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Abstract—This paper presents a hybrid approach for forecashg

of electricity production in microgrids with solar photovoltaic

(PV) installations. An accurate PV power generatiorforecasting
tool essentially addresses the issues resulting o the
intermittent and uncertain nature of solar power to ensure
efficient and reliable system operation. A day-ahah hourly

mean PV power generation forecasting method basednoa
combination of genetic algorithm (GA), particle swam

optimization (PSO) and adaptive neuro-fuzzy inferene systems
(ANFIS) is presented in this study. Binary GA is usd to
determine important input parameters that significantly

influence the amount of output power of a PV genet#on plant;

and an integrated hybrid algorithm combining GA and PSO is
used to optimize an ANFIS based PV power forecastinmodel
for the plant. The proposed approach is tested badeon practical

information of PV power generation data of a practcal case
study microgrid in Beijing. Evaluation of performance is made
with the persistence method as a reference modehdforecasting
results are compared with actual scenario. The resis validate

effectiveness of the proposed methodology as compdr with

commonly used forecasting approaches. The proposegproach

outperformed artificial neural network (ANN), linear regression
(LR), and persistence based forecasting models, denstrating

its effectiveness and favorable accuracy.

Keywords. PV Power Forecasting; Feature Selection; Binary
Genetic Algorithm; Particle Swarm Optimization; Hybrid
Method; ANFIS.

1.

Solar energy is one of the most promising energycas
considered free, clean and abundantly available. tRese
reasons, it keeps extending its share in electagvep
generation in the face of diminishing conventiofwasil fuel
energy sources and rising environmental protecatiomcerns
[1]. While solar irradiation is an inexhaustible usce of
energy, its variability poses operational difficedt in
management of electricity supply systems [2]. Bedan
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economic generation scheduling, energy storageattispand
load shedding.

The importance of the issue of solar resource sty
has drawn the focus of many studies worldwide. Suibisl
body of studies in the field is mainly concernedthwi
forecasting solar radiation [3-5], which is the gi&n most
important parameter in solar power production. ©8tadies
have focused on forecasting of solar energy pragict
directly [6-8]. Several forecasting techniques ¢dirg
different forecasting time horizons have been regubin the
literature [9-11]. Application of time series moidel
techniques for solar radiation and PV power geimrat
forecasting has been demonstrated in references [2].
Artificial neural networks based PV power and sokatiation
forecasting methodologies have been presentedfénerees
[13] and [14] respectively. Other techniques repdrin the
literature include forecast modeling approachesedbaen
support vector machines (SVM) [15], adaptive neurzzy
(NF) networks [16, 17], evolutionary optimizationdaother
hybrid methods [18-22]. References [23-25] provide
comprehensive review of various photovoltaic power
forecasting techniques.

One of the most important tasks in data preparatoyn
forecast modeling is variable or feature selectibeature
selection is an optimization process with the afrahmosing a
subset of available candidate features to impraeliption
performance, by eliminating features with little avo
predictive information and also redundant featuttest are
strongly correlated [26]. There are a number oftuea
selection techniques available in the literatureeatbre
selection techniques based on evolutionary algostsuch as
particle swarm optimization (PSO) and genetic athors
have been reported to be efficient and flexiblevarious
classification and pattern recognition problems -327.
Reference [31] employs binary genetic algorithm for

between energy generation and demand is a critic§hensionality reduction to enhance modeling pentamce

requirement in operation of electric power systeggh

penetration of weather-dependent renewable en@EUICeS foature selection technique for

for classification problems. A binary genetic aifan based
regression probleims

like PV into such systems makes power regulatioreémojmyiemented in this work to enhance the performasfce PV

challenging. PV power generation forecasting pleas
important role in mitigating the challenges arisifigm
resource uncertainty in power system networks imega and
microgrid systems in particular. Microgrids typigal
aggregate distributed generation systems and erstoygge
units with local controllable loads. Day-ahead PWwer
production forecasting in microgrids is crucial @msure
system stability and to plan optimal unit committaen

power generation forecasting model.

This paper proposes a GA-PSO-ANFIS based hybrid
approach for a day-ahead hourly PV power generation

forecasting. The study initially considers foreeasthourly
representations of nine weather condition variablks
candidate inputs. Binary genetic algorithm is ustx



determine a suitable set of predictive variablesrprove the
efficiency and accuracy of the PV power forecastehn
integrated optimization algorithm that combines ain
algorithm and particle swarm optimization is thesed to

training targets is prepared using GA based feagatection
technique. Binary genetic algorithm with a cost diion
associated with a Gaussian process regression nasdeh
objective function was formulated to evaluate tleative

optimize the ANFIS-based forecast model. The predos predictive importance of the weather parameterotider set

approach benefits from the simplicity and effeatiess of the
particle swarm optimization algorithm and the stragiobal
searching capability of the genetic algorithm teratively
optimize the relatively complex ANFIS structure.eT$uperior
forecasting capability of the proposed approach
demonstrated by comparing
benchmark approaches; namely, persistence, lirgmesgsion
model, and BP-NN based forecasting methodologies.

The remainder of this paper is organized in thesiens.

of WRF weather forecast data representing the five
consecutive days of the first week of January 20848 the
corresponding on-site recorded power data of theetbower
generation units was used for model testing antuatian of
igrediction capability.

its performance with ethre

2.2 Adaptive Neuro Fuzzy Inference Systems (ANFIS)

ANFIS are a class of adaptive networks which are
functionally equivalent to fuzzy inference systefRkS). They

Section two presents overview of the case studyagie and are hybrid intelligent systems which integrate phiaciples of
source of modeling data, followed by the forecagtinfuzzy logic and neural networks. These systemslarefore
methodology applied in this work. Section three vgho functionally able to benefit from the advantagedath neural
evaluation results and discusses the comparativensage of networks and fuzzy logic in a single integratedrfeavork [33,

the proposed method over other approaches. Firggdlgtion
four presents conclusions drawn from training @ tesults.

2. DATA AND METHODOLOGY

2.1 Modeling Data

The data used to develop the models in this studsew

collected from a numerical weather prediction mo@&ivP)
and from three PV installation units in a case gtonicrogrid
system located in Beijing. Usually, forecast honigdarger

33).
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Fig. 1: ANFIS architecture [34]

As depicted in Fig. 1, the ANFIS structure is gaiigr
composed of five layers that carryout distinct fimT. They

than 6 hours exploit outputs from numerical weathedre referred to aizzfication layer, rule layer, normalization

prediction models to generate accurate results Mpe

layer, defuzzfication layer and summation layer respectively

weather variables’ forecast data obtained from Waat from layer one to layer five. The most fundameptiameters
Research and Forecasting (WRF) model were initiallyf the ANFIS system are called premise and consgque

considered as candidate predictors. The candidapeits
include temperature (at the height where the P\elsaare
installed), humidity, air pressure, air density, rface
temperature, shortwave solar radiation, low cloumlec,
middle cloud cover and high cloud cover at the el site
with 15 minutes resolution covering 1 square kiltenerea.
The recorded power data correspond to observaidnk0

parameters. The premise parametets,d;, r;} belong to
fuzzy membership functions (MFs) of tlfezzfication layer
used by the ANFIS system to create input space®dking
for patterns within the input data. The consequemameters
{a;, b;, c;} correspond to the MFs of thaefuzzfication layer.
Details of mathematical description of operationtloé five
layers of an ANFIS system can be found in [34]. Phemise

minutes average PV output power of three PV poweind consequent parameters are tuned through waitin

generation units installed at Goldwind Smart Micidg
system for a period of one year from January 01,52t
December 31, 2015. The microgrid system is a metjdeue|
demonstration project consisting of a 2.5 MW peremdn
magnet direct drive wind turbine, PV installatiotataling
480kWp, two 65kW micro turbine units, two diesehgeator
units of 200kW and 300kW capacity, and two enefgyage
units rated at 200kW. Each of the three PV germmatinits
considered in this study has peak installed povesreation

achieve the best values that make up the rulesbtep
modeling the target system represented by theitgidata
provided. The training algorithm employed to optimithe
parameters of the ANFIS system in the proposedogapris a
GA-PSO hybrid algorithm as elaborated in the negtisn.

2.3 The Proposed GA-PSO-ANFISHybrid Method

The proposed hybrid method employs binary genetic

capacity of 100kW. The weather forecast and powelgorithm in the first stage to select the mostveht subset of

generation data acquired from WRF model and theagia
respectively were converted into hourly
representations of each variable for the specifiedod of
time to form the initial training dataset. The fimaodeling

input features set; and a combination of genegjordghm and

averageparticle swarm optimization algorithm in the secatdge to

tune the parameters of an ANFIS model. Genetic lgm is
an evolutionary search and optimization techniospired by

dataset consisting of the most influential inputiiees and the hatural selection. It involves major steps inclgdirandom



generation of an initial population, ranking andestion of is equal to the number of elements in the inputuies set,
individuals from the current population to produte next hence nine in this case. Therefore, a ‘1’ in theosiosome
generation, modification of individual solutions byeans of depicts the corresponding input variable is setgatdile a ‘0’
crossover and mutation, and evaluation of fithesstion [35, in the string indicates the corresponding varialdenot
36]. The algorithm iteratively minimizes an objeetifunction, selected.
also called a fitness function over successive iggioas and
it is known to have a good global searching capig§87]. A Gaussian process regression-based fitness fundsio
defined to evaluate the predictive capability offfedient
Particle swarm optimization is an evolutionarysubsets of the original features set. Gaussian epsoc
computational search method drawing its inspirafrom the regression (GPR) is a non-parametric probabilistadeling
social behavior of birds in a flock searching food. It was approach recently widely being used for real supeds
first proposed by Kennedy and Eberhart in 1995 .[28e learning applications. GPR permits prior probailit
genetic algorithm, PSO starts with a randomly atited set distribution to be defined over latent functionsedtly [40,
of individuals (particles) and gradually evolvesvemds the 41]. A Gaussian proce$g(x), x € R4} can be fully described
optimal solution through a series of generationgolving by its mean functiom(x) and covariance (kernel) function
velocity and position update operations. k(x,x") [42]. The mean function is often assumed to be,zer
and the covariance function defines proximity dtetiess
v;(8) = wv;(t — 1) + py(Ppest — % (1)) + pa(Gpese — x:()) (1) between input data points. That is, for pointandx, in the
input space that are similar, the correspondinguuvalues

x; () = x;(t — 1) + v (t) ) f(x)andf (x,)will be similar too. Thus, training points near
a particular test point are informative for thegicdon at that
The random variablep,; and p, are defined as; = point. The kernel function is therefore a cruciaimponent in

r,C; and p, =1n,C,, wherer; andr, are random numbers the Gaussian process predictors as it encodes tioe p
generated from a uniform distribution in the rafj@el],C; assumptions on the latent function, such as theo#mess
andC, are positive acceleration constants, and an inertia and scale of the variation [43]. The covariancecfiom that
weight. C; and C, are called cognitive acceleration constantelates two functional values evaluated at set tpaipand
and social acceleration constant respectively. d6 fbeen x,is given as

suggested thaf; + C, < 4 guarantees stability of the PSO

algorithm [39]. In this studyC;andC, are set to 1 and 2 k(xy,x;) = E[(f(x1) — m(x)(f(x2) —m(x))] (4)
respectively. The inertia weightis updated at each iteration

according to: wherem(x)is the mean function which can be defined as

W = Waamp * W (3) m(x) = E(f(x)) ()

wherew qmy, IS @n inertia weight damping ratio. Higher values The Gaussian process can then be expressed in e¢tines
of inertia weight encourage exploration of the mnsearch mean function and kernel function as
space, while lower values facilitate convergenceatdocal
optimum value. The inertia weight damping ratioygla key f(x) ~ GP[m(xy), k(xq,x3)] (6)
role in balancing global and local search in PSO.
While there are many different types of covariance
l. Feature Selection functions, we have used the squared exponentiarizonce
function in this study, which is one of the mostmoonly
The original raw dataset of weather inputs anySed kernel functions. The squared exponential révee
corresponding PV power was preprocessed to obteataset function is given as
suitable for model training. Erroneous measuremeartd
inconsistent data points that could affect mode#fficiency 1< (s — x'k)z
were removed. The remaining dataset which represent k(x;,x;10) = ofexp [_fz('l—zl')] (7)
weather forecast data with a time-step of 15 meuas k=1 k
converted into hourly average representations. rEcerded
power data corresponding to the same time period wwhered? is the noise signal variance linked to the overall
similarly prepared. The initial set of input feasr and function varianceg; is length-scale parametet, is input
corresponding targets was formed in this way andimension, andg = {afz,l1 ..l;} is a vector of hyper-
subsequently normalized column-wise between -1 &nd parameters. The values of the noise variaficend hyper-

Binary_ genetic a_lgorithm was app"‘?d at th_is sta_@e parameter® of the kernel function are estimated from the
determlne the optimal cqmblnatlon of input vanasbleh[ch modeling data during training. Further details oau&sian
provide the bes_t forecasting accuracy. The GA mt'on process regression modeling could be found in [30-Zhe
of the problem is formulated by presenting a st@fiinary  finess of different feature subsets (presentetthedGA in the

inputs to the objective function as encoding patanseof the .\ of chromosomes with binary elements) is eveda
solution. The length of each candidate solutiomqetosome)



based the MSE (mean squared error) of predictisiduals
introduced by GPR modgi(x) fitted for each subset of

features.
n
1 2
Ly = ;Z(fi —t;)
i=1

wheret is a vector of training targets amdis number of
instances in the training data.

®)

The genetic algorithm starts by randomly generatamg
initial generation of individuals from which it sta evaluation
of fitness of each possible solution candidate. dlijective of
the GA is to minimize the fitness function (MSE) $slecting
a combination of input variables with the best d&a over
successive iterations. A section of the populatigth best

fitness, calledite children, will be copied and directly passed[37].

to the next generation. The algorithm is set toydbye best 10
percent of the current population (2 chromosomad)@ass to
the next generation. New individuals are createddigbining
the genetic characteristics of parent individuatsotigh

crossover operators; and by making random changes to the

genes of the individual parents througiutation operation.

Scattered crossover function, which creates a random binary

vector of the same length as the solution chromesoend
picks the genes of the first parent where the veasta 1 and
the genes from the second parent where the vextar(, is
used.

TABLE I: DESCRIPTION OF FEATURE SELECTION ALGORITHM

Step 1: Dataset Preparation and normalization
. Convert all variables in to hourly average representations

. Normalize dataset column wise between -1 and 1.

Step2: Initialization
. Randomly generate initial population of N (population size)

chromosomes of length [ (number of features). N =
20and! =9.
. Convert chromosomes in to binary bit strings.

Step 3: Develop GPR models for feature subsets
. Create feature subsets using binary chromosomes

. Model GPR for new dataset

Step 4: Fitness evaluation
. Evaluate GPR model for each feature subset

. Calculate MSE (fitness function) for each chromosome

Step 5: Generate new population
. Rank chromosomes based on their fitness value

. Select elite children- first 2 best individuals

. Perform crossover (14 crossover children)and mutation(4
mutation children)

. Get a new population for next generation

Step 6: Check whether termination criteria are met
. Generations (MaxGen = 100)

. Stall generations (MaxStallGen = 50)
. If neither criterion is satisfied, go back to Step 3. Otherwise
proceed to Step 7.
Step 7: Terminate the algorithm and output the results.

Selection of parent chromosomes for crossover tiperes
carried out using th&ournament selection method. In this

method, four candidate chromosomes are randomlgerho
from the population for parentship and the indiedwith the
best fitness is picked to be a parent. This proisesspeated to
get the second parent for crossover operation. cFossover
fraction, a parameter that specifies the fraction of thet ne
generation apart from the elite children that Wil produced
by crossover operation, is set to 0.8niform mutation
operation is applied to produce the remaining partof
chromosomes of the next generation. In uniform ttathe
algorithm generates a vector of random numbers fam
uniform distribution. The value of each number fernt
compared to a mutation probabilitate. If the value of the
mutation probabilityrate is greater, the corresponding gene in
the chromosome is flipped (0 to 1, or 1 to 0), othige it is
left unchanged. Mutation provides genetic diversitythe
population and ensures broader search space falgbgathm
The detailed binary GA-based feature selectio
algorithm is described in Table I. The parametdrthe GA
applied implement the feature selection algorithme a
summarized in Table Il.

TABLE Il: PARAMETERS OFGA ALGORITHM

Paramete Value
Population sizeN) 20

Length of chromosome)( 9
Population Typ bitstrinc
Max. number of generationMéxGen) 100

Stall generationdaxSallGen) 50
Number of elite hromosome 2

Selection methc Tournamer
Tournament size 2
Crossover Arithmetic
Crossover fractic 0.8
Mutation Uniform
Mutationrate 0.01

. Forecast Modeling

An initial fuzzy inference structure (FIS) is geated from
the training data using fuzzy c-means (FCM) clustewith
all its premise and consequent parameters randiitiglized.
The premise and consequent parameters of the dgedera
ANFIS model are iteratively obtained to determihe size of
each chromosome/particle for setting up the opttion
problem. These parameters constitute the set ahtas to be
optimized by the hybrid GA-PSO algorithm. The ANFIS
model is evaluated at all candidate solutions terdene the
strength of each chromosome/particle. The RMSE ref t
residuals produced by the ANFIS model is used asterion
to define the fitness function for the optimizatiomoblem.

TABLE Ill: PARAMETERS OFGA ALGORITHM

Parameter Value
Population sizeN) 50
Max. number of generationséxit) 1000

Number of elite chromosomes 2
Selection method Roulette wheel

Crossover function Scattered
Crossover fractic 0.&
Mutation function Uniform
Mutationrate 0.1




TABLE IV: PARAMETERS FORPSOALGORITHM

Parameter Value
Swarm siz (PopSize) 50
Max. number of iterationgvaxIit) 1000
Cognitive acceleration constaiC,) 1
Social acceleration constaiC,) 2
Inertia Weight(w) 1
Inertia weight damping rati@w 4y, ) 0.99

TABLE V: DESCRIPTION OF HYBRIDGA-PSOALGORITHM

Step 1: FIS initialization
. Arrange predictor and target variables column-wise
. Generate initial FIS structure from the modelling dataset
Step 2: Generation of initial solutions
. Obtain parameters of initial FIS structure and determine
number of variables VarSize
. Randomly generate PopSize particles P of length
VarSize each and with positions py; € [Ppin, Pnax] where
k=1,2,3... PopSizeand k=1, 2,3...VarSize
. Randomly generate PopSize chromosomes C of length
VarSize each and with genes Cy; € [Py, Pnax] Where k =
1,2,3... PopSizeand k=1, 2,3... VarSize
. Initialize velocity of each particle to zero
. Initialize best cost of PSO to infinity
. Initialize global best cost to infinity
Step 3: Create next generation of solutions
. Update velocity, position and inertia weight of particles’
. Perform elite selection, crossover and mutation
Step 4: Assign parameters of solution to ANFIS structure
. Get vector of variables of each particle/chromosome sol
. For each membership function of each predictor variable,
assign corresponding values of sol to the input MF
parameters
. For each membership function of the target variable,
assign corresponding values of sol to the output MF
parameters
Step 5: Evaluate cost of candidate solutions
. Evaluate cost of each particle p; and update personal best
PPbest and global best PGbest of PSO
If Cost; < Chest;:
PPbest « p;
Chest; « Cost;, and
If Chest; < Chest:
Chest; « Cbhest;
PGbest < PPbest
. Evaluate fitness of each chromosome c; and find best GA
solution GAbest and its fitness fbest;
. Apply global solution update rules
Step 6: Check whether termination criterion is met
. Iterations (MaxIt = 2000)
. If the criterion is not satisfied, go back to Step 3. Otherwise
proceed to Step 7.
Step 7: Terminate the algorithm and output optimized model

iteration. All chromosomes and particles of the sam
generation are evaluated and ranked in terms af fitrgess.
The algorithm works by comparing the fithess of thest
solutions achieved by the GA and PSO at each iverand
choosing the better as the global best solutionthéf best
particle of the PSO has achieved a better fitneas the best
chromosome from the GA population, parameters eflibst
chromosome are updated to assume the variabldsedbdst
particle. On the other hand, if the GA has achiebetter
solution, variables of the best particle are reptaby the
genes of the best chromosome. In this way, therithgo
which has produced the best solution sets the blbbat
solution. This process is repeated until the cogeece
criterion is met. The variables optimized using thgorid
algorithm are finally assigned to the ANFIS modd a
antecedent and consequent parameters to form tied fi
ANFIS model and the training process is conclud€de
summary of the steps involved in implementing teeosnd
stage of the proposed PV power prediction approach
described in Table V.

3 RESULTS ANDDISCUSSION
3.1 Forecasting Accuracy Evaluation Metrics

Several standard error metrics were used to eltrad
proposed PV power forecasting strategy. For a tagguence
t, forecast sequencg with N time steps and maximum
recorded powep,,, root mean square erroRNISE), mean
absolute error NJAE), and normalized mean absolute error
(nMAE) criteria are expressed as:

N
RMSE = |23 (6 fy? )
MAE = ZSI1|f; — t;] (10)
N
nMAE = ﬂz Victl (11)
N i=1 Pm

The skill criterion evaluates the improvement in prediction
capability of models over that of the benchmarksjstence
prediction model.

s = ( RMSE
RMSEp

) «100 (12)

The parameters corresponding to the GA and PSO

algorithm used to train the ANFIS structure in thtisdy are as
shown in Table Ill and Table IV respectively. Thergmeters
of the GA and PSO were selected after a large nuofheial
simulation runs. The PSO algorithm updates thecitsi@and
position of each particle in the swarm accordingutmlate
rules (1) and (2), whereas the genetic algorithnfiopms elite
selection, crossover and mutation operations ouecessive
generations until a preset maximum number of ikemat is
attained. The hybrid training algorithm takes inat@ount all
variables of a chromosome/particle (i.e. all antec¢ and

3.2 Sdection of Predictors

The binary GA based feature selection method was
implemented and applied to the datasets of eatcheothree
PV generation units in the system. Descriptionhef datasets
in terms of sample size and feature dimensionsdsemted in
Table VI. The feature selection algorithm was agplio each
dataset and the experimental results obtained Hertiree
normalized datasets are provided in Table VII.

consequent parameters of the ANFIS structure) ath ea



TABLE VI: DESCRIPTION OFDATASETS

DATASET SAMPLES DIMENSION
PVl 468 9
PVv2 711 9
PV3 1466 9

Considering the fact that all the input parametars
weather condition variables which could exhibit néiigant
interrelationships, it can be inferred from theutesthat the
number of features selected by the binary GA-baB&d
algorithm is significantly smaller than the numlaérfeatures
in the original dataset in each case. Moreover,ctbeeness
between the mean and best fithess values indicttes
effectiveness of the employed feature selectiorhouilogy.
For dataset of PV1, the improvement in MSE whery dhé
selected variables are used to model the data UuSIRR
approach is over 19 percent. Similarly, selectdibstidatasets
of PV2 and PV3 have provided improvements of roughb
and 5.1 percent respectively over the original skttavith
respect to the MSE criterion.

TABLE VII: DESCRIPTION OFDATASETS

PV SELECTED F’nri):;s Fl?lri?ss WITHOUT
UNIT FEATURES (x10%) (x10°) FS(x10%
PV1 2,3,4,5,6,7,8 4.12 3.76 4.7
PV2 1,4,5,6,7,8 0.13 0.12 0.13
PV3 45,6,7,8,9 0.265 0.259 0.273
ALL 4,5,6,7,8

Features 4, 5, 6, 7, and 8, which stand for surface

temperature, irradiance, low cloud cover, middleud cover,
and high cloud cover respectively, have been sdent all
the three cases. Therefore, for mere purpose distency,
these five variables have been selected to cotestite input
dataset for PV power generation forecast modelangafi the
three generation units.

3.3 Experimental Results

In this study a combination of genetic algorithna @article
swarm optimization is designed to effectively optien an
ANFIS model for the intended PV power forecastiagkt
Historical weather data of the selected variables the
aforementioned period were given as the inputsgaleith the
corresponding PV output power data as the traitangets for
all the modeling approaches. The performance optbposed
forecasting technique as applied to the three PWepo

PV units, the proposed GA-PSO-ANFIS based hybrigtety
has more efficiently captured the trends of theadaWith
respect to thenMAE criterion, relative percentage
improvements over ANN approach for PV1, PV2, and3PV
are 23.36, 5.16 and 12.66 respectively. Taking sxtoount
the RMSE criterion, the corresponding figures ate82, 8.52
and 12.18 percent respectively.
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Fig. 2: Comparison of models during training stage

TABLE VIII: EVALUATION OF HYBRID MODEL AGAINST BP-NN MODEL

PVUNIT METHOD RMSE MAE nMAE
PSO-ANFIS 5.09 3.47 4.43

PV1 BPNN 6.77 4.52 5.78
LRM 7.54 5.27 6.74

PSO-ANFIS 5.15 3.49 4.58

PVv2 BPNN 5.63 3.68 4.83
LRM 7.35 5.49 7.20

PSO-ANFIS 6.20 4.65 6.0

PV3 BPNN 7.06 5.32 6.87
LRM .77 5.88 7.59

The proposed hybrid forecasting approach and theeth
benchmark techniques were applied on a test dataset
representing hourly weather forecast data of fieesecutive
days from January 01, 2016 to January 05, 2016.ré&balts
of 24 hours ahead PV power generation forecastimongl the
test days further demonstrated the superiorityhefgroposed
hybrid forecasting technique over the other methotse
proposed hybrid PV power generation forecastinghowtthas
consistently outperformed the ANN, LRM and persiste
based methods regarding RMSE, MAE and NMAE critaga
demonstrated in Table IX through Table XI. Table #4d
Table X show comparison of forecasting performandtn
regard toRMSE andMAE criteria as the forecasting methods
are applied to individual generation units. Theresponding
results with regard taMAE are similarly tabulated in Table

generation units is evaluated and compared with thd. The proposed hybrid approach has yielded arramee

benchmark forecasting methods. Fig. 2 shows cosmardf
actual values and forecasted values for PV1, P12 RW3
during training stage considering the first 50 dadats. Table
VIII summarizes evaluation of the proposed hybnxpr@ach
and that of an ANN and LRM for individual units tuy
model training stage using three different errotriog. For all

RMSE performance improvement of 25.98 percent éN
method, the second best performing approach, in ®*t the
test period. In contrast, PV3 has seen the leastage
performance improvement among the three units, eviiee
proposed hybrid approach has reduced the RMSE ralatai
using the ANN method by about 11.3 percent. Fidisplays



measured power and predicted power of the comkdgsttm
(combining all three generation units) using thérd GA-

performance evaluation criteria over the test pkrias
presented in Table Xll. With respect to the RMSEecion,

PSO-ANFIS model and the benchmark approaches dthimg the hybrid approach was found to have achievedvanage

five days test period. Comparison of daily foreiregterror

distribution of the combined plant introduced byfatient

approaches during the test period is illustratelign 4. It was

observed that the forecasting techniques produceerio
prediction errors during the hours on both sidesnoén,

where the solar radiation, which is the most imgafrtfactor

for power production among the input parameterd, anface

temperature remain essentially constant.

reduction of 10.95, 30.3 and 25.5 percent relativ8P-NN,
persistence and LRM methods respectively over thelewtest
period. The averag®MAE experienced by the proposed
approach over the five days test period is 5.3tggr This
accounts for 82.45%, 63.74% and 60.68% of
corresponding values obtained from the BP-NN, ptace
and LRM based models respectively over similarqueri

the

TABLE IX: EVALUATION OF DIFFERENT APPROACHES WR.T RMSE

—Recorded —GA-PSO-ANFIS ——ANN ——LRM —Persistence L DAYl Dav2 Day3 Davy4 DAY5  AVERAGE
81 o1Jan2016 7 PSO-ANFIS 116 143 338 279 138 208
dor 1 VL BPNN 286 295 303 372 149 2.81
0 PERSISTENCE ~ 3.05 3.09 3.47 3.93 3.89 3.49
807 g24an2016 ] LRM 352 343 366 378 236 3.35
Q- ] PSO-ANFIS 162 185 420 6.86  3.97 3.70
§' 0 PV2 BPNN 1.52 1.79 7.55 6.91 3.52 4.26
x 80 03 Jan 2016 7 PERSISTENCE ~ 3.45 3.48 3.87 4.86 4.53 4.04
5 40 LRM 35 366 347 557 232 3.70
) PSO-ANFIS 441 463 384 465 210 3.92
o 80 04 Jan 2016 . pV3 BPNN 475 489 475 516 257 4.42
© PERSISTENCE 329  3.48  3.78 45 4.22 3.85
LRM 574 571 483 501 404 5.07
0 T T T T T T
sor 05 Jan 2016 il
40 - i TABLE X: EVALUATION OF DIFFERENT APPROACHES WR.T MAE
Ty e s . 2w 6 1w w2 2 Davl Dav2 Dav3 Dav4 Dav5  AVERAGE
_ _ Time Steps ) PSO-ANFIS 062 072 191 139 068 1.06
Fig. 3: Comparison of prediction using differenpegaches BPNN 165 157 171 185 009 153
PVt 1‘75 1.68 1.90 2118 2 .25 .
PE . . ) . :
40 —— — GA-PSO-ANFIS ——ANN ——LRM —Persistence }—_ ROISTENCE 1.95
LRM 3.09 2.63 2.88 2.98 2.28 2.77
20 01 Jan 2016 il
PSO-ANFIS  0.70 0.91 1.63 3.10 1.47 1.56
0 BPNN 074 095 374 343 183 214
30+ 1 PV2
il 02 Jan 2016 m PERSISTENCE  1.96  1.89 214 265 258 224
E 0 LRM 2.43 2.52 2.82 3.33 1.69 2.56
=
rll 03 Jan 2016 ) PSO-ANFIS 237 242 204 242 111 207
; 15 7
R V3 BPNN 278 275 261 286 137 2.47
40F 4 PERSISTENCE  1.82 1.75 1.99 2.38 2.38 2.06
i 04 Jan 2016 J LRM 479 474 3.7 417  3.65 421

TABLE XI: EVALUATION OF DIFFERENT APPROACHES WR.T NMAE

05 Jan 2016
% Day1 Day2 Dav3 Dav4 DAY5  AVERAGE
L L 1 L L |
° 2 4 6 8 10 12 14 16 18 20 22 24 PSO-ANFIS 2.95 3.59 8.07 5.32 2.53 4.49
) , Time Steps ) BPNN 782 778 749 706  3.33 6.7
Fig. 4: Comparison of prediction errors over th& feeriod PV1
PERSISTENCE ~ 8.33 8.33 8.33 8.33 8.33 8.33
The test results demonstrate that the proposedichybr LRM 1465 1302 1261 1141 844 1203
approach outperformed the three benchmark appreache PSO-ANFIS 299 402 635 976 476 558
throughout the test period with respect to all penfance v BPNN 315 418 1461 1078 5093 7.73
evaluation metrics. This was validated across lale¢ PV PERSISTENCE 833 833 833 833 833 8.33
generation units considered in the study. Similadige LRM 1036 1109 1099 1045 545 067
foreca_lstlng perfor_mance of the models considerihg t PSOANFIS 1086 1151 854 8464 390 e
combined generation plant was evaluated. The s BPNN 1273 1305 1093 1001 478 103
consistent with the findings considering individir units. PV3 o 8'33 8'33 853 83’3 8'33 83'3
The proposed hybrid technique has provided the best ERSISTENCE & ‘ ' ‘ ' ‘
L o . . LRM 21.93 22.55 15.51 14.6 12.77 17.47
predictive capability with respect to four diffeten



TABLE XII: ERROR EVALUATION FOR THE WHOLE PLANT

METRIC METHOD Dayl Dav2 Dav3 Dav4 DaAv5  AVERAGE
PSO-ANFIS 6.68 7.33 7.33 14.10 4.01 7.89
RMSE BPNN 7.95 8.37 8.12 15.42 4.46 8.86
PERSISTENCE ~ 9.76 10 11.09 13.21 1254 11.32
LRM 11.6 11.95 10.21 12.94 6.27 10.59
PSO-ANFIS 3.59 3.72 3.41 6.86 2.29 3.98
MAE BPNN 456 441 477 794 225 4.79
PERSISTENCE ~ 5.53 5.3 6.03 7.21 7.21 6.26
LRM 6.85 7.33 6.47 7.53 3.69 6.37
PSO-ANFIS 541 5.86 4.71 7.93 2.65 5.31
NMAE BPNN 6.87 6.94 6.59 9.18 2.61 6.44
PERSISTENCE ~ 8.33 8.33 8.33 8.33 8.33 8.33
LRM 10.32 11.52 8.95 8.7 4.26 8.75
PSO-ANFIS  31.56 26.7 33.9 -6.74  68.02 30.3
SKILL BP NN 18.55 16.3 26.78 -16.7 64.43 21.73
LRM -18.8 -19.5 7.94 2.04 50 6.45
PERSISTENCE - - - - - -

(2]

(3]

[4]

(5]

(6]

(7
(8]

In terms of theSkill (s) criterion, averaged over the test

period, the LRM model has performed slightly bettean the
persistence approach, despite falling behind onfitlse and
second test days. Both the proposed approach and\ith
method provided significantly improved forecastisgills
averaging to 30.3 and 21.73 respectively. The mmego

approach has easily beaten both NN and LRM modelﬁ]

throughout the test period. The results summarinetiable

(9]

(10]

IX through Table XIlI validate the superior PV power

generation forecasting capability of the integra@a-PSO-
ANFIS based hybrid technique by employing daily thea
conditions data at a reasonable accuracy with ivggto
precision compared to other forecasting approaches.

4  CONCLUSIONS

With the rapid growth of photovoltaic energy getiems
reliable and accurate short-term PV power forengstools
are needed. This paper proposes an integrated @A-P
ANFIS based hybrid technique for short term pholi@io

[12]

[13]

[14]

§15]

[16]

power generation forecasting. The proposed method

implements binary GA based feature selection giyat®
eliminate insignificant variables and applies a bomation of
GA and PSO to optimize a forecasting model. A GP&teh
based fitness function was implemented to enal@ebthary
GA to significantly reduce the number of input feats
required to achieve improved forecast modelingimagrated
GA-PSO algorithm is then used to optimize the ety
complex ANFIS structure for forecast modeling. Berfance
of the proposed technique is compared with ANN, LRI
persistence methods. Results show that the propostiod
has the capability of accurately forecasting dagaahhourly

[17]

(18]

[19]

[20

PV power generation with substantial performance

improvement over other techniques. Model testingr afive
days test period returned daily average normalioedcast
errors essentially lower than 8 percent; demonsgyathe
effectiveness of the proposed approach for sharh tBV
power forecasting.

REFERENCES

[1] M. Oliver and T. Jackson, “The market for solar fgvoltaics”, Energy
Policy, Vol. 27, pp. 371-385, 1999.

[21]

[22]

(23]

M. Zamo, O. Mestre, P. Arbogast and O. Pannekougk&enchmark
of statistical regression methods for short-ternredasting of
photovoltaic electricity production, part I: Detemstic forecast of
hourly production” Solar Energy, Vol. 105, pp. 792-803, 2014.

A. Azadeh, A. Maghsoudi, and S. Sohrabkhani, “Ategnated artificial
neural networks approach for predicting global afidn”, Energy
Conversion and Management, 50(6), pp.1497-1505, 2009.

R. Marquez and C.F.M. Coimbra, “Forecasting of gladnd direct solar
irradiance using stochastic learning methods, gioexperiments and
the NWS database%olar Energy, 85(5), pp. 746-756, 2011.

A. Mellit and A. MassiPavan, “A 24-h forecast ofaoirradiance using
artificial neural network: Application for performee prediction of a
grid-connected PV plant at Trieste, Italghlar Energy, 84(5), pp. 807-
821, 2010.

D. P. Larson, L. Nonnenmacher and C. F.M. CoimBBay-ahead
forecasting of solar power output from photovoltg@ants in the
American SouthwestRenewable Energy, Vol. 91, pp. 11-20, 2016.

P. Bacher, H. Madsen and H. Nielsen, “Online skemr solar power
forecasting” Solar Energy, Vol. 83, pp. 1772-1783, 2009.

Y. Li, Y. Su and L. Shu, “An ARMAX model for foresting the power
output of a grid connected photovoltaic systefR&newable Energy,
Vol. 66, pp. 78-89, 2014.

R. Perez, S. Kivalov, J. Schlemmer, K. HemkerDr.Renr¢ and T.E.
Hoff, “Validation of short and medium term operatigolar radiation
forecasts in the US'Solar Energy, Vol. 84, pp. 2161-2172, 2010.

F. Wang, Z. Mi, S. Su and H. Zhao, “Short-term salaadiance
forecasting model based on artificial neural nekwosing statistical
feature parametersEnergies, Vol. 5, pp. 1355-1370, 2012.

C.W. Chow, B. Urquhart, M. Lave, A. Dominguez, Jeissl, J. Shields
and B. Washom, “Intra-hour forecasting with a ketey imager at the
UC San Diego solar energy teste®lar Energy, 85 (11) , pp. 2881-
2893, 2011.

Y. Chu., B. Urguhart, S. Gohari, H. Pedro, J. Kdéisnd C. Coimbra,
“Short-term reforecasting of power output from aVA8e solar PV
plant”, Solar Energy, Vol. 112, pp. 68-77, 2015.

F. Almonacid, P. Perez-Higueras, E. Fernandez and#idntoria, “A
methodology based on dynamic artificial neural mekwfor short-term
forecasting of the power output of a PV generatriergy Conversion
and Management, Vol. 85, pp. 389-398, 2014.

Y. Kashyap, A. Bansal and A. K. Sao, “Solar radiaforecasting with
multiple parameters neural networksRenewable and Sustainable
Energy Reviews, Vol 49, pp. 825-835, 2015.

M. Rana, I. Koprinska and V. Agelidis, “2D-interviarecasts for solar
powerproduction.’Solar Energy, Vol. 122, pp. 191-203, 2015.

A. Mellit and S. A. Kalogirou, “ANFIS-based model§ for
photovoltaic power supply system: A case studenewable Energy,
36(1), 250-256, 2015.

R. Chauvin, J. Nou, S. Thil and S. Grieu, “IntrardaNI forecasting
under clear sky conditions using ANFIS”, Proceediogthe 19 World
Congress The International Federation of Automalimntrol Cape
Town, South Africa, August, 2014.

M. Bouzerdoum, A. Mellit and M. A. Pavan, “A hybridhodel
(SARIMA-SVM) for short-term power forecasting okanall-scale grid-
connected photovoltaic plant3lar Energy, Vol. 98, pp. 226-235,
2013.

A. Vaz, B. Elsinga, W. V. Sark and M. Brito, “An téicial neural
network to assess the impact of neighbouring plultaic systems in
power forecasting in Utrecht, the Netherland@hewable Energy, Vol.
85, pp. 631-641, 2016.

] K.-P. Lin and P.-F. Pai, “Solar power output forgesy using

evolutionary seasonal decomposition least-squarpposti vector
regression”,  Journal of Cleaner Production (2015),
http://dx.doi.org/10.1016/).jclepro.2015.08.099

J. L. S. Garcia, E. E. Juarez and J. J. Floresprt3arm photovoltaic
power production using a hybrid of nearest neigtaat artificial neural
networks”, IEEE PES Transmission & Distribution @enence and
Exposition - Latin America (PES T&D-LA), Morelia, &kico, 2016.

A. Dolara, F. Grimaccia, S. Leva, M. Mussetta andQgliari, “A
physical hybrid artificial neural network for sheetm forecasting of PV
plant power output’Energies, vol. 8, pp. 1138 — 1153, 2015.

J. Antonanzas, N. Osorio, R. Escobar, R. Urrach,Wartinez-de-Pison
and F. Antonanzas-Torres, “Review of photovoltasever forecasting”,
Solar Energy, Vol. 136, pp. 78-111, 2016.




[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

Ye Ren, P.N. Suganthan and N.Srikanth, “Ensemblénads for wind
and solar power forecasting-A state-of-the-art @eX/j Renewable and
Sustainable Energy Reviews, Vol. 50, pp. 82-91, 2015.

R. H. Inman, H. T.C. Pedro and C. F.M. Coimbra, I&8dorecasting
methods for renewable energy integratioRtogress in Energy and
Combustion Science, Vol. 39, pp. 535-576, 2013.

I. Guyon and A. Elisseeff, “An introduction to vable and feature
selection”, Journal of Machine Learning Research, vol. 3, pp. 1157-
1182, 2003.

R. A. Welikalet al., “Genetic algorithm based feature selection
combined with dual classification for the automatddtection of
proliferative diabetic retinopathy'Computerized Medical Imaging and
Graphics, vol. 43, pp. 64-77, 2015.

A. Pereiraet al., “Feature selection for disruption prediction from
scratch in JET by using genetic algorithms and ghdistic predictors”,
Fusion Engineering and Design, vol. 96-97, pp. 907-911, 2015.

T. Khadhraowt al., “Features selection based on modified PSO
algorithm for 2D face recognition” Proceedings lué L3 International
Conference Computer Graphics, Imaging and Visuadizapp. 99-104,
2016.

H. Y. Markid, B. Z. Dadaneh and M. E. Moghaddame{8ence based
feature selection using ant colony optimizationtpdeedings of the
5"nternational Conference on Computer and KnowleBggineering,
pp. 100-105, 2015.

B. Oluleyet al., “A genetic algorithm-based feature selection”,
International Journal of Electronics Communication and Computer
Engineering, 5(4) pp. 899-905, 2014.

J.-S. R. JANG, C.T. Sun and E. Mizutani, Neuro-juzmnd soft
computing, A computational approach to learning anmwchine
intelligence, New Jersey: Prentice Hall, 1997,%$74, 86, 95-97,86-87,
26-28, 74-85.

J.-S.R. JANG, “ANFIS: adaptive network-based fuzimyference
systems” ) EEE Transactions on Systems, Man and Cybernetics, 23(3) pp.
665-685, May/June 1993.

Y. Kassa, J.H. Zhang, D.H. Zheng and D. wei, “Shenin wind power
prediction using ANFIS”, IEEE International Confece on Power and
Renewable Energy, pp. 388-393, 2016.

M. K. Deshmukh and C. B. Moorthy, “Application oégetic algorithm
to neural network model for estimation of wind powgotential”,
Journal of Engineering, Science and Management Education, Vol. 2, pp.
42-48, 2010.

Mitsuo Gen and Runwei Cheng, “Foundations of genalgorithm,”
Genetic algorithms and engineering application, New York, John Wiley
and Sons Inc., 2000.

Y. Kassa, J.H. Zhang, D.H. Zheng and D. wei, “A @&®R-hybrid
algorithm based ANN model for wind power predictidAroceedings of
the 4th I|EEE International Conference on Smart &neGrid
Engineering, pp. 158-163, 2016.

J. Kennedy, R.C. Ebenhart, “Particle swarm optitiored, Proceedings
of the IEEE International Conference on neural oets, Vol. 4, pp.
1942 — 1948, 1995.

J. Kennedy. The behavior of particles. In V. W.tBpN. Saravanan, D.
Waagen, and A. E. Eiben, Edg&volutionary Programming VII:
Proceedings of 7th Annual Conference on Evolutipriogramming
Conf., San Diego, CA, 581-589. Berlin: Springer{sigr 1998.

C. Zhanget al., “A Gaussian process regression based hybrid appro
for short-term wind speed prediction’Energy Conversion and
Management, vol. 126, pp. 1084-1092, 2016.

S.A.Aye and P.S.Heyns, “An integrated Gaussiange®cegression for
prediction of remaining useful life of slow speedalings based on
acoustic emissionMechanical Systems and Signal Processing, vol. 84
pp. 485-498, 2017.

P. Poggit al., “Forecasting and simulating wind speed in Corsiga b
using an autoregressive modeEnergy Conversion and Management;
44(20), pp. 3177-3196, 2003.

J. Hu and J. Wang, “Short-term wind speed predictising empirical
wavelet transform and Gaussian process regressimgigy, vol. 93,
pp. 1456-1466, 2015.



