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Distributed Estimation of Oscillations in Power
Systems: an Extended Kalman Filtering Approach

Zhe YU, Di Shi', Zhiwei Wang, Qibing Zhang, Junhui Huanty and Sen Pdn

Abstract—Online estimation of electromechanical oscillation processed in a control center. This mechanism limits many
parameters provides essential information to prevent systm potential applications of WAMS which require PMU to have
instability and blackout and helps to identify event categoes higher reporting rates. Also, a centralized mechanism Is vu

and locations. We formulate the problem as a state space . .
model and employ the extended Kalman filter to estimate nerable to cybor attacks. An improved framework is needed

oscillation frequencies and damping factors directly baseé on Which can help better fulfill PMU’s capabilities given lirad
data from phasor measurement units. Due to considerationsfo network transit and computation capacity.

communication burdens and privacy concerns, a fully distrbuted

algorithm is proposed using diffusion extended Kalman filte

The effectiveness of proposed algorithms is confirmed by bot A- Summary of Results

s!mulated and_ real data collected during events in State Gd We develop a fully distributed algorithm to monitor sys-
Jiangsu Electric Power Company. tem oscillations. In this framework, information is exched
Index Terms—Oscillation detection and estimation; extended locally, and computation is distributed to each PMU or PDC.
Kalman filter; distributed estimation. We first extend the formulation from1[3] to a multi-
measurements framework. A nonlinear system is formulated,

I. INTRODUCTION . : .
T ~ whose states include frequencies, damping factors, and mag
LECTROMECHANICAL oscillations are observed inpjtydes of various oscillation modes from each PMU. The

interconnected power systems after large disturbancggquencies and damping factors are assumed consistessacr

Poorly damped oscillations reduce margins of power Syge entire system while the amplitudes and phasors of each
tems and could cause system instability or blackout. Widgpy may be different. The observation of the nonlinear
area measurement system (WAMS) technology using phaggstem is measurements from PMUs plus white noises.
measurement units (PMUs) makes it possible to observe therpen we propose a centralized extended Kalman filter
phenomenon of oscillations and estimate parameters SUCl@&F) which can directly estimate oscillation frequenciesi
frequencies, damping factors, and magnitudes. These paraghmping factors of multiple modes with online implementa-
ters contain vital information about modes of the powereyst tjon. Furthermore, a fully distributed EKF framework is de-
and help operators to identify event categories and |oggLio ye|oped in which no central coordinator is needed, and PMUs

Compared to conventional supervisory control and data aGmmunicate only with neighbour(s). The EKF computation
quisition (SCADA) systems, PMUs have higher sampling rajg carried out at each PMU based on local information to
and are able to measure phase angles, which attract significaiimate oscillation parameters. A consensus is achieyed b
interests and investments in the past (_jgcad_e. Departmenyi@i,;sion process. The proposed methods are capable afeonli
Energy (DoE) has spent over $328 million in aggregate ggplementation because of the recursive nature of EKF. The
synchrophasor technology and related communications ngistributed nature allows parallel computing which densand
works [1]. By 2015, there were over 1,700 PMUs on the Nor{,yer requirements of single computational resource and re

American power grid, covering the entire U.S. high-voltaggsyes the communication burden compared to conventional
transmission networK[2]. In Jiangsu province of China, @0khethods.

than 160 PMUs have been deployed, covering all 500kV and
majority of 220kV substations. o
CJ)n ge one hand, abundant time-stamped data from PM%S Related Work and Organization

allow system operators to monitor the system in detail andThere is extensive literature on oscillation detection and
better understand its dynamics. On the other hand, the hiftimation, most of which is focusing on centralized mecha-
Samp“ng rate of PMUs creates an enormous burden on ﬂﬂémS Some of the well known methods include matrix—pencil
communication infrastructure under the existing cereeali Mmethod (MP)[[4], [5], eigenvalue realization algorithm (&R

control mechanism, in which all data are uploaded to arf@l, [7], Hankel total least-squares (HTLS) [8], Hilbertding

transform (HHT) [9], Prony method5[110], [11], and extended
Kalman filter [3], [12], [13]. Most of these methods are not
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attention in recent years [15], [116], while few works haveive Inspired by [3], we formulate a nonlinear system whose
reported on distributed oscillation monitoring. Authong[i7] states contain frequencies and damping factors of thelascil
modeled the Prony method as a consensus optimization dioth modes. Consider a sinusoid signal as follows.

applied alternating direction methods of multipliers (A wik

and examed the algorithm’s performance with different com- stn(k] £ Arm oxp(= ) cos(4£* + dum)

k
munication environments. However, the proposed ADMM = eXp(_f_k)Al m[cos( ) cos(m)
method still requires a central coordinator to implement. — sin(*£7) sin(¢i,m )]
The work closest to this paper is]13], in which the authors = exp(—‘L’“)[B° cos(“”k) + B} 51n(°}”“)],

presented a consensus extended Kalman filter to estimate .
oscillation modes indirectly. In this work, however, oksil Where B, = = Apm cos(drm) and By, £ — Ay, sin(érm)-
tion frequencies and damping factors are directly estichatd-onsider the evolution of the sinusoid S|gnal as follows.
Furthermore, measurement diffusion and state reductlens;lr k+1] =exp(— (’““))BC COS(wz(l;Jrl))
applied to enhance the performance of EKF. +exp(— al(k+1)>Bs . (wl (k+1) )
In [18], the authors extended the multi-channel Prony to s
l, m(COS( f )COS(f—) - Sln(f_lz

— wik
a weighted least squared estimation taking in to account of = (B} ;k <! B sin(:))
channel covariances. A distributed data-diffusion alioni is +B; m(Sm( %) cos($h) + cos(97) sin(%H))]
developed following the idea of Kalman filter gain. However, x exp(— )eXp( "fk)

the extended Kalman filter approach proposed in this work ha
the potential to deal with dynamics in signals][19] incluglin
frequency fluctuation, while Prony applies well only in giat

Define system states as signal magnitudes, frequencies, and
damping factors as follows.

ary scenarios. In addition, the proposal utilizes not ordyad simlk] = { Tf K] ]

fusion but also estimate fusion and has a better behaviar tha " } K]

Prony in noisy scenarios according to the numerical results _ | B, exp(—aik/ fs) cos(wik/ fs)
The remainder of the paper is organized as follows. In B { By, exp(—aik/ fs) sin(wik/ fs)

sectior(]l, we formulate a nonlinear state space model, @hos wilk]  =wi,

states include oscillation frequencies, damping factars] ol[k]  =o.

magnitudes. A centralized extended Kalman filter is appheldn
in sectiorIll. Considering the data volume and comminution
burden, we present a fully distributed EKF framework in zf [k+1] =exp(—2Z

e state transition is presented as follows.

2 )z [K] cos(22)

. . . fs
sectior I¥. Numerical results based on simulated and real da — exp(— 2 [k] )z$, (k] sin(ald [k])
in section[¥ confirm the desirable performance of proposed e [, b
algorithms, and sectidn VI concludes the paper. s Lm ouk] wilk]
2} plk+1] = exp(—22)af, [k] sin(=37) )
o [k] (K]
II. PROBLEM FORMULATION +eXp[(k] 7o )T k] cos(557)
+e€7
As discussed iri [10] an@ [20], electromechanical oscdlzi wk+1 =w [lk’;i"Jr e [k]
in power systems can be represented as a sum of some ol + 1] :al[k;]+e‘l’[k],
exponentially damped sinusoids. In a discrete framework, ] e
a system measurementk] = [y1[k],---,ym[k]]T can be Wheree is the system noise. The measurement equalibn (1)
expressed as follows. can be written as
L
] = Ty A sl s+ m) el Ylk] = 305 K] + K1) + £ ]
=1

where y,,,[k] is the measurement of thexth PMU at the
kth time instafl, 7' the transpose operatok/ the number
of PMUs, L the number of oscillation modes}, ,, € R the
amplitude,s; the damping factory; the frequencygp; ., the T
phase anglef, the sampling rate, and,, [£] the measurementx[k_] = [al[k]’ M (K], wi[k], o1 K], - -- 7WM[/€]7_ oM [kﬂ K

error. The measurement noise is assumed to be a w @'Ch hasadlmeq5|on QRML+2L)-by-1 "_i”d IS comp_nsed
Gaussian noise with zero mean and a diagonal covariafd"Vo Parts. The first part, [k], -, (K], is the magnitude
matrix Ry = diag(Ryy. ..., Rars). Measurements from dif- © oscillation modes measured at different PMUs. The second
ferent PMUs may have various amplitudes and phase angB@rt ,wi andoy, is the frequency and damping factor of each

while frequencies and damping factors are assumed to rﬂ%se and this p:;rt is the consensus acrcis%s d|fferefnt”PMUs
consistent across the system. e can write the transition in a general form as follows.

zlk + 1] = f(z[k]) + €[k]

N _ _ _ , where the transition functiorf(-) is nonlinear and can be
In practice, each PMU may contain multiple channels. Foratimmt

simplicity, we assume each PMU contains single channel umeaeents. denveq from_ equgtlonE[Z). We assume th@k] IS a W_h|te
Results can be easily extended to the case of multi-chaneesuements.  Gaussian noise with zero mean and covariance matfix

Denote the amplitude vector of modes measured by
the mth PMU by amlk] = [w1mlk],- 20m[k]"
Define the state of the system as
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Given the system states and equatibh (1), we obtain thed new measurements are used to calculate new state pre-
observation function as follows. dictions. This process iterates and the state space model is

re-linearized around updated state estimates.
ylk] = Halk] + e[k]

where A. Centralized Extended Kalman Filter

H, 11--- 00--- -+ 00--- 00--- _ _ _

H, 00-+- 11-++ -+ 00--- 00--- | Algorithm 1 Centralized Extended Kalman Filter (CEKF)
H= : = . . . 1. Initialize z[0| — 1] and P[0| — 1].

: : : : : : 2.Fork=0:N—1
Hy 00--- 00+ --- 11--- 00---

S = Ry + HP[k|k —1]HT
Here H; € R**(2ML+2L) s the jth row of the observation K = Plklk —1]HTS1
matrix H. The (2(i — 1)L + 1)th to 2iLth elements inH; zlk|k] = Z[k|k — 1) + K (y[k] — HZ[k|k — 1])
are 1s and others are zeros. Thus, the constructed system is Plk|k] = P[k|k — 1) — KHPIk|k — 1]
summarized as follows. Tk + 1|k] = f(Z[k|K])

[k +1] = f(x[k]) +e[k] Plk + 1|k] = F, Plk|k]F{T + Qk
T = f(x e
y[k] = Hxlk] + €[k] () End

[1l. CENTRALIZED EXTENDED KALMAN FILTER Let:i[k_|j] denote the minimum mean squareq error estimate
: . i ¢ K of . of z[k] given measurements up to and including tigh@nd
) In this section, a centra ized ramew%r 0 E,KF IS C0”P[k;|j] the covariance matrix of the estimation error. Starting
sidered as shown in Figuld 1. At e?c time instant, n the initial estimatei:[0| — 1] and P[0| — 1], the iteration
measurements are collected ar!d sent from PML_JS t0 a coniole extended Kalman filter for the system equatidn (3) is
center. The control center carries out a centralized extén ummarized in Algorithnill

Kalman filter to estimate the system statg] based on all Here F, — agf)lz:z[mk] is the linearization of the system,

data across the system. and N is the time length of measurements. The prediction
processf (z[k|k]) is stated as follows.

ak+10k] T [ @ualk+ 1]k
dM[[k;F 1||k]] J?L,Iv[f[k;+|1|]k]
R ok + 11k w1k + 1]k
FEIFED =1 5o 1k] | = | 6uk+ 1]k

Gplk + 1|k] Ok + 1|k]
Golk+ 1k | | GLlk+1/k]

where

Fig. 1. A centralized framework. PMUs send new measurenterdscontrol Z1,m [k 't 1|k[]k +1JK]
ml/,m

center. The extended Kalman filter is carried out by a cortealter based on =1 4 [k + 1]k]
I,m
all data across the system. ’ 5 o
y exp(— T @, [k|k] cos (%

) = @[] ] sin (24ELED))

) + &0, [K|K] COS(‘E"'L )]

)

X

) : gi‘k

Given the system equationE] (3), we apply an extended exp(— 2L [, [k| k] sin (2
Kalman filter to estimate the system state. Kalman filter (KFy°:[F + 1[k] = cu[k|]
is a recursive algorithm to estimate the state of a lineaf![" + 1kl = @ilklkl.
dynamic system based on a series of noisy measurements. ) o )
Given the dynamic model, the KF predicts the priori state in®- Initial Point and Coefficient Choice
the future and computes the difference between the prediti The accuracy and convergence of EKF rely heavily on the
and the measurements. Then KF updates the posteriori estitaice of initial points. In the context of oscillation esation,
tion using the optimal Kalman gain and repeats the processFast Fourier Transform (FFT) or other similar technology
With white noises, Kalman filter minimizes the mean squarexhn be employed as a trigger, and the result can be used as
estimation error. a choice of initial points. FFT can estimate the spectra of

When the dynamic system is nonlinear, the extendsthusoids with limited measurements and alarm the operator
Kalman filter can be applied. Around the current estimatedith potential oscillations if the energy of some frequency
state, the EKF approximates the nonlinear system by a firdiffers from noises significantly. These results can be wsed
order linearization and applies the KF to the linearizedesys inputs to Algorithn{l, and EKF will estimate the fundamental
to find the optimal Kalman gain. The nonlinear system mod&kequency and damping factors. Other approaches such as
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singular value decomposition (SVD) [12] can be applied to PMU 2 PMU 2
increase the confidence of the initial values. PMU 3 PMU 3
PMU 1 PMU 1
Another possible choice is to use a look-up table, which ; g
can be built according to system operators’ knowledge of the i k] :”[ ] //ys[k] | /!
system and its typical oscillation modes. These modes can | / Ntk [P Catn
serve as the initial estimates which are fed into the EKF AN / oo

algorithm.

The proposed EKF algorithm is a model-based method, and
its performance relies on the proper choice of coefficients.
Tuning of the covariance matrix of nois€@; and Ry, is the (a) Exchange measurements (b) Exchange pre-estimates
major approach to adjust the performance of EKF. A lar
Q. or a smallR;, usually causes fluctuation around the actual
value, while a smally;. or a largeR; normally results in poor
tracking. In this work, the tuning of coefficients is based on As shown in Figurd 3(a), each PMU takes new measure-
heuristics. ments and collects new information from its neighbour(s).
Based on this local information, each PMU carries out EKF
to obtain a pre-estimation of the system statg,. Then
. i . o PMUs broadcasts its pre-estimation to its neighbour(s) and

In this section, we consider a distributed framework of EKF;pqates its estimate,, by diffusion of all the pre-estimation
Note that, the term “PMU" in this section is in a much broadgfyiected from its neighbour(s). The diffusion EKF algbrit
sense. It refers to any agent that can collect measurement d@ qescribed in Algorithni2.
communicate with other “PMUSs”, and carry out algorithms. A
PMU in this work can be an actual PMU device, a PDC, Algorithm 2 Diffusion EKF (DEKF)

PMU 4 PMU 4

Ig. 3. Information exchanges at PMU 4.

IV. DISTRIBUTED EXTENDED KALMAN FILTER

super PDC, or a data center. 1. Initialize Z,,[0] — 1] and P,,[0] — 1] for each PMUm.
As shown in Figure[]2, no control center is needed in 9 Fork=0: N — 1
the fully distributed framework. At each time step, PMUs Each PMU sends measurements to its neighbour(s).
communicate with their neighbor(s), and EKF is carried dut a Incremental Update
each PMU. Under this framework, each PMU has its estima- Form=1:M
tion, -fm = [dl,m; e ;&IVI,nuwl,ma &l,ma e ;wl\/l,mv a'IVI,m]Ta Om = i‘m [k|k _ 1]

of the system state. The objective is to design algorithms to

. . P, = P,lk|lk—1
make the estimation converge to the actual value. m m k| )

Forj e NV,
;—I___E‘—____md____—_'ﬁ K=P,H;S
y1[k] [ y2[k] ‘ ! Pm = Pm + K(yj [k] - Hj@m)

| | || Pm: m_KHij

@Jr | —"ya ["t] |y5 (k] End

| | | End
l;;f.—_—_@_’ﬂ;—_ﬁr_—_%&i—_' plll Each PMU sends pre-estimation to its neighbour(s).
ys (k] yalk] Diffusion Update
Form=1:M
Pekhbour(s). EXF is caried ot based on Iocal informatoieach PMU. B [K[K] = 2 jen,, Cm.i¥s
Pm[k|k] = Pm
We formulate the topology of PMUs as a graph. Consider Em [k + 1|k] = f(Zm[k|K])
an undirected graptg = {N,€}, where N = {1,..., M} Pk +1[k] = Fp o P [k|K] E), ), + Qe
represents the PMU set anfl the edge set. Each edge End
(i,5) € € represents that PMW and PMU j can communi- End

cate with each other. We define the set of nodes connected

to a particular PMU: as the neighbors of, denoted by  Here F., — Bf(:c)| . and ¢ . is a diffusion
- o i . y 'mk or  |lz=&m[k|k] m,j
Ni={j e N:(i,j) € £}. APMU is always a neighbour of factor and satisfies the following properties.

itself. The number of neighbors of PMW: is referred to
as degree, denoted by,,|. Here we assume the graph is Z Cm,j = 1,¢m; 2 0. (4)
connected. JENm

We extend a distributed Kalman filter framework proposethe diffusion of the pre-estimation is a weighted average.
by [21], referred to as diffusion Kalman filter. The diffusio Note that, the diffusion update is not taken into accounhan t
Kalman filter attempts to approximate the global KF estimaecursion of the matrice®,,[k|k — 1] and P, [k|k], and they
tion by local information. are no longer the covariance matrix of the state estimation.
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A. State Reduction Algorithm 3 Diffusion EKF with reduced state (DEKF-R)

In Algorithm [3, each PMU estimates the entire states !- Initialize &, [0] — 1] and P [0] — 1] for each PMUm.
of the system, including amplitudes of signals from PMUs 2. Fork=0:N —1

that are not its neighbour(s). In the incremental update, Each PMU sends measurements to its neighbour(s).
for each PMU, only its neighbors’ states are updated Incremental Update

while the rest stay unchanged, which makes the process Form =1:M

slow and the communication inefficient. Here we propose o, =& [klk —1],

a state reduction framework of the DEKF to enhance P, =P, lklk—1];

the performance.AE)eflntAa the rec{uced es:[[nz%te made by Forj e A,

the mth PMU as @, = [Gm.j,, - 4m.jx,, &) » Where B .
N ={j1,--+,jjx, } is the neighbor set of thexth PMU, S=Rjr+H, P, (H, )",
am.; is the estimate of thgth PMU’s amplitudes by thenth K =P, (H, )'s™,

PMU, andz,, is the estimate of the frequency and damping Cm = P+ K(y;[k] — H,, 0m),
factor part. The reduced estimate is(3N,,|L + 2L)-by- P,=P,—-KH, P

1 dimension vector. Frequencies and damping factors of all End

modes and amplitudes of all neighboring PMUs are included
while those of the non-neighboring ones are not.

In this case, the observation matfik estimation covariance
matrix P, [k|i], process noise covarian€k;, system functions

End
Each PMU sends pre-estimation to its neighbour(s).
Diffusion Update

f(z) and Jacobian matri%,, ; are modified toH,,, P, [kl|i], F?::)T.:elj\}M
okt B o fro(z) @nd E  accordingly. For thenth PMU, J "
define the observation matriid;, € RVmlx2WNmlL+2L) gg am k) = 3" dmgael,
r H;w_1 P1ENMNN;
- End
- _ m,j2 A B
m gm[k|k] = Zjej\/m Cm,jfj )
- Ty [KIK] =
- TG | N | N ~ e T
11--- 00+ -+ 00--- 00--- [a,,,b7j1[l<:|k],---,a,,mjwm‘[k|k;],§m[k;|k]] ,
00--- 11-++ -+- 00--- 00--- P [k|k] = P,
- : : : : : ) Tk + LK = [ (25, [K[E]),
00 00 - 11 00 Pnlh 411k =
L OO0 00 T 00 Fr P FIR(Fy )7 + Qe
whereH,, . is theith row of H,, with the (2(i — 1)L + 1)th End

to 2iLth elements beings and the rest being zeros. The End
formulas of other matrices are derived accordingly and teahit
here.

~The diffusion EKF under the reduced state framework i§qorithm reduces the computational complexity in two ways
similar to Algorithm[2. Each PMU receives measuremenige first one is due to the recursive nature of Kalman filter.
from its neighbour(s) and estimates accordingly. AftemdBt \yhen new measurements are taken, conventional algorithms,
ing the pre-estimates, PMUs comminute this information andg  prony, need to include part of the historical data in the
make a diffusion to update its estimate. However, each PMid|cylation to improve the accuracy. While in Kalman filter,
only maintains amplitude estimates of its neighbour(s)#ed e historical information is included in the covariancetrixa
diffusion is .carried out across neighbour(s) who estimtttes 5,4 computation needs to be carried out only regarding new
same amplitudes. o _data. The second simplification comes from the distributed
Recall that the reduced estimatiaf), by themth PMU IS framework. The distributed EKF decouples data and compu-
comprised of the amplitudes of its neighbors and the frequen,iion to each PMU, which makes it possible to parallelize
and damping factor part. Denojg;, ; as the pre-estimate of ihe computation process and reduce the total time. Although
am.j, ¢, as the one oft,,, andy,, as the one ofi,,. The it demands each PMU to have the computational capability,

reduced state diffusion EKF is summarized in Algorithin 3. the requirement is low since each PMU only processes local
Here d,, ;; and c,,; are diffusion factors, where,, ; and latest information.

satisfies properties stated in equatibh (4) a@nd;, satisfies
the following properties.
V. NUMERICAL RESULTS
LieNrwy dmi = 1 dmji 2 0. In this section, we present numerical results using both
The distributed EKF algorithm relieves the comminutiosimulated and real PMU data collected from real-world syste
burden greatly since information is flowing locally insteadscillation events. We first apply the proposed algorithms o
of congested to a control center. In addition, the proposadnoisy ring down sinusoid signal and compare the accuracy
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of the proposed algorithms with Prony [11] and ADMM-
Prony [17], a decentralized extension of Prony. Then we test

TABLE |
SINGLE SINUSOID WITH DIFFERENT NOISE LEVELS

EKF anq D.EKF-R using a test case Iib_ral'_;_Ll[ZZ]. After that., Error Freq | Damping | Freq | Damping
real oscillation data from Jiangsu Electric Power Compamny i SNR=50db SNR=40db
i i Mean (Prony .00% .48% .00% 1.51%
China are examined.
Std (Prony) 00% | .38% | .00% | 1.17%
Mean (ADMM) | .00% | .84% | .00% | 2.67%
. . . . . . Std (ADMM) 00% | .74% | .00% | 2.03%
A. Ring Down Sinusoids with Different Noise Levels Mean (EKF) 0% T 55% T 00% T 171%
i i ; Std (EKF) 00% |  42% | .00% | 1.24%
_ In th_ls case, the measurement is an e>_<ponen_t|ally damped Mean (DEKF) R e e
sinusoid with a zero-mean white Gaussian noise stated as | sy (DEkF) 00% | 273% | 02% | 5.63%
Ym|k] = m[exp(—ck/ fs) cos(w/ fsk + ¢m) + em[k]], Where Mean (DEKF-R) | .00% | 3.33% | .05% | 6.9%
the frequency isy = 47 rad/s, the damping facter = 0.0126, Std (DEKF-R) | .00% | 2.41% | .03% | 4.05%
the phase angle, and, [k] the noise. The correspondin SNR=30db SNR=20db
¢m the phase angle, ang, : p g Mean (Prony) 00% | 4.68% | .02% | 18.26%
damping ratio is{ = o/vo? + w? = 0.1%. The phase angle Std (Prony) .00% | 3.58% | .01% | 85.11%
®m is assumed to be uniformly distributed witHiamr /2, 7/2]. g/liaFA (DAI\I/?%M) -883? 12%?3%3)/ -8%3 1?3-:%:}/
f o f t . (] . 0| . () . (0l
The total number of P_MUs is setto B¢ = 5. The amplltudes Mean (EKF) 00% 1 2.02% o019 | 11.86%
of PMUs are made different to model real-world signals from Std (EKF) 00% | 298% | 01% | 9.04%
power systems. The sample rgteis selected to be 30Hz and Mean (DEKF) 07% | 13.06% | .07% | 35.68%
; ; ; Std (DEKF) .03% | 10.05% | .05% | 29.33%
the length of the tllme window is sgt as second_g. o Mean (DEKF-R) | 08% | 1141% | 05% | 35.07%
For the centralized EFK algorithm, the initial point is Std (DEKF-R) 03% | 859% | .03% | 26.28%

assumed to be uniformly distributed within[a70%, 130%]
range of the real value. The filter parameters are selected as
R, = 10731 where I is an identity matrix with a proper are summarized in Tab[eZA. It is shown that the performance
dimension Q) is a diagonal matrix whose firgt\/ L diagonal of centralized EKF is close to Prony. The accuracy of dis-
elements are set to zeros, and the BStdiagonal elements tributed EKF with reduced states is comparable with the dne o
are aroundl0—?. ADMM, while DEKF-R requires no coordinator and no global

For the distributed EKF algorithm, the communicatioinformation exchange. With a low level of noise, both EKF
topology is illustrated in FigurEl2, where the communicatioand Prony work well. DEKF-R gives more significant error
path of five PMUs forms a connected graph with each PM&k compared to ADMM due to less information exchange, but
communicating with its neighbor(s) only. The initial estita the errors are all within the acceptable range. As the lefrel o
at each PMU is assumed to be uniformly distributed withinoise increases, EKF starts to outperform Prony, both in the
a [—70%, 130%] range of its corresponding actual value. Diaccuracy and stability of the estimates. ADMM is based on
agonal elements of the measurement noise covariance ma@igny thus sensitive to noise and performs worse than DEKF
R, are around0~* and the process noise covariarigg »  when signal-to-noise ratio (SNR) is as large as 20db. Anothe
is a diagonal matrix whose first|N,,|L diagonal elements observation to note is that DEKF-R dominates DEKF, which
are zeros, and lagtL diagonal elements are around—5. indicates the effectiveness of state reduction.

The authors in[17] extended Prony algorithm to a decentral-
ized version, referred as ADMM-Prony. Under this framewor .
a system coordinator is still needed who collects informatilé' WECC Test Case Library
across the entire system. Each PMU first carries out a linearAuthors of [22] established a test case library for os¢diat
estimation locally based on individual measurements andsse detection and forced oscillation source location in power
the coordinator estimation results. The coordinator ctdlell systems. A reduced WECC 179-bus 29-machine system is
estimates, averages them and broadcasts the diffusion bsickulated in TSAT with integration a step size aroun@b4s.
to PMUs. Given this global diffusion, each PMU solves &ach bus is assumed to monitored by PMUs at satdz. All
quadratic optimization to trade off the estimation accyraed generators are presented by a classical second-orderediffe
the tracking error of the diffusion, weighted ky and sends tial model with damping parameter equals4to
the updated estimate to the coordinator. The iterationicoas In each test case, damping parameters of some generators
till the diffusion converges. Compared to the centralizeahly, are set such that they are poorly or negatively damped. @akin
ADMM algorithms require the exchange of the estimateabe first test case as an example, the damping factor of
rather than the PMU measurements between PMUs and gemeratort5 and 159 are set to be-2 and 1, respectively. At
coordinator, which relieves the communication burdentlyea 0.5 second, a three-phase short circuit is added atlbgsnd
However, the requirement of a system-level coordinatoremakcleared by0.55 second to trigger oscillations in the system.
it not fully distributed, and the system will be vulnerableda As can be found in Figurg 4{a), befodes second, the speed
subject to a single point of failure at the coordinator. Irsth of rotors remains a60Hz. After the fault at0.5 second, all
simulation, the weight of tracking error is set@as- 0.01 and measurements begin to oscillate with different magnituses
the convergent tolerance is set@81. shift phase angles.

One thousand Monte Carlo runs for each level of noise areln this case, we first apply FFT to determine the number of
carried out. Means and standard deviations of estimatimr ermodes and generate initial estimates for EKF methods. Feed
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gg:g;‘l‘sg a majority of the 220kV substations, major power plants,

FFRotor 9 and all renewable power plants. In this subsection, PMU
~Rotor 11

data collected from real system oscillation events are tsed
validate the proposed oscillation monitoring algorithms.
1) Case 1:In this case, real and reactive power, voltage
| magnitude and angle, current magnitude and angle, and rotor
0 05 1 Time () 15 2 25 speed and angle measurements from more than 160 PMUs
() Rotor speed measurements are collected, at a reporting rate §Hz. As shown i 5(a),
‘ ‘ ‘ ‘ ‘ an oscillation mode with frequency aroun#iz lasts for 25
0031 ] seconds. We remove the DC component in the data, carry out
0.02¢ 1 the normalization and feed the data from 60 to 80 seconds to
0.01f 1 FFT. As shown in Figure 5(p), FFT results suggest a dominant
o : . . - : mode arpund).67Hz. Using th_is result as initi_al estimates
Frequency (H2) for Algorithm [I and[B, we estimate the damping factor and
(b) FET frequency in both centralized and distributed fashions.

Rotor Speed (Hz)

Magnitude

Measurements
~Fitting of CEKF
~Fitting of DEKF-R
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o
Real Power
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©
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=
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(c) Measurements and fitted curve of rotor 159 (@) Generator power measurements
Fig. 4. WECC test case 1: rotor speed 2!
'%O.S
s
FFT with speed data of rotor 30 frof).7 second t010.7 % 1 2 3 4 5 6

Frequency (Hz)
(b) FFT results

second, and the spectra shows that there are two modes of fre-
quency0.7Hz and1.4Hz, respectively. Set the initial estimates
atw; =0.7, wg =1.4 and oy = 02 = 0 and run centralized
EKF with parameters), = 10~°I and Rj, = 10~3I. The
estimation results are summarized in Tdble Il. It can be doun
that EKF successfully identify the poorly damped frequency

at 1.4Hz, and the difference between the measurements and Fuing of CEKE ]
fitted signal is small. The measurements and fitted spee curv 61 o2 63 64 065 66 67 68 69 70
of rotor 159 are plotted in Figur€ 4(E) as an example. Time (<)

o
3

=)
T

o
3
T

Power (p.u.)

~Measurements

iR
|

(c) Fitting of power

TABLE Il
TEST CASELl: 20SCILLATION MODES

o
3
T

Estimate w o w o :,? o—\
CEKF 1.4016 | —0.0016 | 0.6927 | 0.4715 £ \M :
~Measurements i
DEKF-R | 1.3999 | —0.0011 | 0.6892 | 0.2761 © 05 Eiting of cexF
{*Fitting of DEKF-R | | | . |
. el . . 60 61 62 63 64 65 66 67 68
Substitute the same initial points to the proposed Algartith Time (s)
assuming that the communication of PMUs forms a circle (d) Fitting of current magnitude

like the one shown in Figuffd 2, and each PMU communicates _ o

with its two neighbours. As shown in FigUre 4(c), the tragkin™'9: 5 Jiangsu data case 1: 1 oscillation mode
error of rotor 159 is larger than the one of centralized EKF
due to the lack of global information. But the difference i
still small and within the acceptable range.

Estimation results are summarized in Tablg Ill. The es-

Tmated frequency of oscillation is arourd65 Hz with a

damping factor of about.017. The fitted curve of power and

current magnitude of both centralized and distributed veags

C. Real PMU Data from Jiangsu Electric Power Company presented in Figuie 5(c) afd 5(d). Although errors exishin t
Jiangsu Electric Power Company, one of the largest proviedrrent magnitude measurements, EKF performs well.

cial power company in China, has installed generation dgpac 2) Case 2:In this case, the voltage signal oscillates more

of 100GW and peak load of 92GW. Over 160 PMUs, witlthan 60 seconds. Uselé seconds window of data and repeat

thousands of measurement channels, have been installedhan same process. FFT suggests that there are two osdillatio

the Jiangsu system. These PMUs cover all 500kV substation®des around 1Hz and 5Hz, respectively. Given this initial



TABLE Il
JIANGSU DATA CASE 1: 1 OSCILLATION MODE

Estimate w o

CEKF 0.6513 0.017

DEKF-R | 0.6438 | 0.0163

TABLE IV
JIANGSU DATA CASE 2: 2 OSCILLATION MODES

Estimate w o w o
CEKF 1.1461 | —0.0215 | 4.9749 | —0.0222
DEKF-R | 1.1450 | —0.0203 | 4.9494 | —0.0737

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. ?, NO. ?, MARQ@B??

A novel distributed EKF-based algorithm is proposed to es-
timate oscillation frequency and damping ratios direcilge
fully distributed framework makes it possible to estimate a
a fast reporting rate without information disclosure conse
The effectiveness of the proposed algorithm is demonsitrate
using both simulated and real data.

(1]

(2]

estimates, the proposed EKF algorithms are carried out, and
estimation results can be found in Tabld IV and Fiddre 6. The

estimated frequencies are arouhd4Hz and 4.97Hz, with

(3]

negative damping. Figufe 6[c) and 8(d) show that the prapose

methods perform well with multiple modes.
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Fig. 6. Jiangsu data case 2: 2 oscillation modes

VI. CONCLUSION
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Oscillation monitoring is essential in power systems Qg
detect events and help system operators to identify theesaus

and locations of events. Conventional centralized algor#

put heavy burdens on data communications infrastructude a{%o]

suffer from a single point of failure and data privacy prable
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