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Abstract—This paper presents an estimation of transient
stability regions for large-scale power systems. In Part I, a
Koopman operator based model reduction (KOMR) method is
proposed to derive a low-order dynamical model with reasonable
accuracy for transient stability analysis of large-scale power
systems. Unlike traditional reduction methods based on linearized
models, the proposed method does not require linearization, but
captures dominant modes of the original nonlinear dynamics by
employing a Koopman operator defined in an infinite-dimensional
observable space. Combined with the Galerkin projection, the
obtained dominant Koopman eigenvalues and modes produce a
reduced-order nonlinear model. To approximate the Koopman
operator with sufficient accuracy, we introduce a Polynomial-
based Multi-trajectory Kernel Dynamic Mode Decomposition
(PMK-DMD) algorithm, which outperforms traditional DMD in
various scenarios. In the end, the proposed method is applied
to the IEEE 10-machine-39-bus power system and IEEE 16-
machine-68-bus power system, which demonstrates that our
method is significantly superior to the modal analysis method
in both qualitative and quantitative aspects.

Index Terms—Data driven method, dynamic mode decompo-
sition, Koopman operator, model reduction, power systems.

I. INTRODUCTION

TRANSIENT stability analysis investigates the dynamic
behavior of power systems after large disturbances, which

is of great significance in power system planning, operation,
and control [1], [2]. Stability region (SR), mathematically
known as domain of attraction, provides a quantitative de-
scription of transient stability [3]. It is defined as an invariant
set such that all trajectories from points in the set converge
to a corresponding asymptotically stable equilibrium point
[4]. However, calculating an entire SR is a challenging task.
Especially for a large-scale power system, no one has yet been
able to realize the derivation of an entire SR, because the
dynamical model of the power system is high-dimensional and
complex [2]. Model reduction is currently the most promising
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solution [5]. In this paper, we will present a work on estimation
of SRs for large-scale power systems based on reduced-order
models. Our work is presented in two parts. Part I introduces
how to capture the nonlinear dynamics of a power system
using the Koopman operator and derive a low-order dynamical
model with reasonable accuracy. Part II describes how to
use the reduced-order model combined with sum-of-squares
programming to approximate a reduced-order stability region
and map it to the full-order state space. We will focus on the
first part of our work below.

A wide variety of model reduction tools for large-scale
power system are developed by the following concepts. A
well-known concept is coherency, which describes the sim-
ilarity of generator responses following given disturbances to
derive a reduced nonlinear external system that retains the
relevant dynamics [5]. For identifying coherent groups of ma-
chines, several approaches have been proposed, including time
simulation [6], modal coherency [7], slow coherency [8] and
weak-link methods [9]. However, the quality of the obtained
equivalent reduced-order model may be unsatisfactory, relying
on the disturbances [7] and the system conditions [10] chosen
to determine coherency. Another important concept is modal
analysis, which computes and analyses the eigenvalues of the
Jocobi matrix defined on an equilibrium point of the linearized
dynamical system [5], [11], [12]. Modal analysis provides a
good insight into various oscillatory modes present in the
system and dose not depend on any disturbances. However,
dominant modals may be difficult to extract for constructing
a reduced-order model and may not reflect the oscillatory
behavior under large perturbations [5]. Additionally, there are
concepts used to derive reduced-order models approximating
the input-output behavior of external systems, such as balanced
realization [13], selective modal analysis [14], and singular
perturbations [15], among others. Since SRs are generally
defined on autonomous models rather than input-output mod-
els, these concepts are not applicable to derive a model for
studying SRs.

The modal analysis only discusses modes derived from
linearized models that do not reflect nonlinear dynamics away
from the equilibrium point under large perturbations [5]. Such
a drawback can be overcome by introducing the so-called
Koopman operator and studying its spectrum [16]–[18]. The
Koopman operator is an infinite-dimensional linear operator
that describes how measurements (observable functions or
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observables) of a finite-dimensional dynamical system evolve
through its nonlinear dynamics [17]. Indeed, it does not rely on
linearization and captures the full information of the nonlinear
dynamical system. Thus, accurately approximating the Koop-
man operator and employing spectral decomposition technique
allow us to capture the dominant modes of the power system
following large perturbations and realize model reduction.
Currently, it is common to estimate Koopman operators using
data-driven approaches such as Dynamic Mode Decomposition
(DMD) [18], Extended DMD (EDMD) [19], [20], kernel DMD
[21], etc. Among of them, DMD selects linear functions of the
state as the observable functions, forming a subspace that is
not “rich” enough for effective approximation [18]. EDMD
and kernel DMD construct a “sufficiently rich” subspace
spanned by a great deal of nonlinear observables and produce
a more accurate approximation. However, finding the right set
of observables is nontrivial and an unsolved problem, both
for EDMD and kernel DMD [22]. Moreover, EDMD may
face heavy computational burdens, because the number of the
needed observables grows rapidly as the dimension of the
state space increases [17]. More details and applications of
the Koopman operator can be found in [23]–[26].

The contribution of Part I in this paper is threefold.
a) We propose a Polynomialization based Multi-trajectory

Kernel Dynamic Mode Decomposition (PMK-DMD) algo-
rithm to obtain a reliable approximation of the Koopman
operator. PMK-DMD analytically constructs a significantly
large space of observables and is computationally tractable,
by applying polynomialization for the original system and
utilizing the so called kernel trick respectively. Thus, PMK-
DMD can address the challenges faced by EDMD and kernel
DMD. Furthermore, PMK-DMD employs multiple trajectories
to capture the dynamics within the global state space, mini-
mizing the reliance on individual trajectories.

b) The estimated Koopman operator combined with the
Galerkin projection method [27] is utilized to derive a low-
dimensional and fairly accurate model reflecting nonlinear
dynamics of the original high-dimensional system. In contrast,
traditional methods either obtain linear models (Modal analy-
sis) or have low accuracy (Coherency analysis). Moreover, we
introduce a quantitative metric for assessing the quality of the
reduced-order model.

c) The proposed Koopman operator based model reduction
(KOMR) method is applied to the IEEE 10-machine-39-bus
power system case and IEEE 16-machine-68-bus power sys-
tem case. In the former case, we compare the effectiveness of
the proposed method with that of the traditional modal analysis
in terms of order reduction. Moreover, we also compare the
performance of PMK-DMD and DMD in various scenarios,
and discuss the computational savings due to model reduction.

In Part I of this paper, for the first time, the Koopman
operator theory is successfully applied to the system-level,
not device-level, model reduction of a power system. The
obtained reduced-order model captures the dominant nonlinear
dynamics of the system following large disturbances, which is
conducive to transient stability analysis.

Notation: The set of n × m real and complex matrices
are represented by Rn×m and Cn×m, respectively. [µ1, µ2,

· · · , µc]diag denotes a diagonal matrix constructed by vector
[µ1, µ2, · · · , µc]. T+ is the Moore-Penrose pseudoinverse of
matrix T .

II. PRELIMINARIES

A. Koopman Operator

The Koopman operator, proposed by B.O. Koopman in
1931 [16], is an infinite-dimensional linear operator that de-
scribes how measurements (observable functions) of a finite-
dimensional dynamical system evolve through its nonlinear
dynamics. Consider a continuous-time dynamical system

dx

dt
= f(x) (1)

where x ∈ Rn, f : Rn → Rn and x = [x1, x2, · · · , xn]>.
The continuous-time Koopman operator Kc is an infinite-
dimensional linear operator that acts on all observable function
vectors h : Rn → Rl [17]. Define a finite time-g flow
Sg : x(t) → x(t + g) = x(t) +

∫ t+g
t

f(x(τ))dτ . Then we
have

Kch(x(t)) = (h ◦ Sg)(x(t)) = h(Sg(x(t))) (2)

where h(x) = [h1(x), h2(x), · · · , hl(x)]> and hi : Rn → R
(i = 1, 2, · · · , l) is a scalar-valued observable function. All
observables (observable functions) form a Hilbert space.

System (1) will induce a discrete-time dynamical system
given by the flow map F : Rn → Rn which maps the state
xk , x(k∆t) to a future time xk+1, where k = 1, 2 · · ·

xk+1 = F (xk) = xk +

∫ (k+1)∆t

k∆t

f(x(τ))dτ (3)

The discrete-time Koopman operator is given by Kd such
that

Kdh(xk) = (h ◦ F )(xk) = h(F (xk)) = h(xk+1) (4)

We consider the spectral decomposition [18] of Koopman
operator Kd:

Kdφi(xk) = µiφi(xk) (5)

where i = 1, 2, · · · , µi ∈ C are discrete-time Koopman
eigenvalues and φi : Rn → C are Koopman eigenfunctions
that define a set of intrinsic measurement coordinates [18].
Then one can represent the evolution of the observables using
an eigenfunction expansion solution of the Koopman operator

h(xk) =

∞∑
i=1

φi(xk)ζi (6)

where ζi ∈ Cl is the ith Koopman mode associated with the
ith Koopman eigenfunction φi. And the observables h(xk)
can be evolved using (4), (5) and (6) so that

Kdh(xk) = Kd

∞∑
i=1

φi(xk)ζi =

∞∑
i=1

Kdφi(xk)ζi

=

∞∑
i=1

µiφi(xk)ζi = h(xk+1) (7)
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Furthermore, we obtain

h(xk) =

∞∑
i=1

µk−1
i φi(x1)ζi, k = 1, 2 · · · (8)

As for Kc, copman eigenvalues λi ∈ C are defined as [17]{
Kcφi(xk) = eλi∆tφi(xk)

µi = eλi∆t
(9)

Specially, if h(xk) = xk with l = n, according to (6) and
(8), we have

xk =

∞∑
i=1

φi(xk)ζi =

∞∑
i=1

µk−1
i φi(x1)ζi (10)

The Koopman operator is infinite-dimensional and we can
approximate it by searching for a finite number of Koopman
eigenvalues, modes and eigenfunctions. Since data-driven ap-
proaches, based on sampled data, are generally popular for
the approximation, we will focus on discrete-time dynamical
system (3) and its related Koopman operator Kd.

It is worth noting that Kd captures all dynamic features
about nonlinear dynamical system (3) [17], and its eigen-
functions specify a nonlinear change of coordinates in which
system (3) becomes a linear infinite-dimensional system (7).
Then by the spectral decomposition, one can easily analyze
which modes dominate and excite the dynamic behavior of
the system.

B. Extended Dynamic Mode Decomposition
Under certain conditions, the infinite-dimensional Koopman

operator Kd can be approximated in finite dimensions using a
data-driven method, Extended Dynamic Mode Decomposition
(EDMD) [19], [20]. Consider a data set of m snapshot pairs:

{(xj ,yj)}mj=1,yj = F (xj) (11)

where xj , yj ∈ Rn. The data matrices are defined as X =
[x1,x2, · · · ,xm] and Y = [y1,y2, · · · ,ym], where X,Y ∈
Rn×m. And the matrices of observables are defined as:

Hx = [h(x1),h(x2), · · · ,h(xm)]>

Hy = [h(y1),h(y2), · · · ,h(ym)]> (12)

whereHx,Hy ∈ Rm×l. From (4), we have thatHy = HxKd.
Then EDMD gives a finite-dimensional approximation to the
Koopman operator:

K ,H+
xHy (13)

where K ∈ Rl×l. Note that EDMD requires that l� m holds
[28]. The properties of K, whose derivation can be found in
[20], are introduced as follows:

a) The ith eigenvalue of K, µi, is an estimate of the
eigenvalue of Kd.

b) The corresponding right eigenvector, vi, approximates
the Koopman eigenfunction φi(xk) by

φi , h
>vi (14)

c) The left eigenvector, wi, is involved in the approximation
of the Koopman mode, ζi.

Specially, when Hx = X> ∈ Rm×n and Hy = Y > ∈
Rm×n, EDMD degenerates into the traditional DMD, giving
the result K , (X>)+Y > ∈ Rn×n.

C. Model Reduction

For discrete-time dynamical system (3), assume that a
transformation matrix T can be found to make

xk ≈ Tzk (15)

holds, where T ∈ Rn×r, zk ∈ Rr and r < n. Then, by the
Galerkin projection method [27], one can derive a discrete-
time reduced-order model

zk+1 = T+F (Tzk) (16)

And the analogous continuous-time reduced-order model is
given by

dz

dt
= T+f(Tz) (17)

Note that Rr is a linear subspace of Rn since r < n.
Reduced-order model (16) evolves in Rr and approximates
full-order system (3) in some sense. Generally, searching for
a matrix T to minimize ‖xk−Tzk‖ is extremely challenging.
Fortunately, the Koopman theory provides an efficient way to
calculate T , which is presented in Section IV.

III. A DATA-DRIVEN APPROXIMATION OF THE
KOOPMAN OPERATOR

Approximating the Koopman operator as accurately as pos-
sible is a significant task. From (14), the set of observables
is required to be sufficiently large so that φi(xk) ∈ span
{h1, · · · , hj}, which implies that more observables will pro-
duce a more accurate approximation of the Koopman operator.
However, EDMD requires an l × l matrix K to be formed,
taking O(l2m) calculation time. As the dimension of state
space n increases, the number of observables required to
be considered, l, grows rapidly, resulting in a huge amount
of computation and the possibility of violating the condition
l� m. Moreover, EDMD starts from a set of pre-configured
dictionary functions to select observables, lacking analytical
construction. Consequently, EDMD fails to systematically
construct a large observable space to accurately estimate the
Koopman operator of a high-dimensional dynamical system.

In order to consider the case l � m and obtain a more
precise approximation, we propose a Polynomialization based
Multi-trajectory Kernel Dynamic Mode Decomposition (PMK-
DMD) algorithm, within the architecture of EDMD. Firstly,
PMK-DMD renders dynamical system (1) into a polynomial
form by Lie derivatives, producing a new state vector x̄.
Then, PMK-DMD uses x̄ and kernel DMD to systematically
construct an adequate set of observable function and estimate
the Koopman operators, which can significantly reduce the
amount of computation. Finally, a multi-trajectory approach
is introduced in PMK-DMD to reduce the dependence of the
results on sampled data.

A. Polynomialization of the Dynamical System

For system (1), assume that it can be rewritten as a linear
combination of elementary functions e(x), that is, the ith
equation becomes:

ẋi = η0 + η>x x+ η1e1(x) + · · ·+ ηgeg(x) (18)
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where i ∈ {1, 2, · · · , n}, η0,1,··· ,g are constant coefficients
and ηx is a constant vector. The elementary functions include
sinx, cosx, xα, ex, x/(b + x) and so on, as well as
compositions of these elementary functions, which cover a
wide range of models encountered in engineering.

The polynomialization procedure, as shown in Algorithm 1,
converts system (18) into a polynomial system [22], [29]:

˙̄x = f̄(x̄) (19)

where x̄ ∈ Rq(q = n + g + k) is a new state vector, f̄ :
Rq → Rq is a polynomial vector field with degree d, k is
the number of new elementary functions introduced by Step
0∼4 in Algorithm 1. The specific form is as follows:

x̄ = [x1, x2, · · · , xn, x̃1, x̃2, · · · , x̃g+k]> (20a)

f̄i = η0 + η>x x+ η1x̃1 + · · ·+ ηgx̃g, i = 1, 2, · · · , n (20b)

f̄n+j = Lfej(x), j = 1, 2, · · · , g + k (20c)

Algorithm 1: Polynomialization procedure
Input: System (18).
Output: Polynomial system ˙̄x = f̄(x̄).
Step 0: Set j = 1, j̄ = g.
Step 1: Introduce a new variable x̃j = ej(x).
Step 2: Replace ej(x) by x̃j in the original equations (18).
Step 3: Add the Lie derivative of x̃j , i.e.,

˙̃xj = Lfej(x) =
∂ej(x)

∂x
f , in the set of original equations.

Step 4: If j ≤ j̄, set j = j + 1 and go to Step 1. Otherwise,
go to Step 5.

Step 5: If the above procedure introduces k new elementary
functions, define them as
{eg+1(x), eg+2(x),· · · , eg+k(x)}. Set j = j + 1,
j̄ = j + k, and go to Step 1. Otherwise, go to Step 6.

Step 6: Let x̄ = [x1, x2, · · · , xn, x̃1, x̃2, · · · , x̃g+k]>. The
new vector field constructed by the above procedure is
denoted by f̄ . Return ˙̄x = f̄(x̄).

Furthermore, for compositions of elementary functions
e(x) = (e2 ◦ e1)(x) = e2(e1(x)), we have:

a) Introduce new variables x̃1 = e1(x) and x̃2 = e2(x̃1).
b) Replace e2(e1(x)) by x̃2 in the original equations.
c) Add ˙̃x1 = ∂e1(x)

∂x f and ˙̃x2 = ∂e2(x̃1)
∂x̃1

˙̃x1 in the set of
original equations.
Example 1. Consider a dynamical system:

ẋ1 = 1 + x1 + 1/(1 + e−x2)

ẋ2 = cosx2

Then by the polynomialization procedure, we obtain:

x̄ = [x1, x2, 1/(1 + e−x2), e−x2 , cosx2, sinx2]>

˙̄x1 = 1 + x̄1 + x̄3, ˙̄x2 = x̄5

˙̄x3 = x̄2
3x̄4x̄5, ˙̄x4 = −x̄4x̄5

˙̄x5 = −x̄6x̄5, ˙̄x6 = x̄2
5

Example 2. Consider a single-machine infinite-bus power
system [22], [30]:

δ̇ = ω, ω̇ = 21.36− ω − 21.36 cos δ − 78.58 sin δ

By Algorithm 1, a polynomial system is produced:

x̄ = [δ, ω, cos δ, sin δ]>

˙̄x1 = x̄2, ˙̄x2 = 21.36− x̄2 − 21.36x̄3 − 78.58x̄4

˙̄x3 = −x̄4x̄2, ˙̄x4 = x̄3x̄2

B. Kernel DMD

1) Construct Observable Functions
For system (19), the set of all monomials defined on x̄ with

degree up to d is represented by

M = {1, x̄1, · · · , x̄q, x̄2
1, x̄1x̄2, · · · , x̄2

2, x̄2x̄3, · · · }

And the number of elements of setM can be calculated by
NM = (q + d)!/(q!d!).

Then we regardM as a set of observable functions. Such an
approach is derived from paper [22]. In [22], the author takes
all the monomials that appear in f̄(x̄) as observable functions,
denoted by Mc. Obviously, Mc ⊂M. The approach implies
that

f̄i ∈ span{Mc} ⇒ f̄i ∈ span{M} (21)

which makes the following condition more likely to be true,
with sufficient large NM :

φi ∈ span{Mc} or φi ∈ span{M} (22)

Condition (22) guarantees the accuracy of Koopman eigen-
function estimation. Selecting Mc as observables in EDMD
provides a more satisfactory result compared with other tra-
ditional methods, which has been verified in [22]. Since
Mc ⊂ M, it is advisable to choose M as observable
functions.

Now we recall (2), (4) and let h(x̄) =M, l = NM . Rather
than explicitly representing h, the kernel trick is a common
technique for implicitly computing inner products of h [31],
[32]. We define a kernel function p : Rq × Rq → R that
computes inner products in feature space. A brief example
with polynomial kernel is shown as follows:

p(x,y) = (1 + y>x)2 (23)

with x,y ∈ R2, whose expanded form is:

p(x,y) = (1 + x1y1 + x2y2)2

= 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x2
1y

2
1 + x2

2y
2
2

= h(y)>h(x)

h(x) = [1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2]>

h(y) = [1,
√

2y1,
√

2y2,
√

2y1y2, y
2
1 , y

2
2 ]> (24)

where h(x) contains all monomials defined on x with degree
up to 2 and can be regarded as observables from (22).

Therefore, we use x̄ and a polynomial kernel function p to
implicitly represent observables h(x̄), i.e. M, with degree d.

p(x̄, ȳ) , (1 + ȳ>x̄)d = h(ȳ)>h(x̄) (25)
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2) Approximate the Koopman Operator
We recall (12) and modify it from the above analysis, that is:

Hx = [h(x̄1),h(x̄2), · · · ,h(x̄m)]>

Hy = [h(ȳ1),h(ȳ2), · · · ,h(ȳm)]> (26)

where Hx,Hy ∈ Rm×l and l = NM . Each pair {h(x̄i),
h(ȳi)}mi=1 represents the values of a very large array of
observable functions h, associated withM, at the points {x̄i,
ȳi}mi=1 defined on the snapshot pair {xi,yi}mi=1. Note that we
consider the case l� m.

Then take the singular value decomposition (SVD) of Hx:

Hx ≈ QΣZ> (27)

where Q ∈ Rm×c, Σ ∈ Rc×c and Z ∈ Rl×c. Here c is
the rank of proper orthogonal decomposition (POD) truncation
[33]. The left singular vectorsQ are POD modes. The columns
of Q are orthonormal, i.e. Q>Q = I . Similarly, Z>Z = I .

An eigenvector of K with µ 6= 0 could be written as:

v = Zv̂ (28)

for some v̂ ∈ Cc. The eigenvalue problem of K can be
written as:

µv = Kv (29)

From (13) and (27)–(29), we have

µZv̂ = H+
xHyZv̂

= ZΣ−1Q>HyZv̂

= Z[(Σ−1Q>)(HyH
>
x )(QΣ−1)]v̂

⇒ µv̂ = [(Σ−1Q>)(HyH
>
x )(QΣ−1)]v̂ (30)

Thus, (30) is the eigenvalue problem of matrix K̂, whose
form is:

K̂ , (Σ−1Q>)Ĥ(QΣ−1) (31)

where Ĥ = HyH
>
x ∈ Rm×m. The eigenvalue of K̂ is

equal to that of K, and the eigenvector of K̂, say v̂, can
be used to compute v from (28). Note that K̂ ∈ Rc×c, so
the computational cost of the eigenvalue decomposition is
determined by the rank of POD truncation c rather than the
dimension of observable space l that may be fairly large.

Since l is large, it may be difficult to take SVD for Hx ∈
Rm×l in (27). To address this problem, we define a matrix Ŝ:

Ŝ ,HxH
>
x = QΣ2Q>

⇒ŜQ = QΣ2 (32)

Obviously, given Ŝ ∈ Rm×m, we can obtain Q and Σ
via its eigenvalue decomposition, whose computational cost is
determined by the number of snapshots m rather than l.

The ij-th elements of Ĥ and Ŝ are

Ĥij = h(x̄j)
>h(ȳi), Ŝij = h(x̄j)

>h(x̄i) (33)

We find that the calculation of Ĥij and Ŝij involves only
the inner product of h. Then, from (25), Ĥij and Ŝij can be
calculated by

Ĥij = p(ȳi, x̄j), Ŝij = p(x̄i, x̄j) (34)

Note that (34) takes O(m2q) calculation time each for
matrix Ĥ and Ŝ to construct K̂, which distinctly outperforms
EDMD that consumes O(l2m) calculation time to construct
K, because of l� m and l� q.

After K̂ is constructed, we show how to approximate the
Koopman eigenvalues, modes, and eigenfunctions.

According to (29) and (30), the eigenvalues of K̂, i.e.
{µi}ci=1, can be regarded as the Koopman eigenvalues.

Let V̂ be the matrix whose columns are the right eigen-
vectors of K̂. Using (14) and (28), we define the matrix of
eigenfunction values as:

Φx ,HxZV̂ = (HxH
>
x )(QΣ−1)V̂

= Ŝ(QΣ−1)V̂ = (QΣ2Q>)(QΣ−1)V̂

= QΣV̂ (35)

Obviously, Φx ∈ Cm×c. The ij-th element of Φx represents
the j-th eigenfunction φj(x) evaluated at the i-th snapshot
point xi.

To compute the Koopman modes, we use (10) and derive a
regression problem:

X = ΘΦ>x (36)

where X = [x1,x2, · · · ,xm] ∈ Rn×m is the data matrix and
Θ = [ζ1, ζ2, · · · , ζc] ∈ Cn×c is the Koopman mode matrix.
Thus, we have

Θ> = Φ+
xX

> = V̂ −1Σ−1Q>X>

= Ŵ>Σ−1Q>X> (37)

where Ŵ is the matrix whose rows are the left eigenvectors
of K̂, due to Ŵ>V̂ = I .

Ultimately, according to (10) and (36), a prediction function
can be obtained:

P(k) = x̂k = ΘDk−1φ(x1), k = 1, 2, · · · (38)

where x̂k is an estimate of xk, D = [µ1, µ2, · · · , µc]diag ∈
Cc×c is the Koopman eigenvalue matrix, φ(x1) = [φ1(x1),
φ2(x1), · · · , φc(x1)]> ∈ Cc×1 is a vector whose element is
the eigenfunction evaluated at x1.

C. Multi-trajectory Approach

The above analysis estimates the Koopman operator based
on a single trajectory X = [x1,x2, · · · ,xm]. Because the
estimated Koopman operator will be utilized for model re-
duction, we require it to capture the inherent characteristics
of transient dynamics and not depend on specific trajectories.
Hence, a multi-trajectory approach is proposed to reduce the
effect of trajectories on the Koopman operator.

Consider s trajectories, each containing m snapshots. The
data matrix is defined as:

X = [x11,x12, · · · ,x1m,x21,x22, · · · ,x2m

· · · ,xs1,xs2, · · · ,xsm] (39)

Then Y ij = F (Xij) and X,Y ∈ Rn×m, m = s × m.
Similar to (26), the matrices of observables are defined as:

Hx = [h(x̄11), · · · ,h(x̄1m),h(x̄21), · · · ,h(x̄2m),
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· · · ,h(x̄s1), · · · ,h(x̄sm)]>

Hy = [h(ȳ11), · · · ,h(ȳ1m),h(ȳ21), · · · ,h(ȳ2m),

· · · ,h(ȳs1), · · · ,h(ȳsm)]> (40)

where Hx,Hy ∈ Rm×l and Hy = HxKd holds. Then the
approximation matrix of Kd is:

K ,H+
xHy (41)

where K ∈ Rl×l, similar to (13). Here K drives the evolution
of observable functions for each trajectory.

Similar to the procedure in Section III.B.2), we define two
matrices Ĥ ∈ Rm×m and Ŝ ∈ Rm×m:

Ĥ =

Ĥ
(11) · · · Ĥ(1s)

...
...

Ĥ(s1) · · · Ĥ(ss)

 , Ŝ =

Ŝ
(11) · · · Ŝ(1s)

...
...

Ŝ(s1) · · · Ŝ(ss)


(42)

where Ĥ(αβ), Ŝ(αβ) ∈ Rm×m with α, β ∈ {1, 2, · · · , s}, and

Ĥ
(αβ)
ij = h(x̄βj)

>h(ȳαi) = p(ȳαi, x̄βj)

Ŝ
(αβ)
ij = h(x̄βj)

>h(x̄αi) = p(x̄αi, x̄βj) (43)

with i, j ∈ {1, 2, · · · ,m}. Then we compute the eigendecom-
position of Ŝ from (32):

ŜQ = QΣ2 (44)

where Q ∈ Rm×c and Σ ∈ Rc×c. From (31), the matrix K̂
can be constructed:

K̂ , (Σ−1Q>)Ĥ(QΣ−1) (45)

and K̂ ∈ Rc×c. Similarly, take the eigendecomposition of K̂
to calculate its right eigenmatrix V̂ and eigenvalue matrix D.

Finally, according to (35)–(38), the Koopman eigenfunction
matrix Φx, Koopman mode matrix Θ and prediction function
P(α, k) can be easily obtained:

Φx = QΣV̂ (46a)

Θ> = Φ+
xX

> (46b)

P(α, k) = x̂αk = ΘDk−1φ(xα1) (46c)

α = 1, 2, · · · , s. k = 1, 2, · · ·

where Φx ∈ Cm×c, Θ = [ζ1, ζ2, · · · , ζc] ∈ Cn×c, and x̂αk is
an estimate of xαk, D = [µ1, µ2, · · · , µc]diag ∈ Cc×c is the
Koopman eigenvalue matrix, φ(xα1) = [φ1(xα1), φ2(xα1),
· · · , φc(xα1)]> ∈ Cc×1 is a vector whose element is the
eigenfunction evaluated at xα1.

D. Framework of PMK-DMD Algorithm

Based on the above analysis, we summarize the procedure
of PMK-DMD algorithm, as shown in Algorithm 2, and its
framework is given by Fig. 1. PMK-DMD has the following
several outstanding advantages:

a) The observable space is sufficiently large and can be
systematically constructed. Since Koopman operator Kd is
infinite-dimensional, its approximation K ∈ Rl×l needs to
be as large as possible to ensure a high degree of fit, i.e.

Algorithm 2: PMK-DMD algorithm
Input: Data matrices X and Y , rank of POD truncation c.
Output: Koopman eigenvalue matrix D, eigenfunction

matrix Φx, mode matrix Θ and prediction function
P(α, k).

Step 1: Implement the polynomialization of dynamical
system (18) by Algorithm 1, to obtain new sate vector x̄.
Since x̄ is a function vector of original states x, we have
x̄αk = x̄(xαk) and ȳαk = x̄(yαk), with
k ∈ {1, 2, · · · ,m}, α ∈ {1, 2, · · · , s}.

Step 2: Construct matrices Ĥ and Ŝ from (43), by a
polynomial kernel function p defined in (25).

Step 3: Compute the eigendecomposition of Ŝ using (44)
and c to obtain Q and Σ.

Step 4: Construct K̂ by (45). Take the eigendecomposition
of K̂ to produce its right eigenmatrix V̂ and eigenvalue
matrix D.

Step 5: Calculate the Koopman eigenfunction matrix Φx,
Koopman mode matrix Θ and prediction function P(α, k),
from (46a)–(46c).

Step 6: Return D, Φx, Θ and P(α, k).

yk=xk+1=F(xk)

h(xk+1)=    dh(xk)≈Kh(xk)
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Fig. 1. Framework of PMK-DMD method. The thickness of these trajectories
represents the number of components they contain, i.e. the dimension of the
related space.

the number of observables l → +∞. PMK-DMD provides a
method for systematically constructing numerous observables,
by polynomializing the original system. All monomials defined
on the new state vector x̄ span an observable space, with a
large dimension l = NM .

b) The calculation time is highly reduced. Although the
observable space is vast, PMK-DMD does not explicitly rep-
resent observable matrices Hx,Hy , but implicitly represents
them through their inner products Ĥ, Ŝ. Then, Ĥ, Ŝ can be
easily computed by a kernel function p, which takes only
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O(s2m2q) time. If we use EDMD to directly compute K
by (41), the calculation time will become O(l2sm). Note that
O(l2sm)� O(s2m2q) because l� m, l� s and l� q.

(c) The multi-trajectory approach enables the estimated
Koopman operator K to capture the inherent characteristics of
transient dynamics and not depend on specific trajectories. Ex-
isting data-driven methods for approximating Koopman opera-
tor, such as the traditional DMD [18], EDMD [28] and kernel
DMD [21], would be influenced by different trajectories. To
reduce such an influence, PMK-DMD considers s trajectories
at the same time, and seeks a K to drive the evolution of
observable functions related to these trajectories.The greater
diversity between s trajectories, the better K will reflect the
inherent dynamic characteristics of system (3).

IV. A REDUCED-ORDER MODEL DERIVED FROM THE
KOOPMAN OPERATOR

After obtaining the estimated Koopman operator, i.e. {Θ,
D,Φx}, we will show how to derive the transformation matrix
T for a reduced-order model.

A. Realification of the Estimated Koopman Operator

In (15), T is a real matrix. However, {Θ,D,Φx} are
complex matrices, which may not be convenient for computing
T of real numbers. Thus, a realification procedure is carried
out as follows.

For D, suppose there are c1 pair of complex-conjugate ele-
ments and c2 real elements on the diagonal. Consider the i-th
pair of complex-conjugate Koopman eigenvalues {µi, µ∗i }, and
the corresponding Koopman modes {ζi, ζ∗i } and eigenfunction
values {φi, φ∗i }, i = 1, 2, · · · , c1. Then, from (46c), we have

Pi =
[
ζi ζ
∗
i

] [µk̄i 0

0 µ∗k̄i

] [
φi
φ∗i

]
= ζiµ

k̄
i φi + ζ∗i µ

∗k̄
i φ
∗
i

= 2Re(ζiµ
k̄
i φi)

= Re(ζi)(µ
k̄
i φi + µ∗k̄i φ

∗
i )− Im(ζi)(µ

k̄
i φi − µ∗k̄i φ∗i )

= 2[Re(ζi) − Im(ζi)]

[
Re(µi) −Im(µi)
Im(µi) Re(µi)

]k̄ [
Re(φi)
Im(φi)

]
(47)

where k̄ = k − 1. Furthermore, assume that D = [µ1, µ
∗
1, µ2,

µ∗2, · · · , µc1 , µ∗c1 , · · · , µc1+1, µc1+2, · · · , µc1+c2 ]diag ∈ Cc×c,
with c = c1 + c2 and {µc1+1, µc1+2, · · · , µc1+c2} ⊂ Rc2 .
Then, we obtain from (46c) and (47):

P =

c1∑
i=1

(ζiµ
k̄
i φi + ζ∗i µ

∗k̄
i φ
∗
i ) +

c∑
j=c1+1

ζjµ
k̄
jφj

= ΘpD
k̄
pφp (48)

where Θp = [2Re(ζ1),−2Im(ζ1), · · · , 2Re(ζc1),−2Im(ζc1),
ζc1+1, · · ·, ζc], φp = [Re(φ1), Im(φ1), · · ·,Re(φc1), Im(φc1),

φc1+1, · · ·, φc]> and Dp =



[
Re(µ1) −Im(µ1)
Im(µ1) Re(µ1)

]
. . . [

Re(µc1) −Im(µc1)
Im(µc1) Re(µc1)

]
µc1+1

. . .
µc


Eventually, we find that in (48) {Θp,Dp,φp} are real

matrices, and the realification of the estimated Koopman
operator has been completed.

B. Selection of Leading Koopman Eigenvalues

In (46c), prediction function P(α, k) is a model to fit
the original data. In regression, the most frequently utilized
statistic to assess the degree of fit of a model is the coefficient
of determinationR2 who indicates how much variation in the
response is explained by the model [34].R2 is defined as:

R2 = R(x̂αk)

, mean

{
mean{1−

∑m
k=1[xαk(j)− x̂αk(j)]2∑m
k=1[xαk(j)− x̄α(j)]2

}nj=1

}s
α=1
(49)

where x̄α is a vector formed by the mean of each row of
the matrix [xα1,xα2, · · · ,xαm], x(j) denotes the j-th entry
of vector x. The higher the R2, the better the model fits the
data. Generally, R2 ∈ [0, 1] and R2 ≥ 0.4 is satisfactory [34].

Then, we define the contribution of i-th Koopman eigen-
value to R2, denoted by Ci, as:

x̂
(i)
αk = Θ(i)

p (D(i)
p )k−1φ(i)

p

Ci = R(x̂αk)−R(x̂
(i)
αk) (50)

where i = 1, 2, · · · , c, {Θ(i)
p D

(i)
p φ

(i)

p
} are matrices formed by

removing the relevant elements of µi( or {µi, µ∗i }) in matrices
{Θp,Dp,φp}.

In general, if µi has a great contribution to R2, i.e. Ci is
large, its continuous-time eigenvalue λi in (9) has negative real
part whose absolute value is small. Thus, we choose several
µi with large Ci as the leading Koopman eigenvalues, then
sort and renumber them:

Le = {µ(1), µ
∗
(1), µ(2), µ

∗
(2), · · · , µ(r), µ

∗
(r)}

Re(λ(r)) < · · · < Re(λ(2)) < Re(λ(1)) < 0

µ(1) ∼ λ(1), µ(2) ∼ λ(2), · · · , µ(r) ∼ λ(r) (51)

where r ≤ c. If µ∗(i) (i = 1, 2, · · · , c) does not exist, it can be
ignored.

C. The Reduced-order Model

After selecting the leading Koopman eigenvalues Le, we
derive the transformation matrix T for a reduced-order model.

Firstly, from (46c), (48) and (51), we have

P(α, k) = x̃αk = ΘrD
k−1
r φ

r
(xα1),

= TDk−1
r φ

r
(xα1)

= Tzα,k
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α = 1, 2, · · · ,s. k = 1, 2, · · · (52)

where x̃αk is an estimate of xαk, {ΘrDrφr} are matrices
formed by keeping the relevant elements of Le in matrices
{Θp,Dp,φp}. Thus, Θr ∈ Rn×r, Dr ∈ Rr×r and φ

r
∈

Rr×1. Obviously,

T = Θr (53)

with T ∈ Rn×r. In (52), zα,k ∈ Rr×1 is the state vector for
the reduced-order model.

Finally, according to Section II.C, the reduced-order model
can be represented by

zα,k+1 = T+F (Tzα,k), (54a)

or
dz

dt
= T+f(Tz). (54b)

α = 1, 2, · · · , s. k = 1, 2, · · ·

Assume that x = 0 is the equilibrium point of system (1),
i.e. f(0) = 0, and it is asymptotically stable. Then from
(54b), z = 0 is also the equilibrium point of the reduced-
order model. And we require the transformation matrix T not
to change the stability of z = 0. The Jacobian matrix at z = 0
for system (54b) is denoted by

Jr = T+JT (55)

where J is the Jacobian matrix at x = 0 for system (1). If
the real part of all eigenvalues of Jr are negative, z = 0
is also asymptotically stable. Otherwise, we add additional
eigenvalues to the set Le and reconstruct T such that Jr
satisfies the above condition.

Furthermore, since the modulus of each column of T may
be affected by the trajectories, we scale it such that Ti =
Ti/‖Ti‖, with i = 1, 2, · · · , r. Note that the above treatment
does not change the eigenvalues of Jr.

Finally, we call the whole process of using PMK-DMD
to estimate a Koopman operator from sampling data and
then deducing a reduced-order model through the dominant
Koopman modes as Koopman operator based model reduction
(KOMR) method.

V. VERIFICATION AND COMPARISON

This section applies the above KOMR method to the IEEE
10-machine-39-bus power system case and the IEEE 16-
machine-68-bus power system case. The resulting reduced-
order model is nonlinear and can be used for transient stability
analysis. In the IEEE 10-machine-39-bus power system case,
we compare the effectiveness of the proposed method with that
of the traditional modal analysis in terms of order reduction.
Furthermore, we also compare the performance of PMK-DMD
and DMD in various scenarios. At last, when we attempt to
estimate stability regions, the computational savings due to
model reduction are quantitatively shown. As for the IEEE
16-machine-68-bus power system case, the effectiveness of our
method on larger scale systems is presented.

A. Case I: IEEE 10-machine-39-bus Power System

1) Modeling of Power Systems
Here, we introduce the internal node model [2] of a g-

machine power system (Generator 1 is regarded as the ref-
erence machine):

dδi1
dt

= ωi − ω1,

dωi
dt

=
ωb

2Hi
(Pmi − Pei −Diωi) (56)

where i = 1, 2, · · · , g.δi1 represents the relative rotor angle
[rad] and ωi is the rotor angular velocity [rad/s]. Pei =∑g
j=1EiEj{Gij cos(δi1 − δj1) + Bij sin(δi1 − δj1)} is the

electrical power [p.u.]. Ei, Pmi represent the internal voltage
and mechanical input respectively [p.u.]. Bij , Gij are the sus-
ceptance and conductance between generators i and j respec-
tively [p.u.]. Hi is the time inertia constant [s] and Di is the
damping coefficient [p.u.]. ωb = 120π is the reference value
of ωi. Electrical loads are modeled as constant impedances.
For simplicity, we shift the equilibrium point of system (56)
to the origin. Assuming that (δ∗21, δ

∗
31, · · · , δ∗g1, 0, · · · , 0) is

the stable equilibrium point, we define a new state vector
x ∈ Rn(n = 2g − 1) as:

x = [x1, · · · , xg−1, xg, · · · , xn]

= [∆δ21, · · · ,∆δg1, ω1, ω2, · · · , ωg]
= [δ21 − δ∗21, · · · , δg1 − δ∗g1, ω1, ω2, · · · , ωg] (57)

The IEEE 10–39 power system is a well-known benchmark
model for research, as shown in Fig. 2, and see [2] for more
details.
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Fig. 2. One-line diagram of the IEEE 10–39 system.

In this case, g = 10 and n = 19. More parameters are
presented in Appendix A. As shown in Fig. 2, we set five
separate faults on Bus 10, 8, 23, 27 and 1 respectively, locating
throughout the whole area. By the time-domain simulation
[35], these faults provide five post-fault trajectories, i.e. s = 5.
Since low-frequency oscillations (often less than 8 Hz) are
dominant in the electromechanical dynamics, we choose a
sampling frequency of 20 Hz, i.e. the uniform sampling period
∆t = 0.05s, according to the Nyquist–Shannon sampling
theorem [36]. Set the number of sampling snapshots m = 120.
Then the data matrices X and Y can be obtained.
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When estimating Koopman operators, the sampled data
should preferably come from the state trajectories inside the
domain of attraction of the underlying system [17]. This
means that unstable trajectories are not recommended, and
the stability of the resulting reduced-order model is a sufficient
condition for that of the full-order model. Thus, the trajectories
chosen in this case are asymptotically stable.
2) The KOMR Method and the Traditional Modal Analysis in
Terms of Model Reduction

We apply the KOMR method to the power system using
PMK-DMD (Algorithm 2) with different values of c. Then
compute the R2 = R(x̂αk) of the results, as shown in Fig. 3.
Generally, a small c tends to produce a small r, the dimension
of the reduced-order model, but the performance about the
related R2 may be disappointing. Hence, from Fig. 3, we
choose a case with relatively small c and large R2, i.e. the
case of c = 19.

When c = 19, the continuous-time Koopman eigenvalues
are presented in Fig. 4, and all of them are with negative real
part because the post-fault trajectories sampled are convergent.
Then we calculate Ci, the contribution of each eigenvalue,
as shown in Table I, where λ(∗)

i denotes a pair of complex-
conjugate eigenvalues {λi, λ∗i }. It can be found that the
contributions of λ

(∗)
1 and λ2 are outstanding. We choose

10 15 20 25 30
c

0.75

0.8

0.85

0.9

0.95

R
2

(19,0.9027)

Fig. 3. Relationship of R2 and c.
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Fig. 4. Koopman eigenvalues.

TABLE I
CONTRIBUTION OF EACH EIGENVALUE IN CASE I

λ
(∗)
i

λ
(∗)
1 λ2 λ

(∗)
3 λ

(∗)
4 λ

(∗)
5 λ

(∗)
6

−0.36
±3.79i −0.48 −0.76

±6.31i
−0.83
±5.56i

−0.90
±7.10i

−1.74
±2.95i

Ci 0.6171 0.3025 0.1008 0.0214 0.0360 0.0166

λ
(∗)
i

λ7 λ
(∗)
8 λ

(∗)
9 λ

(∗)
10 λ11

−1.77 −2.25
±5.51i

−2.55
±4.20i

−2.83
±0.86i −7.26

Ci 0.0084 0.0144 0.0164 0.0628 0.0033

different Le to search their effect on the reduced-order model,
as shown in Table II, where R2 = R(x̃αk). Notice that the
Le selected by ordering the real parts of eigenvalues may not
produce a satisfying R2, like Le = {λ(∗)

1 , λ2, λ
(∗)
3 , λ

(∗)
4 } with

R2 = 0.7879, compared with Le = {λ(∗)
1 , λ2, λ

(∗)
3 , λ

(∗)
5 } with

R2 = 0.8475.

TABLE II
THE EFFECT OF DIFFERENT le ON THE REDUCED-ORDER MODEL

IN CASE I

Le R2 r z = 0

{λ(∗)1 , λ2} 0.7768 3 stable
{λ(∗)1 , λ2, λ

(∗)
3 } 0.8097 5 stable

{λ(∗)1 , λ2, λ
(∗)
3 , λ

(∗)
4 } 0.7879 7 stable

{λ(∗)1 , λ2, λ
(∗)
3 , λ

(∗)
5 } 0.8475 7 stable

Finally, we choose Le = {λ(∗)
1 , λ2, λ

(∗)
3 } as the leading

Koopman eigenvalues, because they have considerable contri-
butions, and the resulting reduced-order model is stable and
with a large R2. Obviously, r = 5, that is the 19-dimensional
model (56) can be reduced to a 5-dimensional model (54b).
The resulting T is given in Appendix A.

To verify the validity of the reduced-order model, we com-
pare the proposed method with the traditional modal analysis
[5], [11], [12]. First, we consider the linearized system around
the stable equilibrium x = 0 of (56), represented by ẋ = Ax
with A ∈ R19×19. Let Vi ∈ C19 be right eigenvectors and
εi ∈ C be eigenvalues of A:

AVi = εiVi (58)

Table III shows the eigenvalues εi, and we find that ε(∗)1 -
ε
(∗)
9 are with the same real part, because system (56) uses

the uniform damping ratio, i.e. D1/H1 = D2/H2 = · · · =
Dg/Hg . In this case, the traditional modal analysis fails to
select dominant modals by sorting the real part of the eigen-
values. Reluctantly, we select the low-frequency eigenvalues
E = [ε

(∗)
1 , ε

(∗)
5 , ε

(∗)
6 ]diag as dominant modals and obtain the

associated eigenvectors V = [V1,V5,V6]. After taking a
realification procedure for E and V , V ∈ R19×6 can be
regarded as the transformation matrix and x ≈ Vz holds,
where z ∈ R6. Then from (58), we obtain the reduced-order
model by the modal analysis:

ż = V+AVz = Ez (59)

where E ∈ R6×6.

TABLE III
EIGENVALUES OF A FOR THE MODAL ANALYSIS IN CASE I

ε
(∗)
1 ε

(∗)
2 ε

(∗)
3 ε

(∗)
4 ε

(∗)
5

−0.377
±3.784i

−0.377
±9.787i

−0.377
±9.65i

−0.377
±9.161i

−0.377
±5.846i

ε
(∗)
6 ε

(∗)
7 ε

(∗)
8 ε

(∗)
9 ε10

−0.377
±6.389i

−0.377
±7.072i

−0.377
±7.898i

−0.377
±8.03i −0.754

The trajectories governed by the full-order model (blue),
reduced-order model based on KOMR (red) and reduced-order
model based on the traditional modal analysis (green) are
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Fig. 5. Comparison of the trajectories governed by the full-order model (blue), reduced-order model based on KOMR (red) and reduced-order model based
on the traditional modal analysis (green) in Case I. In (a)–(e), we select 3 components of each trajectory for presentation. The trajectories driven by the
reduced-order systems, such as trajectory 1 shown in (f), are projected into the full-order state space for comparison. (a) Trajectory 1. (b) Trajectory 2.
(c) Trajectory 3. (d) Trajectory 4. (e) Trajectory 5. (f) Reduced-order trajectory 1.

shown in Fig. 5(a)–(e). The trajectories driven by the reduced-
order systems, such as trajectory 1 in Fig. 5(f) (above is system
(54b), below is system (59)), are projected into the full-order
state space for comparison. And the projection are x ≈ Tz
and x ≈ Vz respectively. From Fig. 5, we notice that the
5-order model based on Koopman operator commendably fit
the trajectories of the full-order system. The degree of fit is
quantified as R2 = R(x̃αk) = 0.8096. However, the 6-order
model based on the modal analysis provides a disappointing
result, with R2 = 0.4091. Therefore, the model reduction
based on Koopman operator is able to produce a lower-order
model while guaranteeing a higher degree of fit. This suggests
that the Koopman eigenvalues can perfectly characterize the
dynamics under large perturbations, whereas the eigenvalues
of the linearized model do not. Also, note that λ(∗)

1 ≈ ε
(∗)
1 ,

indicating that the Koopman modes accurately contain the
dominant eigenvalue of the linearized model.

3) Performance of PMK-DMD and Traditional DMD
There are several data-driven methods to approximate the

Koopman operator, including DMD, EDMD, etc. Among
them, EDMD and the proposed PMK-DMD return the same
estimate if using the same observable functions, except that
EDMD is slower to compute, see analysis in Section III.D(b).
In this section, we compare the performance of the proposed
PMK-DMD and traditional DMD [18], as shown in Fig. 6.
Since DMD can only discuss a single trajectory, here it con-

siders the data from Trajectory 2, while PMK-DMD considers
the data from all the above-mentioned trajectories. Moreover,
both of the methods are set to be without POD truncation. In
addition, we define the Root Mean Squared Error (RMSE) and
Sum of Absolute Error (SAE):

RMSE =

√√√√ 1

m

m∑
k=1

(xk − x̂k)
2
,

SAE =

m∑
k=1

|xk − x̂k| (60)

In normal cases, both PMK-DMD and DMD fit the full-
order trajectory well, with the former having lower RMSE and
SAE, as shown in Fig. 6(a). When a part of the measurements
are missing, e.g. the measurements are without all δ, DMD is
significantly worse than PMK-DMD, as presented in Fig. 6(b).
Additionally, when the original data carries white noise with
an amplitude of 0.2, PMK-DMD can resist the effect of the
noise, capture the mode characteristics of the original data, and
have a smaller fitting error, from Fig. 6(c). Moreover, when the
modes obtained from the selected state trajectories are utilized
to estimate other state trajectories, PMK-DMD demonstrates
even better performance, shown in Fig. 6(d). The reasons
why PMK-DMD performs better in the above scenarios are
twofold. First, the number of Koopman eigenvalues PMK-
DMD estimates is consistent with the number of observables
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Fig. 6. Comparison of the performance of PMK-DMD and DMD. (a) Normal case. (b) Lose part of measurements. (c) Noise interference. (d) Estimate new
trajectories.

l, whereas that DMD estimates coincides with the number
of measured states n, with l � n. And it is demonstrated
that more Koopman eigenvalues portray the nonlinear dynamic
behavior of the system more accurately [18]. Second, PMK-
DMD utilizes multiple trajectories at the same time, and
seeks a K to drive the evolution of observable functions
related to these trajectories. The estimated Koopman operator
will potentially reflect the inherent dynamic characteristics of
system (3) and is weakly dependent on the trajectories used,
which is well validated by Fig. 6(d).
4) Computational Savings Due to Model Reduction

When estimating the stability region for power systems, we
previously proposed an Expanding Annular Domain (EAD)
algorithm combined with Sum of Squares (SOS) programming
[37]. However, the computational effort of this method grows
dramatically with the order of the model, mainly related to
the number of monomials employed [38]. In this section, we
discuss the relationship between the order of the model n
and the number of monomials M (reflecting the amount of
computation). In the Part II of this paper, we will transform the
model into a polynomial system by 5-order Taylor truncation,
then a 2-degree polynomial Lyapunov function will be used
to estimate the stability region, according to [38]. Thus, 6-
degree SOS polynomials will be involved and according to
the theory of complete square-matrix representation (CSMR)
of polynomials [38], the number of monomials that make up
each SOS polynomial is:

M =
(n+ 3)!

n!3!
(61)

The result is shown in Fig. 7, and we notice that the full-
order model (n = 19) uses 27.5 times as many monomials
as the 5-order model, representing a 27.5-fold difference
in the amount of computation involved between the two.

1800

1600

1400

1200

T
h
e
 n

u
m

b
e
r 

o
f 

m
o
n
o
m

ia
ls

 M

1000

800

600

400

200

0
5

56 84 120
165

220
286

364
455

560

680

816

969

1140

1330

1540

6 7 8 9 10 11 12 13 14 15 16 17 18 19

The order of the model n

Fig. 7. Relationship between the order of the model and the number of
monomials (reflecting the computational effort).

Therefore, the computational savings due to model reduction
are enormous.

B. Case II: IEEE 16-machine-68-bus Power System

Consider a more complex and larger scale case, the IEEE
16-machine-68-bus power system, as shown in Fig. 8. See [39]
for details. Here we modify model (56) by introducing the
relative rotor angular velocity ωi1 = ωi − ω1(i = 2, 3, · · · , g)
and the uniform damping ratio, i.e., L , D1/H1 = D2/H2 =
· · · = Dg/Hg . Then system (56) can be rewritten as:

dδi1
dt

= ωi1

dωi1
dt

=
ωb

2Hi
(Pmi − Pei)−

ωb

2H1
(Pm1 − Pe1)− λωi1 (62)

where i = 2, 3, · · · , g. Similarly, we define the state vector
x ∈ Rn(n = 2g − 2) as:
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Fig. 8. One-line diagram of the IEEE 16–68 system.

x = [x1, · · · , xg−1, xg, · · · , xn]

= [∆δ21, · · · ,∆δg1, ω21, ω31, · · · , ωg1] (63)

In this case, g = 16, n = 30 and L = 0.1257. As shown in
Fig. 8, we set five separate faults on Bus 23, 24, 13, 61 and 59
respectively, providing five post-fault trajectories, i.e. s = 5.
Similar to case I, we set ∆t = 0.05s and m = 200. Then by
the time-domain simulation, the data matrices X and Y can
be obtained.

Here we set c = 21, and apply the PMK-DMD algorithm to
the power system, which producing 21 Koopman eigenvalues.
The contribution of each Koopman eigenvalue is shown in

Table IV. We find that the greatest contribution is made by
λ

(∗)
3 rather than λ(∗)

1 who has the smallest absolute real part.
Then the effect of different Le on the reduced-order model is
presented in Table V. We choose several eigenvalues with rela-
tively large contributions Le = {λ(∗)

1 , λ
(∗)
2 , λ

(∗)
3 , λ

(∗)
5 , λ

(∗)
7 } as

the leading Koopman eigenvalues. Thus, the 30-dimensional
model (62) can be reduced to a 10-dimensional model (54b).
The resulting T is not convenient to show here due to its long
length.

The trajectories governed by the full-order model (blue) and
reduced-order model based on KOMR method (red) are shown
in Fig. 9(a)–(e). The trajectories driven by the reduced-order
system, such as trajectory 1 in Fig. 9(f), are projected into the
full-order state space for comparison. From Fig. 9, we find that
the fitting effect of the 10-order model on the trajectories of the
full-order model is acceptable and R2 = R(x̃αk) = 0.6338.
Therefore, the KOMR method can provide a satisfactory result
for larger scale power systems.

TABLE IV
CONTRIBUTION OF EACH KOOPMAN EIGENVALUE IN CASE II

λ
(∗)
i

λ
(∗)
1 λ

(∗)
2 λ

(∗)
3 λ

(∗)
4 λ

(∗)
5 λ

(∗)
6 λ

(∗)
7

−0.47
±2.50i

−0.58
±4.03i

−0.77
±7.43i

−1.31
±3.12i

−1.53
±6.08i

−1.86
±1.23i

−2.03
±7.41i

Ci 0.2477 0.1403 0.6031 0.0604 0.1467 0.0168 0.1244

λ
(∗)
i

λ
(∗)
8 λ9 λ

(∗)
10 λ11 λ12

−2.17
±10.97i −2.86

−3.85
±2.80i −4.19 −6.73

Ci 0.0062 0.0016 0.0019 0.0036 0.0063
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Fig. 9. Comparison of the trajectories governed by the full-order model (blue) and the reduced-order model (red) in Case II. In (a)–(e), we select 3 components
of each trajectory for presentation. The trajectories driven by the reduced-order system, such as the reduced-order trajectory 1 shown in (f), are projected into
the full-order state space for comparison. (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3. (d) Trajectory 4. (e) Trajectory 5. (f) Reduced-order trajectory 1.
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TABLE V
THE EFFECT OF DIFFERENT le ON THE REDUCED-ORDER MODEL IN

CASE II

Le R2 r z = 0

{λ(∗)1 , λ
(∗)
3 } 0.4797 4 stable

{λ(∗)1 , λ
(∗)
2 , λ

(∗)
3 } 0.5897 6 stable

{λ(∗)1 , λ
(∗)
2 , λ

(∗)
3 , λ

(∗)
4 } 0.5925 8 stable

{λ(∗)1 , λ
(∗)
2 , λ

(∗)
3 , λ

(∗)
5 } 0.6001 8 stable

{λ(∗)1 , λ
(∗)
2 , λ

(∗)
3 , λ

(∗)
5 , λ

(∗)
7 } 0.6338 10 stable

{λ(∗)1 , λ
(∗)
2 , λ

(∗)
3 , λ

(∗)
4 , λ

(∗)
5 } 0.5733 10 stable

VI. CONCLUSION

Part I of this paper has proposed a KOMR method to
produce a reduced-order model for a large-scale power system.
The key to this method is to approximate the Koopman
operator as accurately as possible, for which we propose PMK-
DMD algorithm. PMK-DMD is computationally tractable as
the size of the system expands, and it outperforms traditional
DMD in various scenarios because a sufficiently large space of
observable functions is systematically constructed and utilized.
Then we derive the transformation matrix for a reduced-order
model by selecting the leading Koopman eigenvalues and
modes. On the IEEE 10–39 power system case, the obtained
nonlinear reduced-order model is demonstrated to be valid and
better than the traditional modal analysis method. This implies
that the Koopman operator, defined in a Hilbert space spanned
by observable functions, can reflect both linear and nonlinear
dynamics of the underlying system in a large region. However,
traditional methods like the modal analysis only focus on the
linear dynamics around the equilibrium of the system.

In the future, we would like to refine our work in two
directions. First, the proposed method will be applied to
model reduction in large-scale power systems that include
power electronic devices, such as wind farms, HVDC, and
energy storage systems. The external characteristics of the
grid-connected buses of these power electronic devices will
be taken into account when performing system-level model
reduction. As for device-level model reduction, full elec-
tromagnetic transient models will be introduced. Secondly,
we will investigate the relationship between the order of
the resulting model and the number of dominant oscillatory
modes in the full-order system, to further reveal the intrinsic
properties of transient dynamics. By analyzing several cases,
we have initially found that the number of dominant oscillatory
modes in most of power systems does not exceed 10 after a
large perturbation, implying that the reduced-order model is at
most 20-dimensional. This suggests that the dimensions of the
reduced-order model are independent of the size of the power
system.

APPENDIX

A. Results of PMK-DMD Algorithm in Case I

n = 19,m = 120, s = 5, d = 2, q = 37, l = 741, c = 19,

r = 5. T ∈ R19×5 and T =

[−0.184, 0.035, 0.009,−0.280, 0.007;−0.198, 0.038, 0.008,

− 0.300, 0.018;−0.263, 0.053, 0.016,−0.0006, 0.003;

− 0.324, 0.074, 0.016, 0.101, 0.004;−0.249, 0.045,

0.010, 0.002,−0.017;−0.246, 0.048, 0.013,−0.021,

− 0.015;−0.176, 0.035, 0.012,−0.025, 0.013;−0.227,

0.043, 0.009, 0.146, 0.023;−0.160, 0.03, 0.006,−0.021,

0.003;−0.136,−0.255, 0.302,−0.043,−0.044; 0.148, 0.228,

0.324, 0.050, 0.603; 0.162, 0.240, 0.373, 0.402, 0.656;

0.282, 0.398, 0.262, 0.040,−0.062; 0.546, 0.562, 0.246,

0.061,−0.254; 0.112, 0.373, 0.337,−0.509,−0.098;

0.164, 0.314, 0.278,−0.410, 0.014; 0.136, 0.138, 0.175,

0.343, 0.010; 0.141, 0.251, 0.434, 0.279,−0.351;

− 0.012, 0.111, 0.354,−0.068,−0.016],

where ‘;’ stands for row separator.

B. Parameters of the Generators in Case I

i 1 2 3 4 5 6 7 8 9 10
Hi (s) 500 30.3 35.8 28.6 26.0 34.8 26.4 24.3 34.5 42.0
Di (p.u.) 2.00 0.12 0.14 0.12 0.11 0.14 0.11 0.10 0.14 0.17
x′di (p.u.) 0.01 0.07 0.05 0.04 0.13 0.05 0.05 0.06 0.06 0.03
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