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 
Abstract—As battery technology matures, the battery energy 

storage system (BESS) becomes a promising candidate for 
addressing renewable energy uncertainties. The BESS 
degradation is one of key factors in BESS operation, which is 
usually considered in the planning stage. However, BESS 
degradations is directly affected by the depth of discharge (DoD), 
which is closely related to BESS daily schedule. Specifically, the 
BESS life losses may be different when providing the same 
amount of energy under distinct DoD. Therefore, it is necessary to 
develop a model to consider the effect of daily discharge on BESS 
degradation. In this paper, a model quantifying the nonlinear 
impact of DoD on BESS life loss is proposed. By adopting the 
chance constrained goal programming, the degradation in 
day-ahead unit commitment is formulated as a multi-objective 
optimization problem. To facilitate an efficient solution, the model 
is converted into a mixed integer linear programming problem. 
The effectiveness of the proposed method is verified in a modified 
IEEE 39-bus system. 
 

Index Terms—BESS degradation, Chance constraints, Depth of 
discharge. 

NOMENCLATURE 

A. Indices, sets and parameters 

i Index of thermal units. 

j Index of the BESS 

m Index of wind farms. 

n Index of demands. 

t Index of time periods. 

G Set of thermal units. 

E Set of the BESS. 

W Set of wind farms. 

D Set of demands. 

T Set of time periods. 

Δt Time periods. 

u+/u- Penalty of the corresponding deviation. 

k Target value of the corresponding function. 

Kq,j Slope of qth segment of BESS j 
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βup/βdn Confidence level for the upward/downward reserve. 

pgmax 
i / pgmin 

i Maximal/minimal power of unit i. 

pchgmax 
j /pdsgmin 

j Maximal charge/discharge power of BESS. 

cmax 
j /cmin 

j  Maximal/minimal capacity of BESS. 

ηc 
j /ηd 

j  Charge/discharge efficiency of BESS. 

pw 
m,t/p

d 
n,t Forecast wind/load power. 

ai/bi/ci Fuel cost parameter of unit. 

sui/ sdi Startup/shutdown cost of unit. 

Ton,i/ Toff,i Minimum on/ off time of unit. 

rui/ rdi Ramp up/ down limit of unit i. 

σw 
m,t The standard deviation of forecasting errors of wind farm 

m during period t. 
pwmax 

m  Maximal power of wind farm m. 

B. Functions 

fLL( ) Life loss under corresponding DoD. 

φ( ) Inverse cumulative distribution function of wind power.

Cop( ) Total operation cost. 

C. Variables 

dodmi%,mf% DoD from mi% to mf%. 

dodj,t DoD of BESS j at time t. 

d+/d- Positive/negative deviation from the target value. 

υi,t On/off status of unit. 

zsu 
i,t / z

sd 
i,t  Startup/shutdown status of unit. 

υchg 
j,t /υdsg 

j,t  Charge/discharge status of BESS. 

pg 
i,t  Power output of unit. 

pe 
j,t Power output of BESS. 

pchg 
j,t / pdsg 

j,t  Charge/discharge power of BESS. 

rg,up 
i,t / rg,dn 

i,t  Upward/downward reserve of unit. 

re,up 
j,t / re,dn 

j,t  Upward/downward reserve of BESS. 

rup 
t / rdn 

t  Total upward/downward reserve. 

λr,g 
j,t  Reserve cost of unit. 

λe 
j,t Output cost of the BESS. 

λr,e 
j,t  Reserve cost of the BESS. 

cj,t Energy capacity of BESS. 

,
w
m tp  Probabilistic forecast of wind power. 

ton,i,t/ toff,i,t On/ off time of unit. 
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Rq,j,t 
Binary variable indicating whether constraint actives or 
not. 

LLmi%,mf% Life loss from mi% to mf%. 

NLLmi%,mf% Normalized life loss from mi% to mf%. 

 

I. INTRODUCTION 

ITH growing integration of renewable generations, their 
uncertainties and variations make it difficult for the 

system operator (SO) to make day-ahead schedules. To tackle 
these uncertainties and variations, SO calls for novel flexible 
resources [1]. Driven by the need to integrate renewable 
generations, the energy storage system (ESS) becomes a 
promising candidate for addressing system uncertainties and 
improving system operation efficiency. 

ESSs can shift energy demand to when it is optimal to be 
consumed according to the decision makers’ requirements, 
technical and economic characteristics of ESSs [2]-[7]. Among 
various kinds of ESSs, the battery ESS (BESS) is playing an 
important role in the future power systems. Several BESS 
applications in system operation have been studied to deploy 
their energy-shifting and fast-ramping, in primary frequency 
control [2]-[3], peak shaving [4], ramp capability [5], voltage 
control [6] and energy arbitrage [7]. 

For a specific BESS, the cost can be modeled on planning [8] 
and operation [2]-[7] stages, respectively. The planning models 
the relationship between BESS size and investment cost. For an 
integrated BESS, the operation models should capture the cost 
with respect to specific BESS scheduling. These scheduling 
generally includes day-ahead unit commitment [9], intra-day 
dispatch [10] and real-time operation [1]-[2], [4]. Because the 
BESS’s capacity is limited, a multi-time step BESS operation 
model is preferred. Furthermore, day-ahead unit commitment is 
the cornerstone of economic operation in most power systems 
[11]. As a result, this paper pays attention on the BESS 
operation cost with respect to day-ahead scheduling plan, e.g. 
the period and amount of charging and discharging. However, 
to guarantee the operation efficiency of power system with 
BESSs integrated, an important concern is how long the BESS 
can operate in normal condition. 

As one of the key factors, the degradation of BESS is 
affected by operating temperature, depth of discharge (DoD) 
and charging/discharging current rate and so on [12]. The 
BESS degradation models could be classified into theoretical 
models and empirical models [13]. Theoretical models usually 
focus on the degradation mechanism, i.e. how do different 
conditions affect BESS degradation [14]-[15]. They are often 
applied in the life cycle prediction of BESS. Comparatively, 
empirical models are often applied in the BESS planning and 
operating problem to quantify the life loss or the remaining 
cycle life [16]-[17], the majority of which are for planning 
problems. Reference [18] proposes a BESS allocation model 
and introduces the residual value to reflect the degradation of 
BESS. In [19], a robust optimization based storage investment 
model is proposed, and the investment cost is considered in 
planning. As for the daily operating models, the degradation 

model is usually formulated based on the simplified 
assumptions. For example, BESS maintenance cost is assumed 
to be linear to the power output of BESS in [20]. In [21]-[22], 
the BESS usage cost is treated proportional to the state of 
charge (SoC).  

Different from thermal generations, the majority operational 
cost of BESS comes from its degradation cost. It is necessary to 
predict the BESS degradation under various operation 
scenarios. To some extents, BESS degradation cost is the 
embodiment of its investment cost. It is no doubt that the 
investment cost should be considered in planning stage. 
However, the life cycle of BESS, which is one of the indexes to 
quantify BESS degradation, can be only predicted on the basis 
of average in this stage. This life cycle is directly affected by 
the dispatching of BESS, which under different schedules may 
vary more than 50% [23]. Thus, it is of significance to consider 
the BESS degradation caused by charging and discharging in 
the daily dispatch model. Compared with the linear model 
[20]-[22], this relationship in [23] is more applicable to connect 
the technical and economic characteristic of BESS. 

For the power system with mixed power sources and BESS, 
the SO should maximize the social welfare by optimally 
schedule different kinds of sources. When the relationship 
between BESS life loss and its scheduling plan is revealed, the 
SO should balance the operation costs of BESS and other 
sources, e.g. thermal generations. In addition, in many 
degradation models, the rain flow counting is applied to 
identify discharging cycles, which is often used in fatigue 
analyzing problem [24]-[25]. However, this technic introduces 
non-convex to the decision making problem, which is 
computationally demanded. As a result, a novel decision 
making model is needed for the SO to schedule the integrated 
BESSs in day-ahead unit commitment. 

In order to effectively optimize the day ahead scheduling 
with the uncertain wind, several methods have been proposed, 
including robust UC [26], interval UC [27], stochastic UC [28], 
CCP based UC [29] and risk based UC [30]-[31]. Each of them 
has distinct advantages and disadvantages [32]. Among these 
methods, CCP is one of ways comprehensively considering the 
distribution information of uncertainties and efficiently 
modeling the UC problem. By introducing probabilistic 
constraints, CCP reduces the undue influence of extreme events, 
and takes the SO’s risk preference into consideration. CCP 
based scheduling models are proposed to consider uncertain 
wind power and generator loss in [29] and [33], respectively. 
Apart from the reserve capacity, CCP is also applied to address 
transmission capacity constraints in [34]. As the improvement 
of CCP, reference [35] combines two stage programming and 
CCP to solve UC problem. A CCP based wind power range 
quantification approach is proposed to determine dynamic 
uncertainty intervals, in security constrained UC problem [36]. 
The general CCP based model only consider uncertainties in 
constraints, while [37] proposes the chance constrained goal 
programming (CCGP), considering uncertainties in both 
constraints and objectives. As a challenging problem, solving 
methods of CCP have been studied for decades, including 
p-level efficient points [38], optimality conditions [39], 

W 
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nonlinear programming [40] and deterministic reformulation 
[41]. 

In this paper, an optimal scheduling method for power 
system with BESS based on CCGP is proposed, in which the 
nonlinear effect of discharging on degradation is modeled 
without rain flow counting. With the help of CCGP, BESS 
degradation is considered as one of objectives in the model, 
meanwhile the uncertain renewable energy resource are 
addressed by chance constraints. The main contribution of this 
paper could be summarized as follows: 

i). The CCGP method is introduced to model the day 
ahead scheduling problem as a multi-objective 
stochastic optimization problem, in which the operation 
cost, life loss of BESS and risk level of power systems 
with wind power integrated are simultaneously 
optimized.  

ii). It pointed out that the BESS degradation is closely 
related to its daily discharge plan. Thus, the BESS 
degradation should be well considered in the operating 
stage. The thermal generators and BESS should 
cooperate with each other in daily dispatching.  

iii). The nonlinear characteristic of discharging on BESS 
life loss is modeled when optimizing schedules, which 
combines the scheduling of BESS and DoD into the life 
loss assessment of BESS. It also indicates that 
providing the same amount of energy may lead to 
different BESS degradations. 

The rest of the paper is organized as follows: Section II 
introduces the effect of DoD on the loss of cycle life. Section III 
formulates the CCGP based optimal scheduling model with 
considering the BESS degradation. Section IV presents the 
model transformation and solution. Section V illustrates the 
numerical results of the proposed model, and Section VI 
provides conclusions of the paper. 

II. THE BESS DEGRADATION 

One of the critical factors affecting the life cycle of BESS is 
DoD, which is closely related to the day-ahead scheduling. The 
relationship between DoD and life loss of BESS is mainly 
focused in this paper. Several DoD stress models have been 
proposed on related topics, illustrating the life losses of BESS 
under some certain conditions. As for daily dispatching, the 
commonly used DoD stress model has some drawbacks as 
follows. i) Some models use linear functions to describe the 
effect of DoD, which are not consistent with the physical 
characteristics. ii) And some works make assumptions that the 
DoD only starts from 100% SoC, which is usually incorporated 
within the rain flow counting technique. 
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Fig.1 The degradation and DoD  

 
Taking the lithium-ion battery as an example, Fig. 1(a) in [23] 

presents the cycle life under different DoDs. To more 
intuitively present the DoD effect on BESS life loss, Fig.1 (a) 
can be transferred into Fig. 1(b). It is shown that DoD has a 
nonlinear impact on the life loss, which indicates degradations 
may be different when providing the same amount of energy. 
And this nonlinear effect caused by dispatching should be 
formulated in the optimal scheduling model to optimally reduce 
the life loss of BESS. Meanwhile, the life loss is not only 
decided by the relative deviation of DoDs, but also affected by 
the absolute (or average) DoD. Reference [42] uses a second 
order polynomial function to present the effects of DoD and the 
average SoC on the cycle life of BESS. Furthermore, [13] 
proposes that the rain flow counting can be only applied 
off-line over a recorded profile and it is not suitable for 
real-time evaluation. Thus, a more efficient method should be 
applied for the daily dispatch model. 

In order to formulate the effects of both the relative and the 
absolute DoD, we start from the basic definition. According to 
[43], when there is one BESS discharging from 100% to mi% 
SoC, the life loss can be presented as (1). Similarly, the life loss 
caused by the discharge from 100% to mf% SoC can be 
presented as (2). (mi%>mf%) 

 100%, % 100%, %i im m
LLLL f dod  (1a)

   100%, % 100%, % max,min/i im m
LL LLNLL f dod f dod  (1b)

 100%, % 100%, %f fm m
LLLL f dod  (2a)

   100%, % 100%, % max,min/f fm m
LL LLNLL f dod f dod  (2b)

Essentially, the process of discharge from 100% to mf% can 
be regarded as the discharge from 100% to mi% and then from 
mi% to mf%, mi mf. Thus, when there is a discharge from mi% 
to mf%, the corresponding life loss can be described as (3).  

%, % 100%, % 100%, % , % %i f f im m m m
i fLL LL LL m m    (3a)

%, % 100%, % 100%, % , % %i f f im m m m
i fNLL NLL NLL m m   (3b)

   
 

100%, % 100%, %
%, %

max,min

f i

i f

m m
LL LLm m

LL

f dod f dod
NLL

f dod


  (3c)
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Besides, (3b) can be expanded as (3c), by substituting (1) and 
(2). When the discharge starts from 100% SoC (mi=100), then 
fLL(dod100%,100%)≈0. It indicates that (3b) is also consistent with 
the basic definition (1b). According to Fig. 1(b), the life loss of 
the discharge from 10% to 0% is 2.29 times of the discharge 
from 100% to 90%, which indicates that the DoD conditions 
during the discharge process has a considerable influence on 
the life loss. Consequently, the same amount of discharge under 
different SoC has different impacts of life loss of BESS. 

Note that in this paper the lithium-ion battery is used as an 
example to introduce the method, which is a promising 
candidate in the future. Although different batteries have 
different degradation models (curves shown in Fig.1), the 
similar idea could be applied in these studies. 

III. CCGP BASED DISPATCHING MODEL 

A. Chance-Constrained Goal Programming 

Chance Constrained Programming (CCP) [44] is one of the 
effective methods to address uncertain problems, in which the 
constraint can be violated within a predefined probability level. 
In other words, the probability of constraint to be met should be 
higher than the predefined confidence level. The general form 
of the chance constraint programming can be presented as (4), 
where x is a decision vector, ξ is a stochastic vector, fi ( ) is the 
ith function, with the corresponding risk level βi and target 
value ki. 

  Pr ,i i if x k    (4)

Reference [37] proposes that, according to the specific 
uncertain problem to be solved, the general chance constrained 
programming can be transferred into the form of goal 
programming as (5). 

 min i i i i
i

u d u d     (5a)

  . . Pr ,i i i is t f x k d      (5b)

  Pr ,i i i ik f x d      (5c)

, 0i id d    (5d)

The CCGP keeps the chance constraints, which is effective 
to address uncertainties of renewable energy. With the help of 
deviation variables in constraints, it provides a way to handle 
the multi-objective optimization. Meanwhile, by introducing 
the weighting factors, different importance of distinct 
constraints could be considered in the model. Enabling more 
flexibilities, CCGP provides a promising idea to address the 
uncertain problem with more specific requirements. 

B. CCGP Based Dispatch Model 

In this subsection, an optimal scheduling model of system 
with consideration of BESS degradation is formulated on the 
basis of CCGP. Important assumptions include: i) the 
probability density functions of wind outputs are known; ii) the 
probability distributions of different wind farms are 
independent; iii) only wind uncertainty is taken into 

consideration. 
Three aspects of the day-ahead operation are systematically 

considered when deciding the system schedules, including the 
reserve capacity allocation, the total operational cost and the 
BESS degradation. 

1) Reserve capacity allocation 
Because of the inherent uncertainties of wind power, the 

system needs sufficient reserve capacities to guarantee the 
operational security, which is one of the aspects of optimal 
dispatching. This reserve constraint is usually formulated in the 
form of chance constraints [34]. Based on CCGP, the reserve 
constraints can be formulated as (6a)-(7h). 

 1 1, 1 1,min t t
t T

u d u d   



  (6a)

, , , , 1,. . Pr d g e up w up
n t i t j t t m t t

n D i G j E m W

s t p p p r p d 

   

        
  
     (6b)

, , , , 1,Pr g e dn w d dn
i t j t t m t n t t

i G j E m W n D

p p r p p d 

   

        
  
    (6c)

1, 1,0, 0t td d    (6d)

, , ,
e dsg chg
j t j t j tp p p   (7a)

, ,
, ,

up g up e up
t i t j t

i G j E

r r r
 

    (7b)

, ,
, ,

dn g dn e dn
t i t j t

i G j E

r r r
 

    (7c)

min , max ,
, , , , ,

g g dn g g g up
i t i i t i t i t i i tp r p p r      (7d)

max , max ,
, , ,

chg e dn e dsg e up
j j t j t j j tp r p p r      (7e)

 , max
, , , 1 /e e dn

j t j t j t jp r c c t     (7f)

 , min
, , , 1 /e e up

j t j t j t jp r c c t     (7g)

, , 1 , , /chg c dsg d
j t j t j t j j t jc c p t p t       (7h)

Equations (6a)-(6d) are the main constraints ensuring 
sufficient reserve capacities for the power systems with wind 
power integrated. d- 

1,t and d+ 
1,t present the deviations of upward 

and downward reserves. d- 
1,t may require the unit re-dispatch, 

and d+ 
1,t may lead to the wind curtailment. Equation (7a) limits 

the power output of BESS. Equations (7b)-(7c) formulate the 
upward/downward reserve constraints. Reference [45] 
proposed that the reserve capacity of BESS is able to provide 
ancillary services to address the uncertainties. The reserves 
from generators and BESS are constrained by (7d) and 
(7e)-(7g), respectively. Equation (7d) is the power output and 
the reserve constraint of the generator. The power constraint of 
BESS reserve is formulated by (7e), and the energy constraints 
are formulated by (7f)-(7g). Equation (7h) calculates the energy 
of BESS. 

2) Operational cost 
The total operational cost is commonly an important index of 

the day-ahead unit commitment, which should also be 
considered in the model. According to the CCGP, this objective 
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can be formulated as (8). 

 2 2 2 2min u d u d     (8a)

 , , , 2 2 2. . , ,g e
op i t i t j ts t C p p d d k      (8b)

     
   

   

, , , , , , ,

2
, , , , , ,

, , , , , ,
, , , , , ,

, ,g e su sd
op i t i t j t i t i t i t i t

t T i G
g g e dsg chg

i i t i i t i i t j t j t j t
t T i G t T j E

r g g up g dn r e e up e dn
i t i t i t j t i t i t

t T i G t T j E

C p p su z sd z

a p b p c p p

r r r r



 

 

 

   

   

   

    

   


 
 

(8c)

2 20, 0d d    (8d)

Equation (8c) formulates the total operational cost, which 
consists of startup/shutdown cost, fuel cost, BESS operation 
cost, reserve costs of generators and BESS. Because SO intends 
to minimize the operational cost, u- 

2 is set to 0 in this paper. 
3) Life loss of BESS  
Aside from the two aspects mentioned above, BESS 

degradation is also considered as a primary objective of the 
scheduling model. According to studies in Section II, the 
discharge directly affects the life loss of BESS through DoD. 
Here, with the help of CCGP, we quantify the life loss under 
different DoDs and consider it when making the scheduling 
plan. It can be formulated as (9). 

 3 3 3 3min u d u d     (9a)

3 3 3. . t
t

s t NLL d d k     (9b)

     max,min
1 /t LL t LL t LLNLL f dod f dod f dod

   
 (9c)

0tNLL   (9d)

3 30, 0d d    (9e)

Equations (9c)-(9d) quantify the life loss of the discharge 
from during [t-1, t], which consider the effect of DoD on BESS 
life loss. Because the SO intends to minimize the total life 
losses during the whole dispatch period, u- 

3 is set to 0. Thus, the 
objective function of the whole model can be formulated as 
(10a). Equations (6b)-(6d), (7), (8b)-(8d) and (9b)-(9e) are also 
parts of formulations. Other constraints of the day-ahead unit 
commitment are formulated as (10b)-(10j). 

 1 1, 1 1, 2 2 3 3min t t
t

u d u d u d u d           (10a)

, , , ,. . g e d w
i t j t n t m t

i G j E n D m W

s t p p p p
   

       (10b)

min
, , 1 ,, 1
g g su g
i t i t i i t ii tp p ru z p     (10c)

min
, , ,, 1

g g sd g
i t i t i i t ii tp p rd z p     (10d)

, , , 1
su
i t i t i tz      (10e)

, , 1 ,
sd
i t i t i tz     (10f)

   , 1 , , , 1 , 0i t i t on i t on it T      (10g)

   , , 1 , , 1 , 0i t i t off i t off it T       (10h)

max
, ,0 dsg dsg dsg

j t j t jp p   (10i)
max

, ,0 chg chg chg
j t j t jp p   (10j)

, , 1chg dsg
j t j t    (10k)
min max

,j j t jc c c   (10l)

Equation (10b) is the power balance constraint. Equations 
(10c)-(10d) are the ramping constraints of the thermal unit, 
which also guarantee that ramping constraints are met when the 
unit startup or shutdown. Equations (10e)-(10f) are logic 
constraints of thermal unit states. Equations (10g)-(10h) limit 
the minimal on/off duration of the thermal unit. Equations 
(10i)-(10j) are the power output constraint of BESS. Equation 
(10k) limits the maximal/minimal capacity of BESS. 

C. Remarks 

In this model, the effect of DoD on BESS degradation is 
considered as one objective of the multi-objective optimization 
problem, rather than be transferred as part of costs [46]. If the 
life loss is considered as part of the investment cost in daily 
dispatch model, it is relatively high comparing with the 
operational cost of thermal generators. Thus, the BESS would 
not be discharged, indicating the inefficient management of the 
BESS. In addition, the life loss is sensitive to the BESS 
discharge, which means that the discharge may multiply the 
effect on the total cycle life of BESS. Apart from this, the 
setting of the corresponding weighting factor reflects how 
much emphasis is given to the life loss of BESS. As the BESS 
technology matures, this factor would become smaller. And it 
also can vary according the SO’s attitude towards the optimal 
management of BESS. 

IV. MODEL TRANSFORMATION AND SOLUTION 

A. Deterministic Equivalent of Chance Constraints 

In order to improve the solving efficiency, we intend to 
transfer the chance constraints to their deterministic equivalent. 
Reference [41] proposes that the chance constraint can transfer 
to its deterministic form when stochastic variables in constraint 
can be separated from decision variables. And the stochastic 
variable with explicit cumulative distribution function can be 
directly calculated by the inverse function. The theory above 
makes it feasible to reformate the chance constrains (6b)-(6c) as 
(11a)-(11b), where φw( ) is the inverse cumulative distribution 
function of wind power output. 

 1, , , , 1d g e up w up
t n t i t j t t t

n D i G j E

d p p p r  

  

         (11a)

 1, , , ,
g e d dn w dn

t i t j t n t t
i G j E n D

d p p p r  

  

        
(11b)

B. Linearization of the life loss 

The life loss of BESS is the function of DoD, which is 
monotonically increasing. Thus, the life loss function can be 
linearized through the big M method [47]. The DoD range can 
be divided into Q pieces. Then, equation (3c) can be 
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reformulated as (12). And (12a) can be also transferred to (12c). 

   , , , , 1 , ,

, , 1

1

, 1,2, ,
j t q j j t j t q j t

j t j t

NLL K dod dod M R

dod dod q Q




   

  
 (12a)

, , 1

, ,

1
1, ,

2
0,

j t j t

q j t

dod dod q q
when

R Q Q
others

  
     



 (12b)

 max
, , , , ,/ 1 , 1,2, ,dsg

j t q j j t j q j tNLL K p t c M R q Q      (12c)

Furthermore, equation (8c) could be reformulated to linear 
functions through the same way, as shown above. 

C. Solution 

After the transformation above, the reformulated model is a 
convex MILP. And it could be solved by CPLEX 12.6. 

V. CASE STUDY 

A. Case Description  

The simulation is carried out based on a modified IEEE-39 
Bus Test System. The technical and commercial parameters of 
thermal units could be found in [48]. The load profile and wind 
power output of the following day are obtained by [49] and 
shown in Fig.2. The probability density function of wind 
forecasting error is defined by the normal distribution in (13a), 
with the standard deviation σw 

m,t calculated in (13b) [50]. The 
confidence level for all chance constrains is set to 0.99. k2 and 
k3 are both set to 0.  

  , ,, ~ ,
w w w

m t m tm tp N p   (13a)

max
, ,0.2 0.02w w w

m t m t mp p    (13b)

5 10 15 20
200

400

600

800

1000

1200

1400

1600

Time(h)

Po
w

er
(M

W
)

 

 

System load
Wind power output
Net load

 
Fig.2 Load profile and wind power output 

 
The charging and discharging efficiency of BESS are set to 

0.9. The maximum charging and discharging rate of BESS are 
set to 150 MW, and the capacity of BESS is 600MWh. 
Maximum and minimum energy stored in BESS are set to 
540MWh and 60 MWh, respectively. The relationship between 
the life loss and DoD is obtained from Fig. 1(b). The reserve 
price of BESS is set to 5 $/MWh. The weight factor u- 

1, u
+ 
1 , u+ 

2  
and u+ 

3  are set to 20, 100, 1 and 3000 respectively. 
To verify the effectiveness of the proposed method, the 

obtained simulation results are compared with a case without 
considering the BESS degradation and a case with linear BESS 
degradation. For simplicity, the case without considering the 
BESS degradation is denoted by “WBDeg”, the linear BESS 

degradation case is denoted by “LBDeg”, and the proposed 
method with nonlinear degradation is denoted by “NBDeg”.  

The WBDeg case is based on the classical CCP method, in 
which the objective function is to minimize the total operation 
cost as shown in (8c). The reserve constraints are based on the 
traditional CCP, and confidence levels for all chance constrains 
are the same as in other two cases. It also subjects to other 
system constraints (6b)-(6d) and (7). The difference between 
the LBDeg case and NBDeg case lies in the degradation 
characteristics of BESS. It is nonlinear in NBDeg (as shown in 
Fig.1(b)), while it is linear in LBDeg. In LBDeg, the 
relationship between the life loss of BESS and DoD is assumed 
linear, with the average slope in Fig.1(b).  

The reformulated models in three cases are all convex MILP, 
and solved by CPLEX 12.6. The simulation is implemented on 
a computer with i4770 CPU and 16GB RAM. 

B. Effect of Considering BESS Degradation 

Unit on 

2 4 6 8 10 12 14 16 18 20 22 24

Unit off WBDeg

t (h)

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

LBDeg NBDeg  
Fig.3 Unit status obtained by WBDeg, LBDeg and NBDeg cases 

The unit states of thermal units obtained by the three 
methods are presented in Fig.3. The output of each generation 
and BESS are given in Fig.4. As shown in Fig.3, unit 4~unit 7 
have different operational states. The difference among the unit 
schedules result in distinct generation outputs in Fig.4. This is 
owing to the difference of BESS operations under different 
methods, when the power balance constraint (10b) is satisfied, 
as shown in Fig.4. Considering the net load profile in Fig.2, the 
BESS are charged during light load period as shown in Fig.4, 
i.e., 0:00~5:00. Meanwhile, the BESS are discharged during 
heavy load periods. However, compared with WBDeg case, the 
BESS is discharged much less in LBDeg and NBDeg cases, 
observed from Fig.4. It indicates that when considering the life 
loss of BESS, the SO can obtain more practical operation 
solutions to optimally utilize the BESS.  

The DoD of BESS in the simulation day is given in Fig.5. 
Considering the output profiles of BESSs during 21:00-24:00, 
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DoD of BESS in NBDeg is smaller than the DoD in LBDeg and 
WBDeg, depicted by Fig.5. It indicates that when applying the 
nonlinear life loss model, the discharge of BESS is much 
smaller in NBDeg. As shown in (9), smaller DoD can reduce 
the life loss of BESS, vice versa. This verifies that the proposed 
method can prevent over-discharging of BESS, reducing the 
life loss of BESS. 

 

5 10 15 20
0

500

1000

1500

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

Time(h)
(c)Output of thermal units in NBDeg

5 10 15 20
0

500

1000

1500

Time(h)
(b)Output of thermal units in LBDeg

5 10 15 20
0

500

1000

1500

T
G

 o
ut

pu
t (

M
W

)

Time(h)
(a)Output  in WBDeg

BESS

T
G

 o
ut

pu
t (

M
W

)
T

G
 o

ut
pu

t (
M

W
)

-40

0

40

80

-80

-40

0

40

80

-80

-40

0

40

80

-80

B
E

SS
 o

ut
pu

t (
M

W
)

B
E

SS
 o

ut
pu

t (
M

W
)

B
E

SS
 o

ut
pu

t (
M

W
)

  
Fig.4 Outputs in WBDeg, LBDeg and NBDeg cases 
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Fig.5 DoD of BESS in WBDeg, LBDeg and NBDeg cases 

 
TABLE I 

OPERATION COST AND LIFE LOSS OF BESS 

Case Operation cost Life loss of BESS1 

WBDeg 379,429.57 $ 0.9325 
LBDeg 379,462.22 $ 0.7268 
NBDeg 380,723.97 $ 0.2317 

Note:1. Life loss of BESS is calculated by (1)-(3). 

The operation cost and BESS life loss of all cases are given in 
Table I. Compared with WBDeg case, the operation cost of 
LBDeg increases to 379,462.22 $, which is due to that the 
BESS is not discharged at 12:00, observed from Fig.4. The 
operation cost of NBDeg case increases to 380,723.97 $ by 
0.34%, as the BESS discharges least in NBDeg, as shown in 
Fig.4. The life loss of BESS is significantly reduced from 
0.9325 to 0.2317 and 0.7268, by accounting the life loss of 
BESS through linear model and nonlinear model, respectively. 

The results shown in Table I indicate that, by scarifying a little 
operation efficiency, i.e., a slight increase of operation cost, the 
life loss of BESS can be reduced remarkably. Therefore, the 
proposed CCGP based model can balance the total operation 
cost and life loss of BESS simultaneously, under different life 
loss models of BESS. 

C. Sensitive analysis 

As shown in [51], the cost of BESS is decreasing 
tremendously. To study the impact of BESS cost on the system 
operation, simulations under various weight factors u+ 

3 s are 
carried out. The operation cost and life loss of BESS are shown 
in Fig.6. 
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Fig.6 Relationship between operation cost/life loss of BESS and u+ 
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As shown in Fig.6, the operation cost increases while the life 

loss of BESS decreases with the increment of u+ 
3 . However, 

when u + 
3  is bigger than 4200, the life loss of BESS and 

operation cost would not change. In addition, the life loss of 
BESS is 0, which means BESS would not be discharged when  
u+ 

3  reaches to 4200 according to (12c). The simulation results 
above further demonstrates the effectiveness of the proposed 
method in accounting for BESS’s life loss. Furthermore, these 
results also reveal the fact that u+ 

3  plays an important role in 
balancing the operation of BESS and other power sources, i.e., 
thermal units in this paper. 

As shown in (6b)-(6c), the confidence level  defines the risk 
level, which the day-ahead operation must satisfy. The 
operation cost and life loss of BESS under different confidence 
level   are shown in Fig.7, where u+ 

3  is fixed to 3000. As shown 
in Fig.7, the operation cost increases with the increment of 
confidence level , while the life loss of BESS is not strongly 
affected by the confidence level . 

0.8 0.85 0.9 0.95 1
3.4

3.5

3.6

3.7

3.8

3.9

 

 

0

0.2

0.4

0.6

0.8

1Operation cost
Life loss of BESS

x 105

O
pe

ra
tio

n 
co

st
($

)

L
ife

 lo
ss

 o
f B

E
SS

 
Fig.7 Relationship between operation cost/life loss of BESS and  
 



CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL.  , NO.  , MARCH 2015 

D. Long-term simulation result 

To further verify the effectiveness of the proposed method, a 
long-term simulation during April 1st, 2015 - May 30th, 2015, 
i.e. 60 days, has been carried out. The SoC of BESS at each 
time period and operation cost (8c) of each day are shown in 
Fig.8 and Fig.9, respectively. 
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Fig.8 SoC of BESS along the simulation period 

 

LBDeg/WBDeg

0.994

0.996

0.998

1.002

1.004

Day

1.000

0 10 20 30 40 50 60
 

NBDeg/WBDeg

 
Fig.9 Operation costs along the simulation period.  
 

 
Fig.10 Relationship between operation cost/life loss of BESS and u+ 

3  in the 
long-term simulation 

 
As shown in Fig.8, when the SoC is relatively low, the SoC 

curve of NBDeg is higher than that of LBDeg and WBDeg in 
most of periods. It indicates that the proposed method can 
prevent over-discharging of BESS, compared with the LBDeg 
and WBDeg methods. An interesting observation of Fig.9 is 
that, there are only slight differences between operation costs of 
WBDeg, LBDeg and NBDeg in each simulation day. The total 
operation cost of NBDeg along the simulation period is 
22,223,646.93$, which is 0.029% higher than the operation cost 

of LBDeg (22,217,110.22$) and 0.088% higher than WBDeg 
(22,204,117.78$). The simulation results above have shown 
that the proposed method can capture the operation 
characteristics of BESS while guaranteeing the efficiency of 
the system operation. 

In addition, to show the impacts of weight factors u+ 
3 s on the 

long-term performance of the proposed method, a sensitive 
analysis of life loss of BESS and operation cost with respect u+ 

3  
is given in Fig.10. As shown in Fig.10, the operation cost 
increases while the life loss of BESS decreases with the 
increment of u+ 

3  in the long run. Considering (10a), it can be 
interpreted that SO needs to increase the operation cost to avoid 
the life loss of BESS, when u+ 

3  is pretty high. 

VI. CONCLUSION 

A novel CCGP method is proposed in this paper for the 
system operator to optimally decide the day-ahead unit 
commitment while considering the degradation cost 
characteristics of BESS. In this method, the unit commitment 
and BESS are simultaneously scheduled on the basis of CCGP 
based method. The operation cost and degradation of BESS are 
comprehensively considered by introducing different weight 
factors for each objective. This method is modeled as a chance 
constrained mix-integer nonlinear optimization problem, which 
is non-convex. The problem is reformulated to a mix-integer 
convex quadratic constrained problem based on deterministic 
equivalent of chance constraints and linearization technique, 
which could be solved efficiently by commercial software 
packages. 

To verify the effectiveness of the proposed method, the 
simulations are carried out on a modified IEEE-39 bus test 
system with BESS integrated. The simulation results show that, 
i) the unit commitment plan is affected by the degradation cost 
of BESS, ii) compared with traditional CCP based method, the 
proposed method could simultaneously consider the operation 
cost and BESS degradation, and iii) both the weight factor and 
confidential level could affect the operation cost, while the life 
loss of BESS is strongly related to the weight factor of BESS 
degradation. 
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