣε(t,φΣε(εT̃q, q))− φΣ0(t, q0)‖ ≤ δ/2
‖φΣ0

(t,φΣ0
(εT̃q, q0))− φΣ0

(t, q0)‖ ≤ δ/2
φΣε(Tq0 + εT̃q, q) ∈ Vl0 ,φΣ0

(Tq0 + εT̃q, q0) ∈ Vl0
where Tq0 is defined in the proof of Lemma 5 (with p0

replaced by q). Since Vl0 ⊆ Bn+m((xs,ys), δ/2) is positively
invariant,

‖φΣε(t+ εT̃q, q)− φΣ0
(t+ εT̃q, q0)‖ ≤ δ

for all t ∈ [tδ0(ε),+∞]. Note that limε→0+
εT̃q + tδ0(ε) = 0

can be inferred from Tikhonov’s Theorem. Choose t4(ε) =
εT̃q + tδ0(ε), the proof of Theorem 3 is completed.

E. Properties of the FOSR and ROSR

Now we return to system (1), (5) and (13) to derive the
properties of the FOSR and ROSR.
Theorem 4. ∀x(0) ∈ D, if T+x(0) ∈ D̂, then the trajectory
of (1) initiated at x(0) will approach S , {xs|xs = Tz,
z ∈ Rr} in a short period of time, and then can be well-
approximated by the trajectory T ◦ Ŝ(t,T+x(0)).

Proof : A graphical interpretation of Theorem 4 is shown in
Fig. 3. Since x(0) ∈ D, system (13) can be used to analyze
the solution of system (1) starting at x(0). In addition, as
system (5) is the slow subsystem of system (13) and T+x(0)
is located in its domain of attraction, based on Theorem 3,
Ŝ(t,T+x(0)) is a good approximation of z(t) = T+x(t).
Moreover, as x(0) ∈ D, x(t) = Tz(t) + (In−TT+)ωf(t) +
errs with term ωf(t) and errs decaying rapidly. Therefore, x(t)
approaches Tz(t) in a short period of time. Finally, because
Tz(t) ∈ S, x(t) approaches S rapidly, and then x(t) will
be approximated by T ◦ Ŝ(t,T+x(0)) since Tz(t) is well-
approximated by T ◦ Ŝ(t,T+x(0)).

Theorem 4 is critical, because it reveals the correspondence
between the trajectory convergence behavior in the FOSR and
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SEP

x(0)

S(t, x(0))

S(t, T+x(0))

xs(0) = TT+x(0)

z(0) = T+x(0)

x = Tz

T◦S(t, T+x(0))ˆ

ˆ

Fig. 3. A graphical interpretation of Theorem 4.

ROSR, respectively. Although D and D̂ are not topologically
conjugate, Theorem 4 implies that the two are closely related
and it is possible to estimate D by D̂. Next, we will present
methods to estimate the ROSR and FOSR sequentially.

III. MODIFIED EAD ALGORITHM TO ESTIMATE
THE ROSR

In our previous work [13], an Expanding Annular Domain
(EAD) algorithm combined with Sum of Squares (SOS) pro-
gramming was presented to estimate the region of attraction
(ROA) of a power system (referred to as the “domain of
attraction” in [13]). EAD algorithm has been successfully
applied on small-scale power systems. Since the reduced-order
model is also low-dimensional, here we will modify EAD
algorithm to estimate the ROSR.

A. Taylor Truncation and Polynomial System

SOS programming only discusses polynomial systems, but
power systems are not modeled in polynomial form. In [13],
we have proposed a coordinate transformation to turn the
original non-polynomial system into a polynomial system
expressed by a set of differential algebraic equations. However,
the approach is not suitable for systems whose state equations
contain terms sin(kδ) or cos(kδ), where k is not an integer,
such as sin(0.71δ). Unfortunately, reduced-order model (5) of
a typical power system has such kind of terms due to Galerkin
projection. Nonetheless, we can use Taylor truncation to derive
a polynomial form of the reduced-order model.

System (5) can be rewritten as:

żi = pi(z) +

s∑
j=1

qij(z)ψij(z) (18)

where i = 1, 2, · · · , r, pi(z), qij(z) are polynomial functions,
ψij(z) : Rr → R represent analytic non-polynomial functions.
First, we introduce some multi-index notations: |γ| = γ1 +
· · ·+γr, γ! = γ1! · · · γr!, zγ = zγ11 · · · zγrr , where z ∈ Rr and
γ = (γ1, · · · , γr)> ∈ Nr is an n-dimensional multi-index.
The k-th order mixed derivatives of ψ with respect to z can
be represented as Dγψ = ∂ψ|γ|

∂z
γ1
1 ···∂z

γr
r

, for some |γ| = k. Then,

ψij can be approximated by the truncated multi-variate Taylor
expansion [31] evaluated at the origin:

ψij(z) ≈
∑
|γ|≤k

Dγψij |z=0
zγ

γ!
(19)

which is called the k-th order Taylor truncation of ψij(z).
Finally, from (18) and (19), we obtain a polynomial form for
the reduced-order model:

żi = pi(z) +

s∑
j=1

qij(z)

[ ∑
|γ|≤k

Dγψij |z=0
zγ

γ!

]
, ĝi(z), i = 1, 2, · · · , r. (20)

B. Boundary Constraints

Since the physical meaning of the states of the reduced-
order model are no longer explicit, the estimated FOSR
derived from the obtained ROSR may violate some physical
constraints:

|xi| ≤ εi, i = 1, 2, · · · , n (21)

where εi ∈ R is a constant. When searching for the ROSR, we
need to add constraints (21) to ensure that the corresponding
FOSR is within the normal range of the states of (1). From (4),
xi = EiTz, where Ei ∈ R1×n is a vector whose i-th entry
is 1 and other entries are 0. According to EAD algorithm,
the obtained ROSR will be denoted by D̂ = {z|V̂ (z) ≤ 1},
where V̂ (z) is a positive-definite SOS polynomial in z. The
ROSR is required to be contained within a region that satisfies
constraints (21), i.e.

D̂ = {z|V̂ (z) ≤ 1} ⊆ {z| ∩i |EiTz| ≤ εi}. (22)

Since V̂ (z) only has one minimum on the boundary of the
region defined by (21), (22) implies a conditional extremum
problem: minimize V̂ (z) such that |EiTz| = εi holds for all
i, and the result, denoted by vm, is required to satisfy vm ≥ 1.
The polynomial function V̂ (z) can be expressed as V̂ (z) =
1
2z
>Pz by the Square matricial representation (SMR) [11],

where P ∈ Rr×r is a symmetric matrix. According to the
Lagrange multiplier methods [32], we have

H(z, λ) =
1

2
z>Pz + λ(EiTz − εi) (23a)

∂H

∂z
(zm, λm) = Pzm + λm(EiT )> = 0 (23b)

∂H

∂λ
(zm) = EiTzm − εi = 0 (23c)

By solving equations (23b)–(23c), we obtain

λm =
−εi

(EiT )P−1(EiT )>
(24a)

zm = −λmP
−1(EiT )> (24b)

⇒vm =
1

2
z>mPzm =

ε2i
2(EiT )P−1(EiT )>

(24c)

We consider the case of EiTz = εi in (23). For the case of
EiTz = −εi, the result vm is the same as (24c). Eventually,
the boundary constraints can be expressed as:

vm =
ε2i

2(EiT )P−1(EiT )>
≥ 1, ∀i ∈ {1, 2, · · · , n} (25)
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C. Modified EAD Algorithm

Combining the above results (20) and (25), we recall and
improve EAD algorithm to obtain an estimated ROSR for the
reduced-order model. With linear SOS programming, EAD
algorithm starts from an initial estimated SR, then enlarges
it by iteratively determining a series of so-called annular
domains of attraction, each of which is characterized by the
level sets of two successively obtained Lyapunov functions.
See [13] for more details of EAD algorithm.

Since (20) is a system of polynomial ordinary differential
equations rather than that of polynomial differential algebraic
equations, the algebraic equations G(z) = 0 involved in [13]
can be ignored. Then four SOS problems are introduced as
follows.

(SOSP0) search
V̂0∈Pr[z],V̂0(0)=0,

s1∈Sr[z]

V̂0

s.t.

V̂0 − q1 ∈ Sr[z],

− s1(γ − p)− ˙̂
V 0 − q2 ∈ Sr[z] (26)

(SOSP0’) max
s1,s2∈Sr[z]

c

s.t.

− s1(c− V̂0)− s2
˙̂
V 0 − q1 ∈ Sr[z] (27)

(SOSP2) search
s2,s3,s4∈Sr[z]

s2, s4

s.t.

− s2(1− V̂ (k))− s3(V̂ (k) − β)

− s4
˙̂
V

(k)

− ε2 ∈ Sr[z] (28)

(SOSP3) search
V̂ (k+1)∈Pr[z],V̂ (k+1)(0)=0,

s1,s3,s5∈Sr[z]

V̂ (k+1)

s.t.

− s1(1 + ε1 − V̂ (k)) + (1− V̂ (k+1)) ∈ Sr[z]
V̂ (k+1) − q ∈ Sr[z],
− s̄2(1− V̂ (k+1))− s3(V̂ (k) − β)

− s̄4
˙̂
V

(k+1)

− ε2 ∈ Sr[z],
− s5(β − V̂ (k)) + (β − V̂ (k+1)) ∈ Sr[z]. (29)

where q, q1, q2 are given SOS polynomials with small coeffi-
cients, β is a given constant satisfying 0 < β ≤ 1, V̂ (k) is a
given polynomial Lyapunov function, ε1,2 > 0 are sufficiently
small parameters, k is the iteration index of the loop.

Based on the above SOS problems, a modified EAD algo-
rithm for the reduced-order model is shown in Algorithm 1.
And we obtain an estimated ROSR:

D̂ = {z|V̂d(z) ≤ 1} (30)

where V̂d is the desired Lyapunov functions.
The differences between the original EAD algorithm and

the modified one are concluded as follows.
(a) The modified EAD algorithm transforms the original

non-polynomial system into a polynomial system described by

Algorithm 1: Modified EAD Algorithm
Input: System (20), the degree of all assumed Lyapunov

function deg(V̂ ), a positive definite polynomial
p0(z), a positive number γ0, small positive
parameters ε1,2, an empirical parameter β ∈ (0, 1],
the transformation matrix T , physical constrains (21).

Output: The estimated ROSR D̂ = {z|V̂d(z) ≤ 1}.
Step 0: Initialization.
(0a) Set p = p0(z), γ = γ0 and solve problem SOSP0. If the

problem is feasible, then save the result V̂0 and go to (0b).
Otherwise, reset deg(V̂ ), p0(z), γ0 and try (0a) again.

(0b) Update V̂0 and perform a bisection search on c to solve
problem SOSP0’. Save the resulting c as c0. Set k = 1,
V̂ (1) = V̂0/c0 and regard the set D(1) := {z|V̂ (1)(z) ≤ 1}
as an initial estimated ROSR. Then go to Step 1.

Step 1: Update V̂ (k) and solve problem SOSP2. If the
problem is feasible, save the resulting s2, s4 as s̄2, s̄4,
respectively, and go to Step 2.

Step 2: Update V̂ (k), s̄2 and s̄4, then solve problem SOSP3.
If the problem is feasible, save the resulting V̂ (k+1) and go
to Step 3. Otherwise, go to Step 4.

Step 3: Set k = k + 1, and we obtain a larger estimated
ROSR D(k) := {z|V̂ (k)(z) ≤ 1}(k > 1). Perform SMR
for V̂ (k)(z) to produce the symmetric matrix P . If P
satisfies the boundary constrains (25), go to Step 1.
Otherwise, go to Step 4.

Step 4: If k = 1, reset p0(z), γ0, ε1,2 and β, then go to
Step 0. If k > 1, save V̂ (k) as V̂d, and go to Step 5.

Step 5: Return the estimated ROSR D̂ = {z|V̂d(z) ≤ 1}.

ordinary differential equations using Taylor truncation, while
the original EAD algorithm produces a polynomial differential
algebraic system via a nonlinear coordinate transformation.
The former is capable of considering trigonometric functions
with non-integer coefficients like sin(0.71δ), while the latter
is not.

(b) The boundary constraints (25) are taken into account
in Step 3 of the modified EAD algorithm, to ensure that the
obtained ROSR is acceptable. The original EAD algorithm
does not require any additional constraints for the states.

IV. CONSTRAINED EQUIDISTANT PROJECTION TO
ESTIMATE THE FOSR

After approximating the ROSR, we recast it to the full-order
state space to estimate the FOSR. According to Theorem 1,
all points in P can be projected into Q. And if Q = D̂ is the
estimated ROSR, there exists an estimated FOSR D satisfying
D ⊂ P . Thus, we will introduce a so-called constrained
equidistant projection (CEP) to search for a D contained in P .
Definition 2. Given three sets Q, S and P based on Defini-
tion 1, we define G , {xg|xg = xp − xs , Gxp,xp ∈ P}
and xe , ‖xp‖

‖xs‖xs for ‖xs‖ 6= 0, i.e. xe is the equidistant
projection of xp on xs.
Theorem 5. Given an estimated ROSR D̂ = {z|V̂d(z) ≤ 1}
and a transformation x = Tz, let Q = D̂ and from Definition
1, we have the sets S and P . Based on Definition 2, for system
(1) and a given point xp, if

V̂d(T
+xe) ≤ 1 (31a)

〈Gf(xp),−Gxp〉 > 0 (31b)
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the trajectory starting from xp and governed by system (1)
will approach S and converge to the origin.

Proof : Obviously, from the definition of P and G, xs is
the orthogonal projection of xp on manifold S, and xg⊥xs.
Then xp = xs + xg implies a decomposition of slow and
fast modes, since trajectories on S are dominated by slow
modes according to Theorem 4. A graphical interpretation of
Theorem 5 is shown in Fig. 4.

xg
xp

xs

xp
xe

−xg

Gf Gf

xe S

D

0

0

(t, xp)

(a)

(b) (c)0

φ

S

Fig. 4. A graphical interpretation of Theorem 5. (a) Equidistant projection.
(b) Direction constraint. (c) A part of the estimated FOSR.

From Theorem 1, T+xp = zq ∈ D̂ and xg = xp − xs =
(I − TT+)xp , Gxp. Then G = I − TT+. Since Gxp
denotes the projection of xp on G and Gxp = xg , condition
(31b) implies that the direction of the projection of f(xp) on
G is toward S, as shown in Fig. 4(b). Combining T+xp ∈ D̂
and Theorem 4, it follows that the trajectory starting from xp
will approach S.

The trajectory initiated at xp is denoted by φ(t,xp), and
its decomposition of slow and fast modes is φ(t,xp) =
φs(t,xs) + φg(t,xg). As φ(t,xp) approaches S, from the
proof of Theorem 4, we know that φg(t,xg) decays much
faster than φs(t,xs). Assume the trajectory arrives in the
vicinity of S when t = t∗. Then we have ‖φs(t∗,xs)‖ ≈ ‖xs‖
and ‖φg(t∗,xg)‖ ≈ 0. Since ‖xp‖ = ‖xe‖ ≥ ‖xs‖, we have
‖φ(t∗,xp)‖ = ‖φs(t∗,xs)+φg(t

∗,xg)‖ ≤ ‖xs‖ ≤ ‖xe‖. Be-
cause the angle between vector φ(t∗,xp) and xe is generally
small and V̂d(z) is an SOS polynomial, if V̂d(T+xe) ≤ 1,
we have V̂d(T

+φ(t∗,xp)) ≤ 1, which guarantees that the
trajectory will land within S. Then from Theorem 4, φ(t,xp)
with t > t∗ can be well-approximated by the projection of the
related trajectory evolved in D̂, and converge to the origin.

Condition (31) can describe a part of the estimated FOSR
D, as shown in Fig. 4(c). Obviously, D ⊂ P .

According to Theorem 1, we have T+xe = T+ ‖xp‖
‖xs‖xs =

T+ ‖xp‖
‖xs‖TT

+xp =
‖xp‖
‖xs‖T

+xp for ‖xs‖ 6= 0. If xp = xs +

xg = xg with ‖xs‖ = 0, we search for a maximum l > 0 by
performing time domain simulation of system (1), such that

lim
t→∞

φ(t,xp) = 0, ‖xp‖ ≤ l. (32)

Now, we expand P to the entire space, i.e. xp = x, then
xs = TT+x and T+xe = ‖x‖

‖xs‖T
+x are satisfied. According

to Theorem 5 and (32), we have


V̂d

(
‖x‖
‖xs‖

T+x

)
≤ 1

〈Gf(x),−Gx〉 > 0

, ‖xs‖ 6= 0

‖x‖ ≤ l, ‖xs‖ = 0

(33)

where G = I − TT+. Finally, an estimated FOSR D can be
expressed as:

D = {x|condition (33) holds}. (34)

The above procedure is called CEP. It utilizes an equidistant
projection of x and a direction constraint (31b) to restrict D̂,
leading to a satisfactory D. Based on Theorem 5, the result is
guaranteed to be moderately conservative and fairly reliable.

Finally, we call the whole process of utilizing the modified
EAD algorithm to estimate ROSR and then using the CEP
to estimate FOSR as reduced-order stability region mapping
(ROSRM) method.

V. EXAMPLES

In this section, the proposed ROSRM method is applied
to the IEEE 10-machine-39-bus power system case. The esti-
mated FOSR is compared with that obtained by the traditional
energy function method. Moreover, we use time domain simu-
lation and introduce the critical clearing time (CCT) of faults
[2] to verify the results.

A. Model of IEEE 10-machine-39-bus Power System

We recall the internal node model of a g-machine power
system (Generator 1 is regarded as the reference machine)
introduced in Part I. Here, we will compare the ROSRM
method with the energy function method [2]. To search for the
UEP and construct the energy function, we have to consider
the relative rotor angular velocity. Thus, we use the uniform
damping ratio to further simplify the model:

dδi1
dt

= ωi1

dωi1
dt

=
ωb

2Hi
(Pmi − Pei)−

ωb

2H1
(Pm1 − Pe1)− λωi1 (35)

where i = 2, 3, · · · , g. δi1 represents the relative rotor angle
[rad] and ωi1 is the relative rotor angular velocity [rad/s].
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Fig. 5. One-line diagram of the IEEE 10–39 power system.
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For i = 1, 2, · · · , g, Pei =
∑g
j=1EiEj{Gij cos(δi1 − δj1) +

Bij sin(δi1− δj1)} is the electrical power [p.u.]. Ei, Pmi rep-
resent the internal voltage and mechanical input respectively
[p.u.]. Bij , Gij are the susceptance and conductance between
generators i and j respectively [p.u.]. Hi is the time inertia
constant [s], λ is the uniform damping ratio and ωb = 120π
is the reference value of ωi. Electrical loads are modeled
as constant impedances. For simplicity, we shift the equilib-
rium point of the system (35) to the origin. Assuming that
(δ∗21, δ

∗
31, · · · , δ∗g1, 0, · · · , 0) is the stable equilibrium point, we

define a new state vector x ∈ Rn(n = 2g − 2) as:

x = [x1, · · · , xg−1, xg, · · · , xn]

= [∆δ21, · · · ,∆δg1, ω21, ω31, · · · , ωg1]

= [δ21 − δ∗21, · · · , δg1 − δ∗g1, ω21, ω31, · · · , ωg1] (36)

In this case, λ = 1.508, g = 10 and n = 18. More
parameters are in Appendix C. From Part I, we can derive
a reduced-order model based on Koopman operator. Since
the relative rotor angular velocity is employed here, the
obtained dominant Koopman eigenvalues do not contain real
eigenvalues. Thus, the 5-order model obtained in Part I can
be further simplified to a 4-order model, whose associated
transformation matrix T is shown in Appendix C. Finally, the
reduced-order model is described by (5), where r = 4.

B. Comparison Between the ROSRM Method and the Energy
Function Method

First, we apply the ROSRM method to estimate the ROSR
and FOSR for the IEEE 10–39 power system. The full-order
model is transformed into a polynomial system by 5-order Tay-
lor truncation. The physical constraints (21) are set to |xi| ≤
π/2 (i = 1, 2, · · · , 9) and |xi| ≤ π (i = 10, 11, · · · , 18).
Additionally, by setting deg(V̂ ) = 2, p0(z) =

∑6
i=1 z

2
i ,

γ0 = 1.5, ε1 = 10−4, ε2 = 10−6 and β = 0.5, we obtain
an estimate of the ROSR D̂ by the modified EAD algorithm
(Algorithm 1) and depict its boundary in Fig. 6. Then we use
CEP and the obtained D̂ to produce an estimated FOSR D
(34), where l = 1.25 is calculated by (32). The boundary of D
obtained by the ROSRM method is inscribed by the red surface
in Fig. 7. Note that D is a 18-dimensional manifold and to
visualize it, D is projected onto the ∆δ21-∆δ31-∆δ41 space.
The above procedure takes only 142 seconds for the IEEE 10–
39 power system. The obtained D̂ is shown in Appendix C,
and D can be easily computed from D̂ and (33).

The ROSRM method estimate the entire FOSR rather than
the local relevant boundary of the FOSR for lossy power
systems(considering transfer conductance). Among traditional
methods, the Closest UEP method combined with numerical
energy functions is the only one that can estimate the entire
FOSR for lossy power systems [3], [33]. Therefore, we will
compare the effectiveness of these two methods.

From [2], we utilize the first-integral principle and ray
approximation scheme to construct a numerical energy func-
tion for the IEEE 10–39 power system (35). Finding the
closest UEP is time-consuming and challenging due to the
high-dimensional nature of the full-order system. Since the
uniform damping ratio is employed in (35), we search for
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Fig. 6. The estimated ROSR projected in the z1-z2-z3 space with z4 = 0.1.
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Fig. 7. The estimated FOSR projected in the ∆δ21-∆δ31-∆δ41 space with
the other states set to 0. The red surface shows the boundary of estimated
FOSR obtained by the ROSRM method, while the blue surface shows that
obtained by the Closest UEP method based on numerical energy function.

the closest UEP in the subspace consisting of all ∆δi1.
Six points are selected in each dimension, resulting in a
total of 6 × 9 points used as initial points to search for
UEPs, which takes more than 10 hours. Here, the resulting
closest UEP is xcu = [0.3585, 0.3941, 0.5283, 0.5250, 0.5230,
0.5269, 0.5096, 1.9747, 0.3789, 0, · · · , 0]. Finally, based on
xcu, an estimated FOSR is computed and inscribed by the
blue surface in Fig. 7.

From Fig. 7, we notice that compared with the traditional
energy function method, the ROSRM method provides a less
conservative result, i.e. the estimated FOSR D obtained by
the latter is larger than that by the former. To verify the
reliability of D, we choose two points A (0.8292,−1.5708,
−0.3708, 0, · · · , 0) and B (1.079,−0.2812, 0.2792, 0, · · · , 0).
Points A and B are very close, located outside and inside D
respectively. From Fig. 8, the time response of the system
from initial point B converges to the equilibrium point x = 0,
while that from initial point A dose not. Moreover, there
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Fig. 8. Time responses of the IEEE 10–39 system from initial points A and
B indicated in Fig. 7.

exist a point xt = [0.3586, 0.3940, 0.5282, 0.5250, 0.5230,
0.5269, 0.5096, 1.9747, 0.3789, 0, · · · , 0] which is within the
estimated FOSR produced by the energy function method and
is outside that obtained by the ROSRM method. Actually, the
trajectory starting from xt is unstable, implying that the energy
function method misjudges stability for xt. We summarize
the differences between the two methods in Table I. These
results indicate that the ROSRM method outperforms the
energy function method in terms of computational speed and
reliability.

TABLE I
COMPARISON OF DIFFERENT METHODS

Methods Cost time Reliability of results

ROSRM method 142 s Moderately conservative
and acceptable

Energy function method more than 10 h Extremely conservative,
unreliable

For large-scale lossy power systems, the employed numer-
ical energy function exists inevitable numerical errors, and
searching for the closest UEP has a heavy computational
burden. The ROSRM method reduces the computational bur-
den and guarantees the reliability of results by introducing
the reduced-order stability region with rigorous theoretical
guarantees. This is the reason why the ROSRM method is
superior to the energy function method.

C. Verification by Time Domain Simulation

For a large-scale power system, its estimated FOSR is
high-dimensional and difficult to visualize. Here, we use time
domain simulation and introduce the critical clearing time
(CCT) of faults [2] to verify the results. CCT is an important
metric to assess the transient stability of a power system. It is
defined as the maximum allowable time from the occurrence
of a fault until the fault is removed. The more stable the power
system, the greater the CCT of each fault.

The real CCTs for all possible faults are calculated by
time domain simulation, which requires repeatedly tracking

the fault-on and post-fault trajectories for each fault and is
time-consuming in practice. Instead, we can quickly compute
the CCT by simply keeping track of the time at which the
fault-on trajectory reaches the boundary of the SR. The CCT
based on SR is acceptable if it is smaller than and close to the
real CCT. In this section, the CCTs calculated by the ROSRM
method and the energy function method are shown in Table II.
We notice that all the CCTs obtained by the former are larger
than that computed by the latter, and are more close to the real
CCTs. Therefore, compared with the energy function method,
the ROSRM method is less conservative and more accurate
for transient stability analysis.

TABLE II
CCT CALCULATED BY DIFFERENT METHODS

Fault Real CCT by ROSRM CCT by energy
bus CCT (s) method (s) function method (s)
8 0.3103 0.1203 0.0695
23 0.2102 0.1047 0.0492
10 0.2211 0.1094 0.0539
27 0.1820 0.0992 0.0523
14 0.2398 0.1070 0.0648
18 0.2508 0.1002 0.0680
28 0.1500 0.0844 0.0430

VI. CONCLUSION

To estimate the stability region of a large-scale power
system, Part II of this paper has proposed a ROSRM method,
in which a complete theory is presented to analyze the stability
of the full-order model and the reduced-order model. We focus
on researching the relationship between the FOSR and ROSR,
by introducing singular perturbation theory and discussing
the properties of the standard two timescale model. Based
on the proposed theory, a modified EAD algorithm and a
CEP approach are presented to estimate the ROSR and FOSR
respectively. On the IEEE 10–39 power system case, the
ROSRM method is demonstrated to outperform the traditional
energy function method in terms of computational speed and
reliability of results. Actually, the ROSRM method improves
computational speed, reduces conservativeness and guarantees
reliability of results, by introducing the concept of ROSR, em-
ploying SOS programming to approach the stability boundary
and using CEP to screen out unstable points, respectively.

In the future, we would like to refine our work in two
key directions. First, the ROSRM method will be applied to
the transient stability analysis of large-scale power systems
including wind farms, HVDC and energy storage, etc. Mean-
while, the effects of wind power fluctuations, LCC-HVDC
commutation failures and load variations on the SR will be
investigated. Second, since the ROSRM method is essentially a
centralized means of analysis, it might not work well in large-
scale power systems containing multiple areas. Thus, we will
combine our method with connectivity-based stability methods
[20]–[23] to derive a decentralized stability criterion for such
cases.

APPENDIX

A. Proof of Lemma 4
First, since (xs,ys) is a locally exponentially stable equilib-
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rium point of Σ0, according to Converse Lyapunov Theorem
[21, p.162-163], ∃µ0 > 0, V ∈ C1(Bn(xs, µ0);R), and α1,
α2, α3, α4 > 0, s.t. ∀x ∈ Bn(xs, µ0),

α1‖x− xs‖2 ≤ V (x) ≤ α2‖x− xs‖2

∂V

∂x
f(x,hs(x)) ≤ −α3‖x− xs‖2∥∥∥∥∂V∂x
∥∥∥∥ ≤ α4‖x− xs‖

(A1)

Also, µ0 can be chosen to make ¬ and  valid.
¬: Bn(xs, µ0) ⊆ π̃x(Γs)
: ∃β0 > 0, s.t.∀x ∈ Bn(xs, µ0)

Re

{
eig

(
∂g(x,hs(x))

∂y

)}
≤ −β0 < 0

In addition, since  and Lemma 3 ensure that Π0 is locally
exponentially stable, uniformly in x ∈ Bn(xs, µ0), it can be
inferred from Lemma 9.8 in [21] that ∃µ1 > 0, c1, c2, c3, c4,
c5 > 0, and function W ∈ C1(W;R), where

W = {(x, z) ∈ Rn+m|x ∈ Bn(xs, µ0), z ∈ Bm(0, µ1)}

s.t. ∀(x, z) ∈W,
c1‖z‖2 ≤W (x, z) ≤ c2‖z‖2

∂W

∂z
g(x, z + hs(x)) ≤ −c3‖z‖2∥∥∥∥∂W∂z
∥∥∥∥ ≤ c4‖z‖, ‖∂W∂x ‖ ≤ c5‖z‖2

(A2)

Furthermore, rewrite Σε as:
dx

dt
= f(x, z + hs(x))

ε
dz

dt
= g(x, z + hs(x))− ε∂hs

∂x
f(x, z + hs(x))

(A3)

Define ν(x, z) = (1−d)V (x)+dW (x, z), where d ∈ (0, 1)
is a given constant. The derivative of ν with respect to t along
the trajectories of Σε can be written as

dν

dt

∣∣∣∣
Σε

= (1− d)
∂V

∂x
f(x,hs(x))

+ (1− d)
∂V

∂x
(f(x, z + hs(x))− f(x,hs(x)))

+ d

(
∂W

∂x
− ∂W

∂z

∂hs

∂x

)
f(x, z + hs(x))

+
d

ε

∂W

∂z
g(x, z + hs(x))

As set W is compact, we can find positive constants L1, L2

and L3, such that ∀(x, z) ∈W,

∂V

∂x
(f(x, z + hs(x))− f(x,hs(x)))

≤ L1α4‖x− xs‖‖z‖(
∂W

∂x
− ∂W

∂z

∂hs

∂x

)
f(x, z + hs(x))

≤ L2α4‖x− xs‖‖z‖+ L3‖z‖2

Therefore, dν
dt |Σε ≤ −[‖x − xs‖, ‖z‖]Λ(d, ε)[‖x −

xs‖, ‖z‖]>, where

Λ(d, ε) =[
(1− d)α3 − 1

2 ((1− d)L1α4 + dL2α4)
− 1

2 ((1− d)L1α4 + dL2α4) d( c3ε − L3)

]

Λ(d, ε) is negative definite whend = L1

L1+L2
and ε ∈ (0, ε∗0),

where ε∗0 = min{1, α3c3
α3L3+L1L2α2

4
}. Choose ε0 = 0.99ε∗0, d =

L1

L1+L2
and l0 = min(x,z)∈∂W ν(x, z). Since dν

dt |Σε < 0 for all
(x, z) ∈W\{(xs,0)} and ε ∈ (0.ε0], set

Vl0 = {(x,y) ∈ Rn+m|ν(x,y − hs(x)) ≤ l0}

is positively invariant with respect to Σε. And, all trajecto-
ries of Σε initiated within Vl0 converge to (xs,ys). Thus,
Vl0 ⊆ ∩0<ε≤ε0Aε(xs,ys) ⊆ D0(xs,ys). Choose r0 =
min(x,y)∈∂Vl0 ‖[x − xs,y − ys]

>‖, we have Bn+m((xs,ys),
r0) ⊆ Vl0 ⊆ D0(xs,ys), and the proof of Lemma 4 is
complete.

B. Proof of Lemma 5

1) For any given p0 ∈ A0(xs,ys), ∃Tp0 > 0, s.t. φΣ0
(Tp0 ,

p0) ∈ Vl0/2 ∩ Γs, where

Vl0/2 = {(x,y) ∈ Rn+m|ν(x,y − hs(x)) ≤ l0/2}

2) Because of the continuous dependence of solutions of
Σ0 on initial conditions and Lemma 2, ∃µp0 > 0, s.t.
Bn+m(p0, µp0)∩Γs ⊆ A0(xs,ys), and ∀p1 ∈ Bn+m(p0, µp0)
∩ Γs, φΣ0(Tp0 , p1) ∈ Vl0/2 ∩ Γs. Also, as both Φp0,Tp0 and
π̃x(Φp0,Tp0 ) are compact, where

Φp0,Tp0 =
⋃

t∈[0,Tp0 ],p3∈Bn+m(p0,µp0 )
⋂

Γs

φΣ0(t, p3)

∃αp0 > 0, s.t. ∀p2 ∈ Φp0,Tp0 , Re{eig( ∂g∂y |p2)} ≤ −αp0 .
3) Based on Lemma 3, ∃kp0 , γp0 , ρp0 > 0, s.t. ∀(x0,y

∗) ∈
Φp0,Tp0 and y(0) ∈ Bm(y∗, ρp0),

‖y(τ)− y∗‖ ≤ k0‖y(0)− y∗‖e−γp0τ (∀τ ≥ 0)

where (x0,y(τ)) = φΠ0
(τ, (x0,y(0))).

As can be inferred from 1), 2), 3), and Tikhonov’s Theorem
on Finite Interval [21, p.434], ∀p4 ∈ Np0 , where

Np0 = {(x,y) ∈ Rn+m|(x,hs(x)) ∈ Bn+m(p0, µp0) ∩ Γs,

y ∈ Bm(hs(x), ρp0)}

∃ε∗p4 > 0, s.t. ∀ε ∈ (0.ε∗p4 ], φΣε(Tp0 , p4) ∈ Vl0 . Choose
εp4 = min{ε∗p4 , ε0, 1}. Based on Lemma 4, ∀ε ∈ (0, εp4 ],
limt→+∞ φΣε(t, p4) = (xs,ys). Thus, p4 ∈ ∩0<ε≤εp4Aε(xs,
ys) ⊆ D0(xs,ys). Since p4 is chosen arbitrarily in Np0 , Np0
⊆ D0(xs,ys). Finally, as p0 ∈ int (Np0), p0 ∈ int (D0(xs,
ys)). Since p0 is chosen arbitrarily in A0(xs,ys), A0(xs,ys)
⊆ int(D0(xs,ys))∩Γs, and the proof of Lemma 5 is complete.
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C. Details of IEEE 10–39 Power System Case

Transformation matrix:

T ∈ R18×4 and T =

[0.221, 0.003, 0.007,−0.022; 0.232, 0.005, 0.036,−0.026;

0.318, 0.009,−0.008,−0.043; 0.383, 0.015,−0.05,−0.071;

0.303, 0.007, 0.046, 0.003; 0.302, 0.006, 0.046,−0.028;

0.23, 0.003,−0.043,−0.033; 0.305, 0.005,−0.03,−0.065;

0.209, 0.003,−0.022, 0.002;−0.128,−0.237,−0.013, 0.04;

− 0.013,−0.269,−0.242,−0.333; 0.1,−0.382,−0.218, 0.112;

0.397,−0.489,−0.459, 0.351; 0.041,−0.345, 0.378,−0.457;

− 0.02,−0.332,−0.194,−0.347;−0.252,−0.26,−0.239, 0.613;

− 0.134,−0.367,−0.506, 0.069;−0.094,−0.232, 0.423, 0.165]

where ‘;’ stands for row separator.
Parameters of the generators:

i 1 2 3 4 5
Hi (s) 250 15.2 17.9 14.3 13
x′di (p.u.) 0.006 0.07 0.053 0.044 0.132
i 6 7 8 9 10
Hi (s) 17.4 13.2 12.2 17.3 21
x′di (p.u.) 0.05 0.049 0.057 0.057 0.031

The estimated ROSR: D̂ = {z|V̂d(z) ≤ 1}, where

V̂d(z) = 0.0340z2
2 + 0.1108z2

3 + 0.0817z2
4 + 0.7513z2

1

− 0.0073z1z2 − 0.0590z1z3 − 0.1603z1z4

+ 0.0277z2z3 − 0.0025z2z4 + 0.0114z3z4
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