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Distributed Estimation of Oscillations in Power
Systems: an Extended Kalman Filtering Approach

Zhe Yu†, Di Shi†, Zhiwei Wang†, Qibing Zhang‡, Junhui Huang‡, and Sen Pan††

Abstract—Online estimation of electromechanical oscillation
parameters provides essential information to prevent system
instability and blackout and helps to identify event categories
and locations. We formulate the problem as a state space
model and employ the extended Kalman filter to estimate
oscillation frequencies and damping factors directly based on
data from phasor measurement units. Due to considerations of
communication burdens and privacy concerns, a fully distributed
algorithm is proposed using diffusion extended Kalman filter.
The effectiveness of proposed algorithms is confirmed by both
simulated and real data collected during events in State Grid
Jiangsu Electric Power Company.

Index Terms—Oscillation detection and estimation; extended
Kalman filter; distributed estimation.

I. I NTRODUCTION

ELECTROMECHANICAL oscillations are observed in
interconnected power systems after large disturbances.

Poorly damped oscillations reduce margins of power sys-
tems and could cause system instability or blackout. Wide-
area measurement system (WAMS) technology using phasor
measurement units (PMUs) makes it possible to observe the
phenomenon of oscillations and estimate parameters such as
frequencies, damping factors, and magnitudes. These parame-
ters contain vital information about modes of the power system
and help operators to identify event categories and locations.

Compared to conventional supervisory control and data ac-
quisition (SCADA) systems, PMUs have higher sampling rate
and are able to measure phase angles, which attract significant
interests and investments in the past decade. Department of
Energy (DoE) has spent over $328 million in aggregate on
synchrophasor technology and related communications net-
works [1]. By 2015, there were over 1,700 PMUs on the North
American power grid, covering the entire U.S. high-voltage
transmission network [2]. In Jiangsu province of China, more
than 160 PMUs have been deployed, covering all 500kV and
majority of 220kV substations.

On the one hand, abundant time-stamped data from PMUs
allow system operators to monitor the system in detail and
better understand its dynamics. On the other hand, the high
sampling rate of PMUs creates an enormous burden on the
communication infrastructure under the existing centralized
control mechanism, in which all data are uploaded to and
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processed in a control center. This mechanism limits many
potential applications of WAMS which require PMU to have
higher reporting rates. Also, a centralized mechanism is vul-
nerable to cybor attacks. An improved framework is needed
which can help better fulfill PMU’s capabilities given limited
network transit and computation capacity.

A. Summary of Results

We develop a fully distributed algorithm to monitor sys-
tem oscillations. In this framework, information is exchanged
locally, and computation is distributed to each PMU or PDC.

We first extend the formulation from [3] to a multi-
measurements framework. A nonlinear system is formulated,
whose states include frequencies, damping factors, and mag-
nitudes of various oscillation modes from each PMU. The
frequencies and damping factors are assumed consistent across
the entire system while the amplitudes and phasors of each
PMU may be different. The observation of the nonlinear
system is measurements from PMUs plus white noises.

Then we propose a centralized extended Kalman filter
(EKF) which can directly estimate oscillation frequenciesand
damping factors of multiple modes with online implementa-
tion. Furthermore, a fully distributed EKF framework is de-
veloped in which no central coordinator is needed, and PMUs
communicate only with neighbour(s). The EKF computation
is carried out at each PMU based on local information to
estimate oscillation parameters. A consensus is achieved by a
diffusion process. The proposed methods are capable of online
implementation because of the recursive nature of EKF. The
distributed nature allows parallel computing which demands
lower requirements of single computational resource and re-
lieves the communication burden compared to conventional
methods.

B. Related Work and Organization

There is extensive literature on oscillation detection and
estimation, most of which is focusing on centralized mecha-
nisms. Some of the well known methods include matrix-pencil
method (MP) [4], [5], eigenvalue realization algorithm (ERA)
[6], [7], Hankel total least-squares (HTLS) [8], Hilbert-Huang
transform (HHT) [9], Prony methods [10], [11], and extended
Kalman filter [3], [12], [13]. Most of these methods are not
designed for online implementation and do not scale up well.
An attempt of applying online estimators of Prony method can
be found in [14].

Due to the explosion of data volume, distributed computing
and data processing algorithms started to obtain increasing
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attention in recent years [15], [16], while few works have been
reported on distributed oscillation monitoring. Authors in [17]
modeled the Prony method as a consensus optimization and
applied alternating direction methods of multipliers (ADMM)
and examed the algorithm’s performance with different com-
munication environments. However, the proposed ADMM
method still requires a central coordinator to implement.

The work closest to this paper is [13], in which the authors
presented a consensus extended Kalman filter to estimate
oscillation modes indirectly. In this work, however, oscilla-
tion frequencies and damping factors are directly estimated.
Furthermore, measurement diffusion and state reduction are
applied to enhance the performance of EKF.

In [18], the authors extended the multi-channel Prony to
a weighted least squared estimation taking in to account of
channel covariances. A distributed data-diffusion algorithm is
developed following the idea of Kalman filter gain. However,
the extended Kalman filter approach proposed in this work has
the potential to deal with dynamics in signals [19] including
frequency fluctuation, while Prony applies well only in station-
ary scenarios. In addition, the proposal utilizes not only data
fusion but also estimate fusion and has a better behavior than
Prony in noisy scenarios according to the numerical results.

The remainder of the paper is organized as follows. In
section II, we formulate a nonlinear state space model, whose
states include oscillation frequencies, damping factors,and
magnitudes. A centralized extended Kalman filter is applied
in section III. Considering the data volume and comminution
burden, we present a fully distributed EKF framework in
section IV. Numerical results based on simulated and real data
in section V confirm the desirable performance of proposed
algorithms, and section VI concludes the paper.

II. PROBLEM FORMULATION

As discussed in [10] and [20], electromechanical oscillations
in power systems can be represented as a sum of some
exponentially damped sinusoids. In a discrete framework,
a system measurementy[k] = [y1[k], · · · , yM [k]]T can be
expressed as follows.

ym[k] =
∑L

l=1 Al,m exp(−σlk
fs

) cos(ωlk
fs

+ φl,m) + εm[k],
(1)

where ym[k] is the measurement of themth PMU at the
kth time instant1, T the transpose operator,M the number
of PMUs, L the number of oscillation modes,Al,m ∈ R the
amplitude,σl the damping factor,ωl the frequency,φl,m the
phase angle,fs the sampling rate, andεm[k] the measurement
error. The measurement noise is assumed to be a white
Gaussian noise with zero mean and a diagonal covariance
matrix Rk = diag(R1,k, . . . , RM,k). Measurements from dif-
ferent PMUs may have various amplitudes and phase angles,
while frequencies and damping factors are assumed to be
consistent across the system.

1In practice, each PMU may contain multiple channels. For notation
simplicity, we assume each PMU contains single channel measurements.
Results can be easily extended to the case of multi-channel measurements.

Inspired by [3], we formulate a nonlinear system whose
states contain frequencies and damping factors of the oscilla-
tion modes. Consider a sinusoid signal as follows.

sl,m[k] , Al,m exp(−σlk
fs

) cos(ωlk
fs

+ φl,m)

= exp(−σlk
fs

)Al,m[cos(ωlk
fs

) cos(φl,m)

− sin(ωlk
fs

) sin(φl,m)]

= exp(−σlk
fs

)[Bc
l,m cos(ωlk

fs
) +Bs

l,m sin(ωlk
fs

)],

whereBc
l,m , Al,m cos(φl,m) and Bs

l,m , −Al,m sin(φl,m).
Consider the evolution of the sinusoid signal as follows.

sl,m[k + 1] = exp(−σl(k+1)
fs

)Bc
l,m cos(ωl(k+1)

fs
)

+ exp(−σl(k+1)
fs

)Bs
l,m sin(ωl(k+1)

fs
)

= [Bc
l,m(cos(ωlk

fs
) cos(ωl

fs
)− sin(ωlk

fs
) sin(ωl

fs
))

+Bs
l,m(sin(ωlk

fs
) cos(ωl

fs
) + cos(ωlk

fs
) sin(ωl

fs
))]

× exp(−σl

fs
) exp(−σlk

fs
).

Define system states as signal magnitudes, frequencies, and
damping factors as follows.

xl,m[k] =

[

xc
l,m[k]

xs
l,m[k]

]

=

[

Bc
l,m exp(−σlk/fs) cos(ωlk/fs)

Bs
l,m exp(−σlk/fs) sin(ωlk/fs)

]

,

ωl[k] = ωl,
σl[k] = σl.

The state transition is presented as follows.

xc
l,m[k + 1] = exp(−σl[k]

fs
)xc

l,m[k] cos(ωl[k]
fs

)

− exp(−σl[k]
fs

)xs
l,m[k] sin(ωl[k]

fs
)

+ǫcl,m[k],

xs
l,m[k + 1] = exp(−σl[k]

fs
)xc

l,m[k] sin(ωl[k]
fs

)

+ exp(−σl[k]
fs

)xs
l,m[k] cos(ωl[k]

fs
)

+ǫsl,m[k],

ωl[k + 1] = ωl[k] + ǫωl [k],
σl[k + 1] = σl[k] + ǫσl [k],

(2)

where ǫ is the system noise. The measurement equation (1)
can be written as

ym[k] =

L
∑

l=1

(xc
l,m[k] + xs

l,m[k]) + εm[k].

Denote the amplitude vector of modes measured by
the mth PMU by am[k] =

[

x1,m[k], · · · , xL,m[k]
]T

.
Define the state of the system as
x[k] =

[

a1[k], · · · , aM [k], ω1[k], σ1[k], · · · , ωM [k], σM [k]
]T

,
which has a dimension of(2ML+2L)-by-1 and is comprised
of two parts. The first part,a1[k], · · · , aM [k], is the magnitude
of oscillation modes measured at different PMUs. The second
part,ωl andσl, is the frequency and damping factor of each
mode and this part is the consensus across different PMUs.

We can write the transition in a general form as follows.

x[k + 1] = f(x[k]) + ǫ[k]

where the transition functionf(·) is nonlinear and can be
derived from equation (2). We assume thatǫ[k] is a white
Gaussian noise with zero mean and covariance matrixQk.
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Given the system states and equation (1), we obtain the
observation function as follows.

y[k] = Hx[k] + ε[k]

where

H =











H1

H2

...
HM











=











1 1 · · · 0 0 · · · · · · 0 0 · · · 0 0 · · ·
0 0 · · · 1 1 · · · · · · 0 0 · · · 0 0 · · ·

...
...

...
...

...
0 0 · · · 0 0 · · · · · · 1 1 · · · 0 0 · · ·











.

Here Hi ∈ R
1×(2ML+2L) is the ith row of the observation

matrix H . The (2(i− 1)L+ 1)th to 2iLth elements inHi

are 1s and others are zeros. Thus, the constructed system is
summarized as follows.

x[k + 1] = f(x[k]) + ε[k]
y[k] = Hx[k] + ǫ[k]

(3)

III. C ENTRALIZED EXTENDED KALMAN FILTER

In this section, a centralized framework of EKF is con-
sidered as shown in Figure 1. At each time instant, new
measurements are collected and sent from PMUs to a control
center. The control center carries out a centralized extended
Kalman filter to estimate the system statex[k] based on all
data across the system.

x̂[k]

y1[k]
y2[k]

y3[k]

y4[k]

Fig. 1. A centralized framework. PMUs send new measurementsto a control

center. The extended Kalman filter is carried out by a controlcenter based on

all data across the system.

Given the system equations (3), we apply an extended
Kalman filter to estimate the system state. Kalman filter (KF)
is a recursive algorithm to estimate the state of a linear
dynamic system based on a series of noisy measurements.
Given the dynamic model, the KF predicts the priori state into
the future and computes the difference between the predictions
and the measurements. Then KF updates the posteriori estima-
tion using the optimal Kalman gain and repeats the process.
With white noises, Kalman filter minimizes the mean squared
estimation error.

When the dynamic system is nonlinear, the extended
Kalman filter can be applied. Around the current estimated
state, the EKF approximates the nonlinear system by a first-
order linearization and applies the KF to the linearized system
to find the optimal Kalman gain. The nonlinear system model

and new measurements are used to calculate new state pre-
dictions. This process iterates and the state space model is
re-linearized around updated state estimates.

A. Centralized Extended Kalman Filter

Algorithm 1 Centralized Extended Kalman Filter (CEKF)

1. Initialize x̂[0| − 1] andP [0| − 1].
2. For k = 0 : N − 1

S = Rk +HP [k|k − 1]HT

K = P [k|k − 1]HTS−1

x̂[k|k] = x̂[k|k − 1] +K(y[k]−Hx̂[k|k − 1])
P [k|k] = P [k|k − 1]−KHP [k|k − 1]
x̂[k + 1|k] = f(x̂[k|k])
P [k + 1|k] = FkP [k|k]FT

k +Qk

End

Let x̂[k|j] denote the minimum mean squared error estimate
of x[k] given measurements up to and including timej and
P [k|j] the covariance matrix of the estimation error. Starting
from the initial estimatêx[0| − 1] andP [0| − 1], the iteration
of the extended Kalman filter for the system equation (3) is
summarized in Algorithm 1.

HereFk = ∂f(x)
∂x

|x=x̂[k|k] is the linearization of the system,
and N is the time length of measurements. The prediction
processf(x̂[k|k]) is stated as follows.

f(x̂[k|k]) =





























â1[k + 1|k]
...

âM [k + 1|k]
ω̂1[k + 1|k]
σ̂1[k + 1|k]

...
ω̂L[k + 1|k]
σ̂L[k + 1|k]





























=





























x̂1,1[k + 1|k]
...

x̂L,M [k + 1|k]
ω̂1[k + 1|k]
σ̂1[k + 1|k]

...
ω̂L[k + 1|k]
σ̂L[k + 1|k]





























where

x̂l,m[k + 1|k]

=

[

x̂
c
l,m[k + 1|k]

x̂
s
l,m[k + 1|k]

]

=

[

exp(− σ̂l[k|k]
fs

)[x̂c
l,m[k|k] cos( ω̂i[k|k]

fs
)− x̂

s
l,m[k|k] sin( ω̂i[k|k]

fs
)]

exp(− σ̂l[k|k]
fs

)[x̂c
l,m[k|k] sin( ω̂i[k|k]

fs
) + x̂

s
l,m[k|k] cos( ω̂i[k|k]

fs
)]

]

ω̂l[k + 1|k] = ω̂l[k|k]
σ̂l[k + 1|k] = σ̂l[k|k].

B. Initial Point and Coefficient Choice

The accuracy and convergence of EKF rely heavily on the
choice of initial points. In the context of oscillation estimation,
a Fast Fourier Transform (FFT) or other similar technology
can be employed as a trigger, and the result can be used as
a choice of initial points. FFT can estimate the spectra of
sinusoids with limited measurements and alarm the operator
with potential oscillations if the energy of some frequency
differs from noises significantly. These results can be usedas
inputs to Algorithm 1, and EKF will estimate the fundamental
frequency and damping factors. Other approaches such as
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singular value decomposition (SVD) [12] can be applied to
increase the confidence of the initial values.

Another possible choice is to use a look-up table, which
can be built according to system operators’ knowledge of the
system and its typical oscillation modes. These modes can
serve as the initial estimates which are fed into the EKF
algorithm.

The proposed EKF algorithm is a model-based method, and
its performance relies on the proper choice of coefficients.
Tuning of the covariance matrix of noise,Qk andRk, is the
major approach to adjust the performance of EKF. A large
Qk or a smallRk usually causes fluctuation around the actual
value, while a smallQk or a largeRk normally results in poor
tracking. In this work, the tuning of coefficients is based on
heuristics.

IV. D ISTRIBUTED EXTENDED KALMAN FILTER

In this section, we consider a distributed framework of EKF.
Note that, the term “PMU” in this section is in a much broader
sense. It refers to any agent that can collect measurement data,
communicate with other “PMUs”, and carry out algorithms. A
PMU in this work can be an actual PMU device, a PDC, a
super PDC, or a data center.

As shown in Figure 2, no control center is needed in
the fully distributed framework. At each time step, PMUs
communicate with their neighbor(s), and EKF is carried out at
each PMU. Under this framework, each PMU has its estima-
tion, x̂m = [â1,m, · · · , âM,m, ω̂1,m, σ̂1,m, · · · , ω̂M,m, σ̂M,m]T ,
of the system state. The objective is to design algorithms to
make the estimation converge to the actual value.

y1[k]

y1[k]

y2[k]

y2[k]

y3[k]

y3[k]

y4[k]

y4[k]

y5[k]

y5[k]

Fig. 2. A fully distributed framework. PMUs communicate with their
neighbour(s). EKF is carried out based on local informationat each PMU.

We formulate the topology of PMUs as a graph. Consider
an undirected graphG = {N , E}, where N = {1, . . . ,M}
represents the PMU set andE the edge set. Each edge
(i, j) ∈ E represents that PMUi and PMU j can communi-
cate with each other. We define the set of nodes connected
to a particular PMUi as the neighbors ofi, denoted by
Ni = {j ∈ N : (i, j) ∈ E}. A PMU is always a neighbour of
itself. The number of neighbors of PMUm is referred to
as degree, denoted by|Nm|. Here we assume the graph is
connected.

We extend a distributed Kalman filter framework proposed
by [21], referred to as diffusion Kalman filter. The diffusion
Kalman filter attempts to approximate the global KF estima-
tion by local information.

y1[k]
y2[k]

y3[k]

PMU 1

PMU 2

PMU 4

PMU 3

(a) Exchange measurements

ϕ4[k]
ϕ4[k] ϕ4[k]

PMU 1

PMU 2

PMU 4

PMU 3

(b) Exchange pre-estimates

Fig. 3. Information exchanges at PMU 4.

As shown in Figure 3(a), each PMU takes new measure-
ments and collects new information from its neighbour(s).
Based on this local information, each PMU carries out EKF
to obtain a pre-estimation of the system state,ϕm. Then
PMUs broadcasts its pre-estimation to its neighbour(s) and
updates its estimatêxm by diffusion of all the pre-estimation
collected from its neighbour(s). The diffusion EKF algorithm
is described in Algorithm 2.

Algorithm 2 Diffusion EKF (DEKF)

1. Initialize x̂m[0| − 1] andPm[0| − 1] for each PMUm.
2. For k = 0 : N − 1

Each PMU sends measurements to its neighbour(s).
Incremental Update

For m = 1 : M

ϕm = x̂m[k|k − 1]
Pm = Pm[k|k − 1]

For j ∈ Nm

S = Rj,k +HjPmHT
j

K = PmHT
j S

−1

ϕm = ϕm +K(yj [k]−Hjϕm)
Pm = Pm −KHjPm

End
End

Each PMU sends pre-estimation to its neighbour(s).
Diffusion Update

For m = 1 : M

x̂m[k|k] = ∑

j∈Nm
cm,jϕj

Pm[k|k] = Pm

x̂m[k + 1|k] = f(x̂m[k|k])
Pm[k + 1|k] = Fm,kPm[k|k]FT

m,k +Qk

End
End

Here, Fm,k = ∂f(x)
∂x

|x=x̂m[k|k] , and cm,j is a diffusion
factor and satisfies the following properties.

∑

j∈Nm

cm,j = 1, cm,j ≥ 0. (4)

The diffusion of the pre-estimation is a weighted average.
Note that, the diffusion update is not taken into account in the
recursion of the matricesPm[k|k − 1] andPm[k|k], and they
are no longer the covariance matrix of the state estimation.
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A. State Reduction

In Algorithm 2, each PMU estimates the entire states
of the system, including amplitudes of signals from PMUs
that are not its neighbour(s). In the incremental update,
for each PMU, only its neighbors’ states are updated
while the rest stay unchanged, which makes the process
slow and the communication inefficient. Here we propose
a state reduction framework of the DEKF to enhance
the performance. Define the reduced estimate made by
the mth PMU as x̂−

m =
[

âm,j1 , · · · , âm,j|Nm|
, x̂−

m

]T
, where

Nm = {j1, · · · , j|Nm|} is the neighbor set of themth PMU,
âm,j is the estimate of thejth PMU’s amplitudes by themth
PMU, andx̂−

m is the estimate of the frequency and damping
factor part. The reduced estimate is a(2|Nm|L + 2L)-by-
1 dimension vector. Frequencies and damping factors of all
modes and amplitudes of all neighboring PMUs are included
while those of the non-neighboring ones are not.

In this case, the observation matrixH , estimation covariance
matrixPm[k|i], process noise covarianceQk, system functions
f(x) and Jacobian matrixFm,k are modified toH−

m, P−
m [k|i],

Q−
m,k, R−

m,k, f−
m(x) andF−

m,k, accordingly. For themth PMU,
define the observation matrixH−

m ∈ R
|Nm|×(2|Nm|L+2L) as

H−
m =











H−
m,j1

H−
m,j2
...

H−
m,j|Nm|











=











1 1 · · · 0 0 · · · · · · 0 0 · · · 0 0 · · ·
0 0 · · · 1 1 · · · · · · 0 0 · · · 0 0 · · ·

...
...

...
...

...
0 0 · · · 0 0 · · · · · · 1 1 · · · 0 0 · · ·











,

whereH−
m,ji

is theith row ofH−
m with the (2(i− 1)L+ 1)th

to 2iLth elements being1s and the rest being zeros. The
formulas of other matrices are derived accordingly and omitted
here.

The diffusion EKF under the reduced state framework is
similar to Algorithm 2. Each PMU receives measurements
from its neighbour(s) and estimates accordingly. After obtain-
ing the pre-estimates, PMUs comminute this information and
make a diffusion to update its estimate. However, each PMU
only maintains amplitude estimates of its neighbour(s) andthe
diffusion is carried out across neighbour(s) who estimatesthe
same amplitudes.

Recall that the reduced estimationx̂−
m by themth PMU is

comprised of the amplitudes of its neighbors and the frequency
and damping factor part. Denoteϕa

m,j as the pre-estimate of
âm,j , ϕ−

m
as the one of̂x−

m, andϕ−
m as the one of̂x−

m. The
reduced state diffusion EKF is summarized in Algorithm 3.

Here dm,j,i and cm,j are diffusion factors, wherecm,j

satisfies properties stated in equation (4) anddm,j,i satisfies
the following properties.

∑

i∈Nm∩Nj
dm,j,i = 1, dm,j,i ≥ 0.

The distributed EKF algorithm relieves the comminution
burden greatly since information is flowing locally instead
of congested to a control center. In addition, the proposed

Algorithm 3 Diffusion EKF with reduced state (DEKF-R)

1. Initialize x̂−
m[0| − 1] andP−

m [0| − 1] for each PMUm.
2. For k = 0 : N − 1

Each PMU sends measurements to its neighbour(s).
Incremental Update

For m = 1 : M

ϕ−
m = x̂−

m[k|k − 1],
P−
m = P−

m [k|k − 1];

For j ∈ Nm

S = Rj,k +H−
m,jP

−
m(H−

m,j)
T ,

K = P−
m(H−

m,j)
TS−1,

ϕ−
m = ϕ−

m +K(yj [k]−H−
m,jϕ

−
m),

P−
m = P−

m −KH−
m,jP

−
m .

End
End

Each PMU sends pre-estimation to its neighbour(s).
Diffusion Update

For m = 1 : M
For j ∈ Nm

âm,j [k|k] =
∑

i∈Nm∩Nj

dm,j,iϕ
a
i,j ,

End

x̂m[k|k] = ∑

j∈Nm
cm,jϕ

−
j
,

x̂−
m[k|k] =
[

âm,j1 [k|k], · · · , âm,j|Nm|
[k|k], x̂−

m[k|k]
]T

,

P−
m [k|k] = P−

m ,
x̂−
m[k + 1|k] = f−

m(x̂−
m[k|k]),

P−
m [k + 1|k] =
F−
m,kP

−
m [k|k](F−

m,k)
T +Q−

m,k.

End
End

algorithm reduces the computational complexity in two ways.
The first one is due to the recursive nature of Kalman filter.
When new measurements are taken, conventional algorithms,
e.g.,Prony, need to include part of the historical data in the
calculation to improve the accuracy. While in Kalman filter,
the historical information is included in the covariance matrix,
and computation needs to be carried out only regarding new
data. The second simplification comes from the distributed
framework. The distributed EKF decouples data and compu-
tation to each PMU, which makes it possible to parallelize
the computation process and reduce the total time. Although
it demands each PMU to have the computational capability,
the requirement is low since each PMU only processes local
and latest information.

V. NUMERICAL RESULTS

In this section, we present numerical results using both
simulated and real PMU data collected from real-world system
oscillation events. We first apply the proposed algorithms on
a noisy ring down sinusoid signal and compare the accuracy
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of the proposed algorithms with Prony [11] and ADMM-
Prony [17], a decentralized extension of Prony. Then we test
EKF and DEKF-R using a test case library [22]. After that,
real oscillation data from Jiangsu Electric Power Company in
China are examined.

A. Ring Down Sinusoids with Different Noise Levels

In this case, the measurement is an exponentially damped
sinusoid with a zero-mean white Gaussian noise stated as
ym[k] = m

[

exp(−σk/fs) cos(ω/fsk+ φm) + εm[k]
]

, where
the frequency isω = 4π rad/s, the damping factorσ = 0.0126,
φm the phase angle, andεm[k] the noise. The corresponding
damping ratio isζ = σ/

√
σ2 + ω2 = 0.1%. The phase angle

φm is assumed to be uniformly distributed within[−π/2, π/2].
The total number of PMUs is set to beM = 5. The amplitudes
of PMUs are made different to model real-world signals from
power systems. The sample ratefs is selected to be 30Hz and
the length of the time window is set as10 seconds.

For the centralized EFK algorithm, the initial point is
assumed to be uniformly distributed within a[−70%, 130%]
range of the real value. The filter parameters are selected as
Rk = 10−3I where I is an identity matrix with a proper
dimension.Qk is a diagonal matrix whose first2ML diagonal
elements are set to zeros, and the last2L diagonal elements
are around10−9.

For the distributed EKF algorithm, the communication
topology is illustrated in Figure 2, where the communication
path of five PMUs forms a connected graph with each PMU
communicating with its neighbor(s) only. The initial estimate
at each PMU is assumed to be uniformly distributed within
a [−70%, 130%] range of its corresponding actual value. Di-
agonal elements of the measurement noise covariance matrix
Rm,k are around10−4 and the process noise covarianceQm,k

is a diagonal matrix whose first2|Nm|L diagonal elements
are zeros, and last2L diagonal elements are around10−8.

The authors in [17] extended Prony algorithm to a decentral-
ized version, referred as ADMM-Prony. Under this framework,
a system coordinator is still needed who collects information
across the entire system. Each PMU first carries out a linear
estimation locally based on individual measurements and sends
the coordinator estimation results. The coordinator collects all
estimates, averages them and broadcasts the diffusion back
to PMUs. Given this global diffusion, each PMU solves a
quadratic optimization to trade off the estimation accuracy and
the tracking error of the diffusion, weighted byρ, and sends
the updated estimate to the coordinator. The iteration continues
till the diffusion converges. Compared to the centralized Prony,
ADMM algorithms require the exchange of the estimates
rather than the PMU measurements between PMUs and the
coordinator, which relieves the communication burden greatly.
However, the requirement of a system-level coordinator makes
it not fully distributed, and the system will be vulnerable and
subject to a single point of failure at the coordinator. In this
simulation, the weight of tracking error is set asρ = 0.01 and
the convergent tolerance is set as0.01.

One thousand Monte Carlo runs for each level of noise are
carried out. Means and standard deviations of estimation error

TABLE I
SINGLE SINUSOID WITH DIFFERENT NOISE LEVELS

Error Freq Damping Freq Damping
SNR=50db SNR=40db

Mean (Prony) .00% .48% .00% 1.51%
Std (Prony) .00% .38% .00% 1.17%
Mean (ADMM) .00% .84% .00% 2.67%
Std (ADMM) .00% .74% .00% 2.03%
Mean (EKF) .00% .55% .00% 1.71%
Std (EKF) .00% .42% .00% 1.24%
Mean (DEKF) .02% 4.01% .07% 7.29%
Std (DEKF) .00% 2.73% .02% 5.63%
Mean (DEKF-R) .00% 3.33% .05% 6.9%
Std (DEKF-R) .00% 2.41% .03% 4.05%

SNR=30db SNR=20db
Mean (Prony) .00% 4.68% .02% 18.26%
Std (Prony) .00% 3.58% .01% 85.11%
Mean (ADMM) .00% 9.83% .03% 64.85%
Std (ADMM) .00% 116.04% .02% 1148.29%
Mean (EKF) .00% 4.02% .01% 11.86%
Std (EKF) .00% 2.98% .01% 9.04%
Mean (DEKF) .07% 13.06% .07% 35.68%
Std (DEKF) .03% 10.05% .05% 29.33%
Mean (DEKF-R) .05% 11.41% .05% 35.07%
Std (DEKF-R) .03% 8.59% .03% 26.28%

are summarized in Table V-A. It is shown that the performance
of centralized EKF is close to Prony. The accuracy of dis-
tributed EKF with reduced states is comparable with the one of
ADMM, while DEKF-R requires no coordinator and no global
information exchange. With a low level of noise, both EKF
and Prony work well. DEKF-R gives more significant error
as compared to ADMM due to less information exchange, but
the errors are all within the acceptable range. As the level of
noise increases, EKF starts to outperform Prony, both in the
accuracy and stability of the estimates. ADMM is based on
Prony thus sensitive to noise and performs worse than DEKF
when signal-to-noise ratio (SNR) is as large as 20db. Another
observation to note is that DEKF-R dominates DEKF, which
indicates the effectiveness of state reduction.

B. WECC Test Case Library

Authors of [22] established a test case library for oscillation
detection and forced oscillation source location in power
systems. A reduced WECC 179-bus 29-machine system is
simulated in TSAT with integration a step size around0.004s.
Each bus is assumed to monitored by PMUs at rate30Hz. All
generators are presented by a classical second-order differen-
tial model with damping parameter equals to4.

In each test case, damping parameters of some generators
are set such that they are poorly or negatively damped. Taking
the first test case as an example, the damping factor of
generator45 and159 are set to be−2 and1, respectively. At
0.5 second, a three-phase short circuit is added at bus159 and
cleared by0.55 second to trigger oscillations in the system.
As can be found in Figure 4(a), before0.5 second, the speed
of rotors remains at60Hz. After the fault at0.5 second, all
measurements begin to oscillate with different magnitudesand
shift phase angles.

In this case, we first apply FFT to determine the number of
modes and generate initial estimates for EKF methods. Feed
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Fig. 4. WECC test case 1: rotor speed

FFT with speed data of rotor 30 from0.7 second to10.7
second, and the spectra shows that there are two modes of fre-
quency0.7Hz and1.4Hz, respectively. Set the initial estimates
at ω1 = 0.7, ω2 = 1.4 and σ1 = σ2 = 0 and run centralized
EKF with parametersQk = 10−9I and Rk = 10−3I. The
estimation results are summarized in Table II. It can be found
that EKF successfully identify the poorly damped frequency
at 1.4Hz, and the difference between the measurements and
fitted signal is small. The measurements and fitted speed curve
of rotor 159 are plotted in Figure 4(c) as an example.

TABLE II
TEST CASE1: 2 OSCILLATION MODES

Estimate ω σ ω σ

CEKF 1.4016 −0.0016 0.6927 0.4715

DEKF-R 1.3999 −0.0011 0.6892 0.2761

Substitute the same initial points to the proposed Algorithm
3 assuming that the communication of PMUs forms a circle
like the one shown in Figure 2, and each PMU communicates
with its two neighbours. As shown in Figure 4(c), the tracking
error of rotor 159 is larger than the one of centralized EKF
due to the lack of global information. But the difference is
still small and within the acceptable range.

C. Real PMU Data from Jiangsu Electric Power Company

Jiangsu Electric Power Company, one of the largest provin-
cial power company in China, has installed generation capacity
of 100GW and peak load of 92GW. Over 160 PMUs, with
thousands of measurement channels, have been installed in
the Jiangsu system. These PMUs cover all 500kV substations,

a majority of the 220kV substations, major power plants,
and all renewable power plants. In this subsection, PMU
data collected from real system oscillation events are usedto
validate the proposed oscillation monitoring algorithms.

1) Case 1: In this case, real and reactive power, voltage
magnitude and angle, current magnitude and angle, and rotor
speed and angle measurements from more than 160 PMUs
are collected, at a reporting rate of25Hz. As shown in 5(a),
an oscillation mode with frequency around1Hz lasts for 25
seconds. We remove the DC component in the data, carry out
the normalization and feed the data from 60 to 80 seconds to
FFT. As shown in Figure 5(b), FFT results suggest a dominant
mode around0.67Hz. Using this result as initial estimates
for Algorithm 1 and 3, we estimate the damping factor and
frequency in both centralized and distributed fashions.
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Fig. 5. Jiangsu data case 1: 1 oscillation mode

Estimation results are summarized in Table III. The es-
timated frequency of oscillation is around0.65 Hz with a
damping factor of about0.017. The fitted curve of power and
current magnitude of both centralized and distributed waysare
presented in Figure 5(c) and 5(d). Although errors exist in the
current magnitude measurements, EKF performs well.

2) Case 2: In this case, the voltage signal oscillates more
than 60 seconds. Use a10 seconds window of data and repeat
the same process. FFT suggests that there are two oscillation
modes around 1Hz and 5Hz, respectively. Given this initial
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TABLE III
JIANGSU DATA CASE 1: 1 OSCILLATION MODE

Estimate ω σ

CEKF 0.6513 0.017

DEKF-R 0.6438 0.0163

TABLE IV
JIANGSU DATA CASE 2: 2 OSCILLATION MODES

Estimate ω σ ω σ

CEKF 1.1461 −0.0215 4.9749 −0.0222

DEKF-R 1.1450 −0.0203 4.9494 −0.0737

estimates, the proposed EKF algorithms are carried out, and
estimation results can be found in Table IV and Figure 6. The
estimated frequencies are around1.14Hz and 4.97Hz, with
negative damping. Figure 6(c) and 6(d) show that the proposed
methods perform well with multiple modes.
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Fig. 6. Jiangsu data case 2: 2 oscillation modes

VI. CONCLUSION

Oscillation monitoring is essential in power systems to
detect events and help system operators to identify the causes
and locations of events. Conventional centralized algorithms
put heavy burdens on data communications infrastructure and
suffer from a single point of failure and data privacy problem.

A novel distributed EKF-based algorithm is proposed to es-
timate oscillation frequency and damping ratios directly.The
fully distributed framework makes it possible to estimate at
a fast reporting rate without information disclosure concerns.
The effectiveness of the proposed algorithm is demonstrated
using both simulated and real data.

REFERENCES

[1] North American SynchroPhasor Initiative, “Use of IEC 61850-90-5
to transmit synchrophasor information according to IEEE 37.118,”
NASPI, Tech. Rep., Aug. 2014. [Online]. Available: https://www.naspi.
org/sites/default/files/referencedocuments/48.pdf

[2] D. of Energy, “Advancement of synchrophasor technologyin projects
funded by the American recovery and reinvestment act of 2009,” DoE,
Tech. Rep., Mar. 2016. [Online]. Available: https://www.smartgrid.gov/
document/SynchrophasorReport 201603.html

[3] M. Yazdanian, A. Mehrizi-Sani, and M. Mojiri, “Estimation of elec-
tromechanical oscillation parameters using an extended Kalman filter,”
IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 2994–3002,
2015.

[4] T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate
the parameters of a sum of complex exponentials,”IEEE Antennas and
Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.

[5] M. Bounou, S. Lefebvre, and R. Malhame, “A spectral algorithm for ex-
tracting power system modes from time recordings,”IEEE Transactions
on Power Systems, vol. 7, no. 2, pp. 665–683, 1992.

[6] J.-N. Juang and R. S. Pappa, “An eigensystem realizationalgorithm
for modal parameter identification and model reduction,”Journal of
Guidance, Control, and Dynamics, vol. 8, no. 5, pp. 620–627, 1985.

[7] L. D. Peterson, “Efficient computation of the eigensystem realization
algorithm,” Journal of Guidance, Control, and Dynamics, vol. 18, no. 3,
pp. 395–403, 1995.

[8] J. Sanchez-Gasca and J. Chow, “Computation of power system low-
order models from time domain simulations using a Hankel matrix,”
IEEE Transactions on Power Systems, vol. 12, no. 4, pp. 1461–1467,
1997.

[9] D. Ruiz-Vega, A. R. Messina, and G. Enrı́quez-Harper, “Analysis of
interarea oscillations via non-linear time series analysis techniques,” in
Proc. of 15th Power Systems Computation Conf, 2005.

[10] J. F. Hauer, C. Demeure, and L. Scharf, “Initial resultsin Prony
analysis of power system response signals,”IEEE Transactions on Power
Systems, vol. 5, no. 1, pp. 80–89, 1990.

[11] D. Trudnowski, J. Johnson, and J. Hauer, “Making Prony analysis more
accurate using multiple signals,”IEEE Transactions on Power Systems,
vol. 14, no. 1, pp. 226–231, 1999.

[12] J. C.-H. Peng and N.-K. C. Nair, “Enhancing Kalman filterfor tracking
ringdown electromechanical oscillations,”IEEE Transactions on Power
Systems, vol. 27, no. 2, pp. 1042–1050, 2012.

[13] T. Jiang, I. Matei, and J. Baras, “A trust based distributed Kalman
filtering approach for mode estimation in power systems,” inProc. of
the First Workshop on Secure Control Systems, 2010.

[14] N. Zhou, Z. Huang, F. Tuffner, J. Pierre, and S. Jin, “Automatic imple-
mentation of Prony analysis for electromechanical mode identification
from phasor measurements,” inProc. of Power and Energy Society
General Meeting, Providence, RI, USA, 2010, pp. 1–8.

[15] S. Kar and G. Hug, “Distributed robust economic dispatch in power
systems: A consensus + innovations approach,” inProc. of Power and
Energy Society General Meeting, San Diego, CA, USA, 2012, pp. 1–8.

[16] Z. Zhang and M.-Y. Chow, “Convergence analysis of the incremen-
tal cost consensus algorithm under different communication network
topologies in a smart grid,”IEEE Transactions on Power Systems,
vol. 27, no. 4, pp. 1761–1768, 2012.

[17] S. Nabavi, J. Zhang, and A. Chakrabortty, “Distributedoptimization
algorithms for wide-area oscillation monitoring in power systems using
interregional PMU-PDC architectures,”IEEE Transactions on Smart
Grid, vol. 6, no. 5, pp. 2529–2538, 2015.

[18] L. Fan, “Data fusion-based distributed prony analysis,” Electric Power
Systems Research, vol. 143, pp. 634–642, 2017.

[19] Z. Yu, D. Shi, H. Li, Y. Wang, Z. Yi, and Z. Wang, “An extended kalman
filter enhanced hilbert-huang transform in oscillation detection,” arXiv
preprint arXiv:1711.04644, 2017.

[20] P. Korba, “Real-time monitoring of electromechanicaloscillations in
power systems: first findings,”IET Generation, Transmission & Dis-
tribution, vol. 1, no. 1, pp. 80–88, 2007.

https://www.naspi.org/sites/default/files/reference_documents/48.pdf
https://www.naspi.org/sites/default/files/reference_documents/48.pdf
https://www.smartgrid.gov/document/Synchrophasor_Report_201603.html
https://www.smartgrid.gov/document/Synchrophasor_Report_201603.html


YU et al.: DISTRIBUTED ESTIMATION OF OSCILLATIONS IN POWER SYSTEMS:AN EXTENDED KALMAN FILTERING APPROACH 9

[21] F. S. Cattivelli and A. H. Sayed, “Diffusion strategiesfor distributed
Kalman filtering and smoothing,”IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2069–2084, 2010.

[22] S. Maslennikov, B. Wang, Q. Zhang, E. Litvinovet al., “A test cases
library for methods locating the sources of sustained oscillations,” in
Proc. of Power and Energy Society General Meeting, Boston, MA, USA,
2016, pp. 1–5.


	Introduction
	Summary of Results
	Related Work and Organization

	Problem Formulation
	Centralized Extended Kalman Filter
	Centralized Extended Kalman Filter
	Initial Point and Coefficient Choice

	Distributed Extended Kalman Filter
	State Reduction

	Numerical Results
	Ring Down Sinusoids with Different Noise Levels
	WECC Test Case Library
	Real PMU Data from Jiangsu Electric Power Company
	Case 1
	Case 2


	Conclusion
	References

