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Abstract—This paper presents a hybrid approach for forecasting 
of electricity production in microgrids with solar photovoltaic 
(PV) installations. An accurate PV power generation forecasting 
tool essentially addresses the issues resulting from the 
intermittent and uncertain nature of solar power to ensure 
efficient and reliable system operation. A day-ahead, hourly 
mean PV power generation forecasting method based on a 
combination of genetic algorithm (GA), particle swarm 
optimization (PSO) and adaptive neuro-fuzzy inference systems 
(ANFIS) is presented in this study. Binary GA is used to 
determine important input parameters that significantly 
influence the amount of output power of a PV generation plant; 
and an integrated hybrid algorithm combining GA and PSO is 
used to optimize an ANFIS based PV power forecasting model 
for the plant. The proposed approach is tested based on practical 
information of PV power generation data of a practical case 
study microgrid in Beijing. Evaluation of performance is made 
with the persistence method as a reference model, and forecasting 
results are compared with actual scenario. The results validate 
effectiveness of the proposed methodology as compared with 
commonly used forecasting approaches. The proposed approach 
outperformed artificial neural network (ANN), linea r regression 
(LR), and persistence based forecasting models, demonstrating 
its effectiveness and favorable accuracy.  

Keywords: PV Power Forecasting; Feature Selection; Binary 
Genetic Algorithm; Particle Swarm Optimization; Hybrid 
Method; ANFIS.  

1. INTRODUCTION 

Solar energy is one of the most promising energy sources 
considered free, clean and abundantly available. For these 
reasons, it keeps extending its share in electric power 
generation in the face of diminishing conventional fossil fuel 
energy sources and rising environmental protection concerns 
[1]. While solar irradiation is an inexhaustible source of 
energy, its variability poses operational difficulties in 
management of electricity supply systems [2]. Balance 
between energy generation and demand is a critical 
requirement in operation of electric power systems. High 
penetration of weather-dependent renewable energy resources 
like PV into such systems makes power regulation more 
challenging. PV power generation forecasting plays an 
important role in mitigating the challenges arising from 
resource uncertainty in power system networks in general and 
microgrid systems in particular. Microgrids typically 
aggregate distributed generation systems and energy storage 
units with local controllable loads. Day-ahead PV power 
production forecasting in microgrids is crucial to ensure 
system stability and to plan optimal unit commitment, 

economic generation scheduling, energy storage dispatch, and 
load shedding. 

The importance of the issue of solar resource forecasting 
has drawn the focus of many studies worldwide. Substantial 
body of studies in the field is mainly concerned with 
forecasting solar radiation [3-5], which is the single most 
important parameter in solar power production. Other studies 
have focused on forecasting of solar energy production 
directly [6-8]. Several forecasting techniques targeting 
different forecasting time horizons have been reported in the 
literature [9-11]. Application of time series modeling 
techniques for solar radiation and PV power generation 
forecasting has been demonstrated in references [7-8, 12]. 
Artificial neural networks based PV power and solar radiation 
forecasting methodologies have been presented in references 
[13] and [14] respectively. Other techniques reported in the 
literature include forecast modeling approaches based on 
support vector machines (SVM) [15], adaptive neuro-fuzzy 
(NF) networks [16, 17], evolutionary optimization and other 
hybrid methods [18-22]. References [23-25] provide 
comprehensive review of various photovoltaic power 
forecasting techniques. 

One of the most important tasks in data preparation for 
forecast modeling is variable or feature selection. Feature 
selection is an optimization process with the aim of choosing a 
subset of available candidate features to improve prediction 
performance, by eliminating features with little or no 
predictive information and also redundant features that are 
strongly correlated [26]. There are a number of feature 
selection techniques available in the literature. Feature 
selection techniques based on evolutionary algorithms such as 
particle swarm optimization (PSO) and genetic algorithms 
have been reported to be efficient and flexible in various 
classification and pattern recognition problems [27-30]. 
Reference [31] employs binary genetic algorithm for 
dimensionality reduction to enhance modeling performance 
for classification problems. A binary genetic algorithm based 
feature selection technique for regression problems is 
implemented in this work to enhance the performance of a PV 
power generation forecasting model.  

This paper proposes a GA-PSO-ANFIS based hybrid 
approach for a day-ahead hourly PV power generation 
forecasting. The study initially considers forecasted hourly 
representations of nine weather condition variables as 
candidate inputs. Binary genetic algorithm is used to 



 

determine a suitable set of predictive variables to improve the 
efficiency and accuracy of the PV power forecaster.  An 
integrated optimization algorithm that combines genetic 
algorithm and particle swarm optimization is then used to 
optimize the ANFIS-based forecast model. The proposed 
approach benefits from the simplicity and effectiveness of the 
particle swarm optimization algorithm and the strong global 
searching capability of the genetic algorithm to iteratively 
optimize the relatively complex ANFIS structure. The superior 
forecasting capability of the proposed approach is 
demonstrated by comparing its performance with three 
benchmark approaches; namely, persistence, linear regression 
model, and BP-NN based forecasting methodologies. 

The remainder of this paper is organized in three sections. 
Section two presents overview of the case study microgrid and 
source of modeling data, followed by the forecasting 
methodology applied in this work. Section three shows 
evaluation results and discusses the comparative advantage of 
the proposed method over other approaches. Finally, section 
four presents conclusions drawn from training and test results.  

2. DATA AND METHODOLOGY 

2.1 Modeling Data 

The data used to develop the models in this study were 
collected from a numerical weather prediction model (NWP) 
and from three PV installation units in a case study microgrid 
system located in Beijing. Usually, forecast horizons larger 
than 6 hours exploit outputs from numerical weather 
prediction models to generate accurate results [6]. Nine 
weather variables’ forecast data obtained from Weather 
Research and Forecasting (WRF) model were initially 
considered as candidate predictors. The candidate inputs 
include temperature (at the height where the PV panels are 
installed), humidity, air pressure, air density, surface 
temperature, shortwave solar radiation, low cloud cover, 
middle cloud cover and high cloud cover at the selected site 
with 15 minutes resolution covering 1 square kilometer area. 
The recorded power data correspond to observations of 10 
minutes average PV output power of three PV power 
generation units installed at Goldwind Smart Microgrid 
system for a period of one year from January 01, 2015 to 
December 31, 2015. The microgrid system is a megawatt level 
demonstration project consisting of a 2.5 MW permanent 
magnet direct drive wind turbine, PV installations totaling 
480kWp, two 65kW micro turbine units, two diesel generator 
units of 200kW and 300kW capacity, and two energy storage 
units rated at 200kW. Each of the three PV generation units 
considered in this study has peak installed power generation 
capacity of 100kW. The weather forecast and power 
generation data acquired from WRF model and the microgrid 
respectively were converted into hourly averaged 
representations of each variable for the specified period of 
time to form the initial training dataset. The final modeling 
dataset consisting of the most influential input features and the 

training targets is prepared using GA based feature selection 
technique. Binary genetic algorithm with a cost function 
associated with a Gaussian process regression model as an 
objective function was formulated to evaluate the relative 
predictive importance of the weather parameters. Another set 
of WRF weather forecast data representing the five 
consecutive days of the first week of January 2016 and the 
corresponding on-site recorded power data of the three power 
generation units was used for model testing and evaluation of 
prediction capability. 

2.2 Adaptive Neuro Fuzzy Inference Systems (ANFIS) 

ANFIS are a class of adaptive networks which are 
functionally equivalent to fuzzy inference systems (FIS). They 
are hybrid intelligent systems which integrate the principles of 
fuzzy logic and neural networks. These systems are therefore 
functionally able to benefit from the advantages of both neural 
networks and fuzzy logic in a single integrated framework [33, 
33]. 

 

Fig. 1: ANFIS architecture [34] 

As depicted in Fig. 1, the ANFIS structure is generally 
composed of five layers that carryout distinct function. They 
are referred to as fuzzification layer, rule layer, normalization 
layer, defuzzification layer and summation layer respectively 
from layer one to layer five. The most fundamental parameters 
of the ANFIS system are called premise and consequent 
parameters. The premise parameters {�� , �� , �� } belong to 
fuzzy membership functions (MFs) of the fuzzification layer 
used by the ANFIS system to create input spaces by looking 
for patterns within the input data. The consequent parameters 
{�� , �� , ��} correspond to the MFs of the defuzzification layer.  
Details of mathematical description of operation of the five 
layers of an ANFIS system can be found in [34]. The premise 
and consequent parameters are tuned through training to 
achieve the best values that make up the rules capable of 
modeling the target system represented by the training data 
provided. The training algorithm employed to optimize the 
parameters of the ANFIS system in the proposed approach is a 
GA-PSO hybrid algorithm as elaborated in the next section. 

2.3 The Proposed GA-PSO-ANFIS Hybrid Method 

The proposed hybrid method employs binary genetic 
algorithm in the first stage to select the most relevant subset of 
input features set; and a combination of genetic algorithm and 
particle swarm optimization algorithm in the second stage to 
tune the parameters of an ANFIS model. Genetic Algorithm is 
an evolutionary search and optimization technique inspired by 
natural selection. It involves major steps including random 



 

generation of an initial population, ranking and selection of 
individuals from the current population to produce the next 
generation, modification of individual solutions by means of 
crossover and mutation, and evaluation of fitness function [35, 
36]. The algorithm iteratively minimizes an objective function, 
also called a fitness function over successive generations and 
it is known to have a good global searching capability [37]. 

Particle swarm optimization is an evolutionary 
computational search method drawing its inspiration from the 
social behavior of birds in a flock searching for food. It was 
first proposed by Kennedy and Eberhart in 1995 [38]. Like 
genetic algorithm, PSO starts with a randomly initialized set 
of individuals (particles) and gradually evolves towards the 
optimal solution through a series of generations involving 
velocity and position update operations. 
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The random variables ��	 and ��	 are defined as �� 
�� �	 and		�� 
 �� � , where ��	and ��	 are random numbers 

generated from a uniform distribution in the range [0, 1],  � 
and  �	are positive acceleration constants, and �	is an inertia 
weight.  �	and  �	 are called cognitive acceleration constant 
and social acceleration constant respectively. It has been 
suggested that  � �  � ! 4	guarantees stability of the PSO 
algorithm [39]. In this study,  �and	 �	are set to 1 and 2 
respectively. The inertia weight �	is updated at each iteration 
according to:  

� 
 �#$%& ∗ �														
3� 
where	�#$%&	is an inertia weight damping ratio. Higher values 
of inertia weight encourage exploration of the entire search 
space, while lower values facilitate convergence to a local 
optimum value. The inertia weight damping ratio plays a key 
role in balancing global and local search in PSO. 

I. Feature Selection 

The original raw dataset of weather inputs and 
corresponding PV power was preprocessed to obtain a dataset 
suitable for model training. Erroneous measurements and 
inconsistent data points that could affect modeling efficiency 
were removed. The remaining dataset which represents 
weather forecast data with a time-step of 15 minutes was 
converted into hourly average representations. The recorded 
power data corresponding to the same time period was 
similarly prepared. The initial set of input features and 
corresponding targets was formed in this way and 
subsequently normalized column-wise between -1 and 1. 
Binary genetic algorithm was applied at this stage to 
determine the optimal combination of input variables which 
provide the best forecasting accuracy. The GA representation 
of the problem is formulated by presenting a string of binary 
inputs to the objective function as encoding parameters of the 
solution. The length of each candidate solution (chromosome) 

is equal to the number of elements in the input features set, 
hence nine in this case. Therefore, a ‘1’ in the chromosome 
depicts the corresponding input variable is selected, while a ‘0’ 
in the string indicates the corresponding variable is not 
selected. 

A Gaussian process regression-based fitness function is 
defined to evaluate the predictive capability of different 
subsets of the original features set. Gaussian process 
regression (GPR) is a non-parametric probabilistic modeling 
approach recently widely being used for real supervised 
learning applications. GPR permits prior probability 
distribution to be defined over latent functions directly [40, 
41]. A Gaussian process )*
��, � ∈ ,#-	can be fully described 
by its mean function.
�� and covariance (kernel) function /
�, �′� [42]. The mean function is often assumed to be zero, 
and the covariance function defines proximity or likeness 
between input data points. That is, for points ��and �� in the 
input space that are similar, the corresponding output values *
���and *
���will be similar too. Thus, training points near 
a particular test point are informative for the prediction at that 
point. The kernel function is therefore a crucial component in 
the Gaussian process predictors as it encodes the prior 
assumptions on the latent function, such as the smoothness 
and scale of the variation [43]. The covariance function that 
relates two functional values evaluated at set points ��and ��	is given as 

/
��, ��� 
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*
��� � .
����
*
��� � .
����3      (4) 

where .
��is the mean function which can be defined as 

.
�� 
 1�*
���																							
5� 
The Gaussian process can then be expressed in terms of the 

mean function and kernel function as 

*
���	~	��2.
���, /
��, ���3          (6) 

While there are many different types of covariance 
functions, we have used the squared exponential covariance 
function in this study, which is one of the most commonly 
used kernel functions. The squared exponential covariance 
function is given as 

/��� , �6|8� 
 	9:�exp >�12?
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#
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where 9:�  is the noise signal variance linked to the overall 
function variance,	9E  is length-scale parameter, F  is input 
dimension, and	8 
 )9:�, A�… A@-  is a vector of hyper-
parameters. The values of the noise variance9:�  and hyper-
parameters 8  of the kernel function are estimated from the 
modeling data during training. Further details on Gaussian 
process regression modeling could be found in [40-43]. The 
fitness of different feature subsets (presented to the GA in the 
form of chromosomes with binary elements) is evaluated 



 

based the MSE (mean squared error) of prediction residuals 
introduced by GPR model	*
��	 fitted for each subset of 
features.  

H:�� 
 1I?
*� � ����
J

�B�
																				
8� 

where	�	 is a vector of training targets and	I  is number of 
instances in the training data. 

The genetic algorithm starts by randomly generating an 
initial generation of individuals from which it starts evaluation 
of fitness of each possible solution candidate. The objective of 
the GA is to minimize the fitness function (MSE) by selecting 
a combination of input variables with the best fitness over 
successive iterations. A section of the population with best 
fitness, called elite children, will be copied and directly passed 
to the next generation. The algorithm is set to copy the best 10 
percent of the current population (2 chromosomes) and pass to 
the next generation. New individuals are created by combining 
the genetic characteristics of parent individuals through 
crossover operators; and by making random changes to the 
genes of the individual parents through mutation operation. 
Scattered crossover function, which creates a random binary 
vector of the same length as the solution chromosomes and 
picks the genes of the first parent where the vector is a 1 and 
the genes from the second parent where the vector is a 0, is 
used.  

TABLE I: DESCRIPTION OF FEATURE SELECTION ALGORITHM 

Step 1: Dataset Preparation and normalization 

• Convert all variables in to hourly average representations 

• Normalize dataset column wise between -1 and 1. 

Step2: Initialization  

• Randomly generate initial population of L	(population size) 

chromosomes of length 	A (number of features). 	L 
20	and	A 
 9. 

• Convert chromosomes in to binary bit strings. 

Step 3: Develop GPR models for feature subsets 

• Create feature subsets using binary chromosomes 

• Model GPR for new dataset 

Step 4: Fitness evaluation 

• Evaluate GPR model for each feature subset 

• Calculate OP1 (fitness function) for each chromosome 

Step 5: Generate new population 

• Rank chromosomes based on their fitness value 

• Select elite children– first 2 best individuals 

• Perform crossover (14 crossover children)and mutation(4 

mutation children) 

• Get a new population for next generation 

Step 6: Check whether termination criteria are met 

• Generations (MaxGen = 100) 

• Stall generations (MaxStallGen = 50) 

• If neither criterion is satisfied, go back to Step 3. Otherwise 

proceed to Step 7. 

Step 7: Terminate the algorithm and output the results. 

Selection of parent chromosomes for crossover operation is 
carried out using the Tournament selection method. In this 

method, four candidate chromosomes are randomly chosen 
from the population for parentship and the individual with the 
best fitness is picked to be a parent. This process is repeated to 
get the second parent for crossover operation. The crossover 
fraction, a parameter that specifies the fraction of the next 
generation apart from the elite children that will be produced 
by crossover operation, is set to 0.8. Uniform mutation 
operation is applied to produce the remaining portion of 
chromosomes of the next generation. In uniform mutation, the 
algorithm generates a vector of random numbers from a 
uniform distribution. The value of each number is then 
compared to a mutation probability rate. If the value of the 
mutation probability rate is greater, the corresponding gene in 
the chromosome is flipped (0 to 1, or 1 to 0), otherwise it is 
left unchanged. Mutation provides genetic diversity in the 
population and ensures broader search space for the algorithm 
[37]. The detailed binary GA-based feature selection 
algorithm is described in Table I. The parameters of the GA 
applied implement the feature selection algorithm are 
summarized in Table II. 

TABLE II:  PARAMETERS OF GA ALGORITHM 

Parameter Value 
Population size (N) 20 
Length of chromosome (l) 9 
Population Type bitstring 
Max. number of generations (MaxGen) 100 
Stall generations (MaxStallGen) 50 
Number of elite chromosomes 2 
Selection method Tournament 
Tournament size 2 
Crossover  Arithmetic 
Crossover fraction 0.8 
Mutation Uniform 
Mutation rate 0.01 

II. Forecast Modeling 

An initial fuzzy inference structure (FIS) is generated from 
the training data using fuzzy c-means (FCM) clustering with 
all its premise and consequent parameters randomly initialized. 
The premise and consequent parameters of the generated 
ANFIS model are iteratively obtained to determine the size of 
each chromosome/particle for setting up the optimization 
problem. These parameters constitute the set of variables to be 
optimized by the hybrid GA-PSO algorithm. The ANFIS 
model is evaluated at all candidate solutions to determine the 
strength of each chromosome/particle. The RMSE of the 
residuals produced by the ANFIS model is used as a criterion 
to define the fitness function for the optimization problem. 

TABLE III:  PARAMETERS OF GA ALGORITHM 

Parameter Value 

Population size (N) 50 
Max. number of generations (MaxIt) 1000 
Number of elite chromosomes 2 
Selection method Roulette wheel 
Crossover function Scattered 
Crossover fraction 0.8 
Mutation function Uniform 
Mutation rate 0.1 



 

TABLE IV:  PARAMETERS FOR PSO ALGORITHM 

Parameter Value 

Swarm size	
�Q�PRST� 50 
Max. number of iterations (MaxIt) 1000 
Cognitive acceleration constant ( �) 1 
Social acceleration constant ( �) 2 
Inertia Weight	
�� 1 
Inertia weight damping ratio	
�#$%&� 0.99 

TABLE V: DESCRIPTION OF HYBRID GA-PSO ALGORITHM 

Step 1: FIS initialization  

• Arrange predictor and target variables column-wise 

• Generate initial FIS structure from the modelling dataset 

Step 2: Generation of initial solutions 

• Obtain parameters of initial FIS structure and determine 

number of variables U��PRST 

• Randomly generate �Q�PRST  particles �	 of length U��PRST	each and with positions �@,E 	 ∈ 2�%�J, �%$V3	where 

k = 1, 2, 3…. �Q�PRST and k = 1, 2, 3….	U��PRST 

• Randomly generate �Q�PRST  chromosomes  	 of length U��PRST	each and with genes  @,E 	 ∈ 2�%�J, �%$V3	where k = 

1, 2, 3…. �Q�PRST and k = 1, 2, 3….	U��PRST 

• Initialize velocity of each particle to zero 

• Initialize best cost of PSO to infinity 

• Initialize global best cost to infinity 

Step 3: Create next generation of solutions 

• Update velocity, position and inertia weight of particles’ 

• Perform elite selection, crossover and mutation 

Step 4: Assign parameters of solution to ANFIS structure 

• Get vector of variables of each particle/chromosome sol 

• For each membership function of each predictor variable, 

assign corresponding values of sol to the input MF 

parameters 

• For each membership function of the target variable, 

assign corresponding values of sol to the output MF 

parameters 

Step 5: Evaluate cost of candidate solutions 

• Evaluate cost of each particle �� and update personal best ���TW� and global best	���TW� of PSO 

If    QW�� X  �TW��:  
                                                        ���TW� ← �� 

                            �TW�� ←  QW�� ,	and 

If    �TW�� X  �TW�Z: 	 �TW�Z ←	 �TW�� 
                                           												���TW� ← ���TW� 

• Evaluate fitness of each chromosome ��	and find best GA 

solution �[�TW� and its fitness *�TW�� 
• Apply global solution update rules 

Step 6: Check whether termination criterion is met 

• Iterations (MaxIt = 2000) 

• If the criterion is not satisfied, go back to Step 3. Otherwise 

proceed to Step 7. 

Step 7: Terminate the algorithm and output optimized model 

The parameters corresponding to the GA and PSO 
algorithm used to train the ANFIS structure in this study are as 
shown in Table III and Table IV respectively. The parameters 
of the GA and PSO were selected after a large number of trial 
simulation runs. The PSO algorithm updates the velocity and 
position of each particle in the swarm according to update 
rules (1) and (2), whereas the genetic algorithm performs elite 
selection, crossover and mutation operations over successive 
generations until a preset maximum number of iterations is 
attained. The hybrid training algorithm takes in to account all 
variables of a chromosome/particle (i.e. all antecedent and 
consequent parameters of the ANFIS structure) at each 

iteration. All chromosomes and particles of the same 
generation are evaluated and ranked in terms of their fitness. 
The algorithm works by comparing the fitness of the best 
solutions achieved by the GA and PSO at each iteration and 
choosing the better as the global best solution. If the best 
particle of the PSO has achieved a better fitness than the best 
chromosome from the GA population, parameters of the best 
chromosome are updated to assume the variables of the best 
particle. On the other hand, if the GA has achieved better 
solution, variables of the best particle are replaced by the 
genes of the best chromosome. In this way, the algorithm 
which has produced the best solution sets the global best 
solution. This process is repeated until the convergence 
criterion is met. The variables optimized using the hybrid 
algorithm are finally assigned to the ANFIS model as 
antecedent and consequent parameters to form the final 
ANFIS model and the training process is concluded. The 
summary of the steps involved in implementing the second 
stage of the proposed PV power prediction approach are 
described in Table V. 

3 RESULTS AND DISCUSSION 

3.1 Forecasting Accuracy Evaluation Metrics 

Several standard error metrics were used to evaluate the 
proposed PV power forecasting strategy. For a target sequence �,  forecast sequence		*	 with L  time steps and maximum 
recorded power	�% , root mean square error (RMSE), mean 
absolute error (MAE), and normalized mean absolute error 
(IO[1) criteria are expressed as: 

\OP1 
 ]�
^_ 
�� � *���^

�B� 		          (9) 

O[1 
 �
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 �aa
^ ? |:bc�b|de

^
�B� 																				(11) 

The skill criterion evaluates the improvement in prediction 
capability of models over that of the benchmark persistence 
prediction model. 

W	 
 f1 � ghij
ghijkl ∗ 100																														(12) 

3.2 Selection of Predictors 

The binary GA based feature selection method was 
implemented and applied to the datasets of each of the three 
PV generation units in the system. Description of the datasets 
in terms of sample size and feature dimensions is presented in 
Table VI. The feature selection algorithm was applied to each 
dataset and the experimental results obtained for the three 
normalized datasets are provided in Table VII. 

 



 

TABLE VI:  DESCRIPTION OF DATASETS 

DATASET SAMPLES DIMENSION 

PV1 468 9 

PV2 711 9 

PV3 1466 9 

Considering the fact that all the input parameters are 
weather condition variables which could exhibit significant 
interrelationships, it can be inferred from the results that the 
number of features selected by the binary GA-based FS 
algorithm is significantly smaller than the number of features 
in the original dataset in each case. Moreover, the closeness 
between the mean and best fitness values indicates the 
effectiveness of the employed feature selection methodology. 
For dataset of PV1, the improvement in MSE when only the 
selected variables are used to model the data using GPR 
approach is over 19 percent. Similarly, selected subset datasets 
of PV2 and PV3 have provided improvements of roughly 8.5 
and 5.1 percent respectively over the original dataset with 
respect to the MSE criterion. 

TABLE VII:  DESCRIPTION OF DATASETS 

PV 

UNIT 
SELECTED 

FEATURES 

MEAN 

FITNESS 

(m10-3) 

BEST 

FITNESS 

(m10-3) 

WITHOUT  
FS (m10-3) 

PV1 2, 3, 4, 5, 6, 7, 8 4.12 3.76 4.7 

PV2 1, 4, 5, 6, 7, 8 0.13 0.12 0.13 

PV3 4, 5, 6, 7, 8, 9 0.265 0.259 0.273 

ALL  4, 5, 6, 7, 8 

Features 4, 5, 6, 7, and 8, which stand for surface 
temperature, irradiance, low cloud cover, middle cloud cover, 
and high cloud cover respectively, have been selected in all 
the three cases. Therefore, for mere purpose of consistency, 
these five variables have been selected to constitute the input 
dataset for PV power generation forecast modeling for all the 
three generation units.  

3.3 Experimental Results 

In this study a combination of genetic algorithm and particle 
swarm optimization is designed to effectively optimize an 
ANFIS model for the intended PV power forecasting task. 
Historical weather data of the selected variables for the 
aforementioned period were given as the inputs along with the 
corresponding PV output power data as the training targets for 
all the modeling approaches. The performance of the proposed 
forecasting technique as applied to the three PV power 
generation units is evaluated and compared with the 
benchmark forecasting methods. Fig. 2 shows comparison of 
actual values and forecasted values for PV1, PV2 and PV3 
during training stage considering the first 50 data points. Table 
VIII summarizes evaluation of the proposed hybrid approach 
and that of an ANN and LRM for individual units during 
model training stage using three different error metrics. For all 

PV units, the proposed GA-PSO-ANFIS based hybrid strategy 
has more efficiently captured the trends of the data. With 
respect to the IO[1  criterion, relative percentage 
improvements over ANN approach for PV1, PV2, and PV3 
are 23.36, 5.16 and 12.66 respectively. Taking into account 
the RMSE criterion, the corresponding figures are 24.81, 8.52 
and 12.18 percent respectively.  

 
Fig. 2: Comparison of models during training stage 

TABLE VIII:  EVALUATION OF HYBRID MODEL AGAINST BP-NN MODEL 

PV UNIT METHOD RMSE MAE IO[1 

PV1 
PSO-ANFIS 5.09 3.47 4.43 

BP NN 6.77 4.52 5.78 
LRM 7.54 5.27 6.74 

PV2 
PSO-ANFIS 5.15 3.49 4.58 

BP NN 5.63 3.68 4.83 
LRM 7.35 5.49 7.20 

PV3 
PSO-ANFIS 6.20 4.65 6.0 

BP NN 7.06 5.32 6.87 
LRM 7.77 5.88 7.59 

The proposed hybrid forecasting approach and the three 
benchmark techniques were applied on a test dataset 
representing hourly weather forecast data of five consecutive 
days from January 01, 2016 to January 05, 2016. The results 
of 24 hours ahead PV power generation forecasting during the 
test days further demonstrated the superiority of the proposed 
hybrid forecasting technique over the other methods. The 
proposed hybrid PV power generation forecasting method has 
consistently outperformed the ANN, LRM and persistence 
based methods regarding RMSE, MAE and NMAE criteria as 
demonstrated in Table IX through Table XI. Table IX and 
Table X show comparison of forecasting performance with 
regard to \OP1 and O[1 criteria as the forecasting methods 
are applied to individual generation units. The corresponding 
results with regard to IO[1	are similarly tabulated in Table 
XI. The proposed hybrid approach has yielded an average 
RMSE performance improvement of 25.98 percent over ANN 
method, the second best performing approach, in PV1 over the 
test period. In contrast, PV3 has seen the least average 
performance improvement among the three units, where the 
proposed hybrid approach has reduced the RMSE obtained 
using the ANN method by about 11.3 percent. Fig. 3 displays 



 

measured power and predicted power of the combined system 
(combining all three generation units) using the hybrid GA-
PSO-ANFIS model and the benchmark approaches during the 
five days test period. Comparison of daily forecasting error 
distribution of the combined plant introduced by different 
approaches during the test period is illustrated in Fig. 4. It was 
observed that the forecasting techniques produce lower 
prediction errors during the hours on both sides of noon, 
where the solar radiation, which is the most important factor 
for power production among the input parameters, and surface 
temperature remain essentially constant.  

 
Fig. 3: Comparison of prediction using different approaches 

 
Fig. 4: Comparison of prediction errors over the test period 

The test results demonstrate that the proposed hybrid 
approach outperformed the three benchmark approaches 
throughout the test period with respect to all performance 
evaluation metrics. This was validated across all three PV 
generation units considered in the study. Similarly, the 
forecasting performance of the models considering the 
combined generation plant was evaluated. The results are 
consistent with the findings considering individual PV units. 
The proposed hybrid technique has provided the best 
predictive capability with respect to four different 

performance evaluation criteria over the test period as 
presented in Table XII. With respect to the RMSE criterion, 
the hybrid approach was found to have achieved an average 
reduction of 10.95, 30.3 and 25.5 percent relative to BP-NN, 
persistence and LRM methods respectively over the whole test 
period. The average NMAE  experienced by the proposed 
approach over the five days test period is 5.31 percent. This 
accounts for 82.45%, 63.74% and 60.68% of the 
corresponding values obtained from the BP-NN, persistence 
and LRM based models respectively over similar period.  

TABLE IX:  EVALUATION OF DIFFERENT APPROACHES W.R.T RMSE 

  DAY1 DAY2 DAY3 DAY4 DAY5 AVERAGE 

PV1 

PSO-ANFIS 1.16 1.43 3.38 2.79 1.38 2.08 
BP NN 2.86 2.95 3.03 3.72 1.49 2.81 

PERSISTENCE 3.05 3.09 3.47 3.93 3.89 3.49 
LRM 3.52 3.43 3.66 3.78 2.36 3.35 

PV2 

PSO-ANFIS 1.62 1.85 4.20 6.86 3.97 3.70 
BP NN 1.52 1.79 7.55 6.91 3.52 4.26 

PERSISTENCE 3.45 3.48 3.87 4.86 4.53 4.04 
LRM 3.5 3.66 3.47 5.57 2.32 3.70 

PV3 

PSO-ANFIS 4.41 4.63 3.84 4.65 2.10 3.92 
BP NN 4.75 4.89 4.75 5.16 2.57 4.42 

PERSISTENCE 3.29 3.48 3.78 4.5 4.22 3.85 
LRM 5.74 5.71 4.83 5.01 4.04 5.07 

TABLE X: EVALUATION OF DIFFERENT APPROACHES W.R.T MAE 

  DAY1 DAY2 DAY3 DAY4 DAY5 AVERAGE 

PV1 

PSO-ANFIS 0.62 0.72 1.91 1.39 0.68 1.06 

BP NN 1.65 1.57 1.71 1.85 0.9 1.53 

PERSISTENCE 1.75 1.68 1.90 2.18 2.25 1.95 

LRM 3.09 2.63 2.88 2.98 2.28 2.77 

PV2 

PSO-ANFIS 0.70 0.91 1.63 3.10 1.47 1.56 

BP NN 0.74 0.95 3.74 3.43 1.83 2.14 

PERSISTENCE 1.96 1.89 2.14 2.65 2.58 2.24 

LRM 2.43 2.52 2.82 3.33 1.69 2.56 

PV3 

PSO-ANFIS 2.37 2.42 2.04 2.42 1.11 2.07 

BP NN 2.78 2.75 2.61 2.86 1.37 2.47 

PERSISTENCE 1.82 1.75 1.99 2.38 2.38 2.06 
LRM 4.79 4.74 3.7 4.17 3.65 4.21 

TABLE XI:  EVALUATION OF DIFFERENT APPROACHES W.R.T NMAE  

  DAY1 DAY2 DAY3 DAY4 DAY5 AVERAGE 

PV1 

PSO-ANFIS 2.95 3.59 8.07 5.32 2.53 4.49 

BP NN 7.82 7.78 7.49 7.06 3.33 6.7 

PERSISTENCE 8.33 8.33 8.33 8.33 8.33 8.33 

LRM 14.65 13.02 12.61 11.41 8.44 12.03 

PV2 

PSO-ANFIS 2.99 4.02 6.35 9.76 4.76 5.58 

BP NN 3.15 4.18 14.61 10.78 5.93 7.73 

PERSISTENCE 8.33 8.33 8.33 8.33 8.33 8.33 

LRM 10.36 11.09 10.99 10.45 5.45 9.67 

PV3 

PSO-ANFIS 10.86 11.51 8.54 8.464 3.90 8.65 

BP NN 12.73 13.05 10.93 10.01 4.78 10.3 

PERSISTENCE 8.33 8.33 8.33 8.33 8.33 8.33 

LRM 21.93 22.55 15.51 14.6 12.77 17.47 



 

TABLE XII:  ERROR EVALUATION FOR THE WHOLE PLANT 

METRIC METHOD DAY1 DAY2 DAY3 DAY4 DAY5 AVERAGE 

RMSE 

PSO-ANFIS 6.68 7.33 7.33 14.10 4.01 7.89 
BP NN 7.95 8.37 8.12 15.42 4.46 8.86 

PERSISTENCE 9.76 10 11.09 13.21 12.54 11.32 
LRM 11.6 11.95 10.21 12.94 6.27 10.59 

MAE 
PSO-ANFIS 3.59 3.72 3.41 6.86 2.29 3.98 

BP NN 4.56 4.41 4.77 7.94 2.25 4.79 
PERSISTENCE 5.53 5.3 6.03 7.21 7.21 6.26 

LRM 6.85 7.33 6.47 7.53 3.69 6.37 

NMAE 

PSO-ANFIS 5.41 5.86 4.71 7.93 2.65 5.31 
BP NN 6.87 6.94 6.59 9.18 2.61 6.44 

PERSISTENCE 8.33 8.33 8.33 8.33 8.33 8.33 
LRM 10.32 11.52 8.95 8.7 4.26 8.75 

SKILL  

PSO-ANFIS 31.56 26.7 33.9 -6.74 68.02 30.3 
BP NN 18.55 16.3 26.78 -16.7 64.43 21.73 
LRM -18.8 -19.5 7.94 2.04 50 6.45 

PERSISTENCE - - - - - - 

In terms of the Skill (s) criterion, averaged over the test 
period, the LRM model has performed slightly better than the 
persistence approach, despite falling behind on the first and 
second test days. Both the proposed approach and the NN 
method provided significantly improved forecasting skills 
averaging to 30.3 and 21.73 respectively. The proposed 
approach has easily beaten both NN and LRM models 
throughout the test period. The results summarized in Table 
IX through Table XII validate the superior PV power 
generation forecasting capability of the integrated GA-PSO-
ANFIS based hybrid technique by employing daily weather 
conditions data at a reasonable accuracy with improved 
precision compared to other forecasting approaches. 

4 CONCLUSIONS  

With the rapid growth of photovoltaic energy generation, 
reliable and accurate short-term PV power forecasting tools 
are needed. This paper proposes an integrated GA-PSO-
ANFIS based hybrid technique for short term photovoltaic 
power generation forecasting. The proposed method 
implements binary GA based feature selection strategy to 
eliminate insignificant variables and applies a combination of 
GA and PSO to optimize a forecasting model. A GPR model 
based fitness function was implemented to enable the binary 
GA to significantly reduce the number of input features 
required to achieve improved forecast modeling. An integrated 
GA-PSO algorithm is then used to optimize the relatively 
complex ANFIS structure for forecast modeling. Performance 
of the proposed technique is compared with ANN, LRM and 
persistence methods. Results show that the proposed method 
has the capability of accurately forecasting day ahead hourly 
PV power generation with substantial performance 
improvement over other techniques. Model testing over a five 
days test period returned daily average normalized forecast 
errors essentially lower than 8 percent; demonstrating the 
effectiveness of the proposed approach for short term PV 
power forecasting. 
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