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Comparing the Competition Equilibrium with the
Nash Equilibrium in the Electric Power Market

Haibing Wang, Jian Deng, Chengmin Wang, Weiqing Sun, Ning Xie

Abstract—The Nash equilibrium and competition equilibrium
have been widely studied in the electric power market up to
now. In this paper, it is explained that the Nash equilibrium
can be achieved by using marginal cost pricing and the com-
petition equilibrium can be performed by using accounting
cost pricing based on the model of the power market system.
The comparison between the Nash equilibrium and competition
equilibrium indicates that surplus and unfair allocation of market
benefits may be obtained by the Nash equilibrium, and the
competition equilibrium realizes the optimization in economics
with maximum market efficiency and fairness for market benefit
allocations while the optimization in mathematics is achieved
by the Nash equilibrium. There is sameness between the Nash
equilibrium and competition equilibrium at the point when the
power network characteristics are disregarded. The case study is
made on an IEEE 30-bus system, and the calculation results
indicate that it is the key issue to perform the competition
equilibrium by using accounting cost pricing.

Index Terms—Accounting cost pricing, competition
equilibrium, marginal cost pricing, market failure, market
surplus, Nash equilibrium, power market.

I. INTRODUCTION

THE electric power market indicates that the operation and
management of the power network and system should

follow the economic principles so that the power resources
can be allocated more efficiently. In other words, the “electric
power market” is the combination of the rules in power
systems and principles resulting from the economy.

The researches, most of which are trying to apply economic
principles into every aspect of the electric power market, have
been conducted all over the world. Equilibrium theory is one
of the important foundation theories in the power market
research, which can be classified into the Nash equilibrium [1]
and Walrasian equilibrium [2].

The early market equilibrium proposed by Walras was called
“Walrasian equilibrium” [3]. But the existence of general
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equilibrium was not convincing enough. Furthermore, Arrow
and Debreu reconstructed the theory foundation of general
economic equilibrium and provided a satisfying and strict
mathematical proof of the general equilibrium existence in
1954 [4]. Meanwhile, Nash proved the existence of the Nash
equilibrium in N-players game theory by using the fix-point
theorem in 1950 [5]. The existence of the Nash equilibrium
with additional constraints is the key point to obtain the Arrow-
Debreu equilibrium. So we can conclude that the market
equilibrium theory develops along this process: Walrasian
equilibrium – Nash equilibrium – Arrow-Debreu equilibrium.

In the past years, Game theory and different Nash equi-
librium models have been used in the analysis of strategic
interaction among participants in the power market, among
which, the supply function equilibrium (SFE) [6]–[9] and
Cournot models [10]–[12] are the most extensively used
models for analyzing pool-based power markets. The Cournot
model assumes that strategic firms employ quantity strategies:
each strategic firm decides its quantity to produce, treating
the output level of its competitors as a constant. The Cournot
model often suffers from the problem of sensitivity to the
specification of market demands. The SFE model is successful
in studying oligopoly behavior in the power market, which
offers a more realistic view of the power market. The general
SFE model was introduced by Klemperer and Meyer [13]
and was first applied to power market analysis by Green and
Newbery [14].

The Walrasian equilibrium is also called the competition
equilibrium, which is used to determine the clearing price
and quantity in the power market from the position of the
central auctioneer or ISO. The supply-demand model is a
partial application of the competition equilibrium theory and
the point where supply and demand intersect is commonly
regarded as the equilibrium point in the power market. In [15],
a single time period decentralized power market clearing
model based on the Walrasian equilibrium is presented, which
includes reactive power and demand response in addition to the
more common framework of generation-side competition for
the real power commodity. What’s more, Walrasian auctions
are adopted in [16] to trade demand response based on the
market clearing scheme of the so called demand response
exchange. As far as we know, the researches on competition
equilibrium are comparatively fewer when the power network
characteristics are considered.

The main contributions of this paper are three aspects:
1) Marginal cost pricing and accounting cost pricing are
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proposed to formulate the Nash equilibrium and competition
equilibrium, respectively; 2) the differences and similarities
between the Nash equilibrium and competition equilibrium are
explained in detail by establishing the model of electric power
systems, where the characteristics of the power network are
considered; 3) analysis results show that the different form
of equilibrium is closely related to the characteristics of the
power network and price mechanism.

The organization of the remainder of this paper is as follows:
Section II presents the mathematical model of power market
systems. Section III compares the Nash equilibrium and com-
petition equilibrium. The calculation of the equilibrium point
is introduced in Section IV. Section V presents the case study
by applying the IEEE 30-bus system. Section VI concludes
the paper.

II. POWER MARKET SYSTEMS

The power market, as with other commodity markets, can
be described as an economy system with the participants as
generation companies, demanders, ISO (auctioneer) and grid
corporations. The ISO and grid corporations are considered as
an organic whole in this paper.

The auction problem of the power market can be interpreted
as a game where each generation company or customer sub-
mits bids. Each bid is a quantity bid, the amount of power to be
produced. The central auctioneer (ISO) receives the bids, and
decides the power flows in order to maximize power market
benefit, subject to the equality and inequality constraints of
the power network.

As general market participants, we assume that generation
companies and demanders are rational and attempt to maxi-
mize their profits

max ckpk − costk(pk) (1)

where k = 1, 2, · · · , N is node number, N is total number
of nodes, there is just one generation company or demander
at each node; ck, pk are bidding price and power of each
generation company or demander, and pk is positive for
generation company and negative for demander; costk(pk)
denotes production cost or profit of each generation company
or demander. The objective of each generation company or
demander is to minimize cost, which can be expressed as

min costk(pk)− ckpk. (2)

As a special participant, the auctioneer considers problems
from the position of a social welfare worker, so the benefits
of the power market are expressed by the sum of profits from
all market participants:

max

N∑
k=1

[ckpk − cos tk(pk)] (3)

The power balance equation used as equality constraints at
each node must be met:

fk(pk) = pk − ek
∑
j∈k

(Gkjej −Bkjfj)

− fk
∑
j∈k

(Gkjfj +Bkjej) = 0

Qk − fk
∑
j∈k

(Gkjej −Bkjfj)

+ ek
∑
j∈k

(Gkjfj +Bkjej) = 0 (4)

where e, f denote the real and imaginary part of nodal voltage.
The inequality constraints are maximum flow limits through
each transmission line:

Pl − Pmax
l ≤ 0 (5)

where l = 1, 2, · · · , L is the transmission line number, L is the
total number of lines. In order to simply describe the problem,
other inequality constraints are ignored in this paper.

In the competition of the power market, the costs of
generation companies and profits of demanders, which are not
open to the public, cannot be known by the auctioneer, so the
objective function (3) is substituted by the formula below:

max

N∑
k=1

ckpk or min −
N∑

k=1

ckpk (6)

Formulas (1)–(6) consist of the model of the power market
system.

A. Marginal Cost Pricing

According to (3)–(6), the augmented Lagrange function, that
denotes the costs of the power market system, can be written
as:

L = −
N∑

k=1

ckpk +

N∑
k=1

αkfk(pk) +

LI∑
l=1

βl(Pl − Pmax
l ) (7)

where α, β are Lagrange multipliers associated with the equal-
ity and inequality constraints. In the above Lagrange function,
the nodal reactive power balance equation is not necessary for
taking pk as variables. The marginal electricity price at node
k can be written as:

CN
k =

∂L

∂pk
= −(ck + c′kpk)+αk +µk k = 1, 2, · · · , N (8)

where LI is the set of active inequality constraints; c′k = ∂ck/

∂pk; µk =
∑LI

l=1 βl
∂Pl

∂pk
.

B. Accounting Cost Pricing

Accounting cost pricing is different than marginal cost
pricing, which counts price making both ends meet by ap-
portioning costs among all market participants. The average
cost pricing is used for example in this paper because it is a
familiar form of accounting cost pricing.

First, the active power balance equation at node k can be
changed as:

fk(pk) = pk + ∆fk = (1 + ξk)pk (9)

where

∆fk = −ek
∑
j∈k

(Gkjej −Bkjfj)− fk
∑
j∈k

(Gkjfj +Bkjej),
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ξk = ∆fk/pk. The transmission flow limit through line l can
also be changed as:

Pl − Pmax
l =

N∑
k=1

[γlkpk + ∆Pl(pk)] =

N∑
k=1

γ′lkpk (10)

where ∆Pl(pk) is the sum of the remainder terms except the
first order in the Taylor series expansion of Pl−Pmax

l ; γlk =

∂Pl/∂pk; γ′lk = γlk +
∑LI

l=1 ∆Pl(pk)/pk.
So the average costs of the power market at node k can be

expressed as:

Lk = −ckpk + αk(1 + ξk)pk + µ′kpk (11)

where µ′k =
∑LI

l=1 βlγ
′
lk. The average electricity price at node

k is defined as:

CW
k =

Lk

pk
= −ck + αk(1 + ξk) + µ′k. (12)

III. NASH EQUILIBRIUM AND COMPETITION
EQUILIBRIUM

A. Nash Equilibrium

In game theory, Nash equilibrium is a kind of equilibrium
state in a game involving two or more players, in which each
player is assumed to know the equilibrium strategies of the
other players, and no player has anything to gain by changing
only his or her own strategy unilaterally. If each player has
chosen a strategy and no player can benefit by changing his
or her strategy while the other players keep their strategies
unchanged, then the current set of strategy choices and the
corresponding payoffs constitute the Nash equilibrium.

In the power market, players can be regarded as the gen-
eration companies, auctioneers and those demanders who will
participate in the future bidding. So, all the participants can get
the maximal profits in the Nash equilibrium, that is to say, the
power market system (expressed by (1)–(6)) has its solution
and it’s a multi-objective optimization problem. In this paper,
the existence and uniqueness of the Nash equilibrium solution
are regarded as true.

The Nash equilibrium is achieved by taking the marginal
cost pricing as shown in (8) with CN

k = 0 when the auctioneer
is required to compute equilibrium prices, because it is one of
the first order optimal conditions. So, the nodal price can be
written as:

ck = −c′kpk + αk + µk k = 1, 2, · · · , N (13)

When the Cournot model is adopted, the pk will be regarded
as the decision-making variable of the generation company or
demander based on the nodal price ck. So c′k = 0 and

ck = αk + µk (14)

When the supply function equilibrium (SFE) model

ck = akpk + bk (15)

is adopted, the pk and ck will be regarded as decision-making
variables of the generation company or demander, so:

ck = −akpk + αk + µk (16)

The optimization is made by substituting the above formulas
into the objective functions (1) or (2) and the best strategy
of the generation companies and demanders can be obtained.
Therefore, the Nash equilibrium of the power market can be
reached.

B. Competition Equilibrium

The model of competition equilibrium for the general com-
modity market can be expressed as:

F (C) = S(C)−D(C) = 0 (17)
CF (C) = 0 (18)

where F is the excess supply function; S(C), D(C) are the
supply and demand functions; C is the market price. It can
be seen that supply and demand are in balance from (17), and
the market is cleared with no surplus from (18).

It is obvious that total power balance equation is necessary
for the competition equilibrium model, which is absent in the
model (3)–(6). When the nodal active power equations are
added together, the following is obtained:

N∑
k=1

pk − PL = 0 (19)

where PL is network losses. Similar to (9) and (10), the
network losses PL can be apportioned by pk

PL =

N∑
k=1

[ηkpk + ∆PLk(pk)] =

N∑
k=1

η′kpk (20)

where η′k = ηk + ∆PLk(pk)/pk; ∆PLk(pk) is the sum of
the remainder terms except the first order in the Taylor series
expansion of PL. Formula (19) is changed as:

N∑
k=1

(1− η′k)pk = 0 (21)

By substituting (12) into (7), the Lagrange function is
changed as:

L =

N∑
k=1

CW
k pk. (22)

Further

L =

N∑
k=1

CW
k

1− η′k
(1− η′k)pk (23)

To introduce
p′k = (1− η′k)pk (24)

So

L =

N∑
k=1

CW
k

1− η′k
p′k;

N∑
k=1

p′k = 0 (25)

To compare with (17) and (18), it can be seen that the
competition equilibrium may be achieved just as:

CW
1

1− η′1
=

CW
2

1− η′2
= . . . =

CW
N

1− η′N
= C0. (26)
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So (25) is changed as:

L = C0

N∑
k=1

p′k = 0

N∑
k=1

p′k = 0

(27)

where C0 is defined as the system marginal electricity price.
When the demanders are not considered as participants, the
above formula is:

C0

NG∑
k=1

p′k = C0PD;

NG∑
k=1

p′k = PD (28)

where NG is the set of generation companies, PD denotes
load. The above formula is the same with (17) and (18). The
Lagrange function from (27) is calculated as:

LW = C0

N∑
k=1

p′k + λ

N∑
k=1

p′k. (29)

The first order optimal condition with variable p′k is:

C0 = −λ. (30)

It is noted that the system marginal electricity price is
the Lagrange multiplier associated to the total power balance
equation. It can be obtained by (26)

CW
k = −C0(1− η′k). (31)

By substituting (31) into (12), the following equation for
nodal price can be obtained:

ck = αk(1 + ξk) + C0(1− η′k) + µ′k. (32)

The optimization is made by substituting the above formulas
into the objective functions (1) or (2) and the maximum profits
of the generation companies and demanders can be obtained
by selecting pk or pk, ck as the decision-making variable.

C. Market Surplus Allocation Comparison

By introducing the nodal price as shown in (13) into the
Lagrange function (7), the following is obtained:

L = −
N∑

k=1

c′kpk −
N∑

k=1

αkpk −
N∑

k=1

µkpk +

N∑
k=1

αkfk(pk)

+

LI∑
l=1

βl(Pl − Pmax
l ). (33)

To bring (9) and (10) into the above formula, the Lagrange
function is changed as:

L = −
N∑

k=1

c′kpk +

N∑
k=1

αk∆fk +

N∑
k=1

LI∑
l=1

βl∆Pl. (34)

The above formula shows that there exists surplus according
to the marginal cost pricing when the Nash equilibrium is
achieved in the power market. The auctioneers and the grid
corporations that are monopolies do not regard profit as the
purpose in the market transaction, so the surplus must be

allocated within the market participants again. Because the
market surplus is the nonlinear function of pk, it is quite
difficult to judge the absolute fairness in surplus allocation
after market transactions.

There is no market surplus when the counting cost pricing
is used and the competition equilibrium is performed. In other
words, the surplus is allotted in the market transaction. As
shown in (9), (10) and (20), though the network losses are
apportioned and congestions are eliminated among market
participants according to the average allocation principle, a
different kind of counting cost pricing may be used to decide
different surplus allocation principles.

D. Differences between Nash and Competition Equilibriums

The Nash equilibrium and optimization in mathematics are
achieved with marginal cost pricing due to the fact that (12)
is one of the Kun-Tucker conditions.

But according to economic theory, it indicates the market
failure under the Nash equilibrium due to the existence of
market surplus, and the maximum market efficiency can be
obtained just when the competition equilibrium is achieved.

As shown in Fig.1, the line 1 represents the sum
∑

k∈NG
pk

of powers for generation companies and line 2 represents the
sum

∑
k∈ND

pk of powers for demanders, where ND is the
set of generation companies and demanders.

Fig. 1(a) shows that shadow area that denotes market surplus
when the Nash equilibrium is achieved because

∑
k∈NG

pk −∑
k∈ND

pk = PL. In Fig. 1(b), the lines 1′ and 2′ are the curve
of powers for generation companies and demanders corrected
with coefficient 1−η′k, the competition equilibrium is achieved
at point O as:

∑
k∈NG

p′k =
∑

k∈ND
p′k.

p

c

1

2

0C
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O
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Fig. 1. Power market equilibrium. (a) Nash equilibrium. (b) Competition
equilibrium.

Therefore the optimization in economics is realized under
the competition equilibrium, which means that market effi-
ciency is maximum and the allocation of market benefits is
fair due to the fact that the allocation principle is acting before
the market transaction.

E. Similarity between Nash and Competition Equilibrium

If there are no losses and congestions in the power market
by disregarding the power network characteristics, the model
of the power market system can be simplified as:
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min−

N∑
k=1

ckpk

s.t.
N∑

k=1

pk = 0

(35)

If the Cournot model is used, the first order optimal condi-
tions for the Nash equilibrium calculation are:

c1 = c2 = · · · = cN = −λ. (36)

When the supply function model is used, the first order
optimal conditions for the Nash equilibrium calculation are:

c1 + a1p1 = c2 + a2p2 = · · · = cN + aNpN = −λ. (37)

Moreover, the conditions for the competition equilibrium
calculation are the same with (36). So, there is sameness
between the Nash equilibrium and competition equilibrium
in the power market when disregarding the power network
characteristics.

IV. CALCULATION OF EQUILIBRIUM POINT

It is a nonlinear programming problem to calculate the
equilibrium point, which can be solved by the Newton method
or gradient method. The first order optimal conditions for the
Nash equilibrium calculation are as follows:

−ck − c′kpk + αk + µk = 0

pk−ek
∑
j∈k

(Gkjej −Bkjfj)−fk
∑
j∈k

(Gkjfj+Bkjej) = 0

Qk − fk
∑
j∈k

(Gkjej−Bkjfj)+ek
∑
j∈k

(Gkjfj+Bkjej) = 0

Pl − Pmax
l = 0 l ∈ LI

k = 1, 2, · · · , N
(38)

The calculation of the competition equilibrium point is
according to following equations:

−ck + αk(1 + ξk) + λ(1− η′k) + µ′k = 0

pk − ek
∑
j∈k

(Gkjej−Bkjfj)−fk
∑
j∈k

(Gkjfj+Bkjej) = 0

Qk − fk
∑
j∈k

(Gkjej−Bkjfj)+ek
∑
j∈k

(Gkjfj+Bkjej) = 0

Pl − Pmax
l = 0 l ∈ LI

N∑
k=1

pk − PL = 0

k = 1, 2, · · · , N
(39)

It differs from (38), and the additional total active power
balance equation is required in the above formula. The equal
price method [17] can be used to solve the above problem,
because there is a uniform system marginal price.

Step 1: To define m = 0 and give the initial value of system
marginal price C(m)

0 ;
Step 2: Formula (39) is solved according to bidding curves

ck (pk) in order to determine p(m)′

k for each gener-
ator;

Step 3: To judge that equation
∑NG

k=1 p
′
k = PD is satisfied

or not? If satisfied, the calculating process is ended;
otherwise, the system marginal price is corrected
with m = m+ 1 by the following formula:

C
(m)
0 = C

(m−1)
0 +K∆C. (40)

And return to Step 2. In (40), K is the step-length
and ∆C is the corrected value at each iteration.

V. CASE STUDY

The case study is made on the IEEE-30 system with the
nodal data shown in Table I and more information about this
system can be obtained in [18]. The active power and reactive
power are shown per unit on a basis of 100 MVA.

TABLE I
DATA OF NODES

No. ak bk.
Load Active

Power
Load Reactive

Power
1 0 0 0.106 0.019
2 350.0 175.0 0.217 0.127
3 0 0 0.024 0.012
4 0 0 0.076 0.016
5 1250.0 100.0 0.942 0.19
6 0 0 0 0
7 0 0 0.228 0.109
8 166.8 325.0 0.3 0.3
9 0 0 0 0
10 0 0 0.058 0.02
11 500 300 0 0
12 0 0 0.112 0.075
13 500.0 300.0 0 0
14 0 0 0.062 0.016
15 0 0 0.082 0.025
16 0 0 0.035 0.018
17 0 0 0.09 0.058
18 0 0 0.032 0.009
19 0 0 0.095 0.034
20 0 0 0.022 0.007
21 0 0 0.175 0.112
22 0 0 0 0
23 0 0 0.032 0.016
24 0 0 0.087 0.067
25 0 0 0 0
26 0 0 0.035 0.023
27 0 0 0 0
28 0 0 0 0
29 0 0 0.024 0.009
30 75.0 200.0 0 0

It is assumed that demanders are not considered as partici-
pants and the curves offered by the generation companies are
assumed to be a straight line (ck = akpk + bk) with the unit
Yuan/MW.

The gradient method is used to calculate the Nash equilib-
rium point and the equal price method is used to calculate the
competition equilibrium point.

Given the initial value of the system marginal price: C(m)
0 =

300 Yuan/MW. The step-length and corrected value are set to
1 and 0.001, respectively. The calculating results are listed
in Table II with the system marginal electricity price set at
359 Yuan/MW.

It can be seen, there are large differences between the
Nash equilibrium and competition equilibrium. The high nodal
prices of the Nash equilibrium indicate that a market surplus
will be obtained.
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TABLE II
CALCULATING RESULTS FOR GENERATORS

Node No. Nash Equilibrium Competition Equilibrium
Nodal Price
(Yuan/MW)

Power
(p.u.)

Nodal Price
(Yuan/MW)

Power
(p.u.)

2 473.668 0.42667 352.656 0.507587
5 632.525 0.21301 356.431 0.205145
8 358.36 0.10000 356.683 0.189949
11 485.213 0.18521 357.577 0.115154
13 488.559 0.18856 357.577 0.115154
30 473.63 1.82420 336.157 1.815430

VI. CONCLUSION

The power market is a typical industrial market with its own
characteristics, especially in the power network. By comparing
the Nash equilibrium with the competition equilibrium, the
following conclusions are obtained:

1) The Nash equilibrium is achieved according to the
marginal cost price and the competition equilibrium is
performed according to the accounting cost pricing;

2) The surplus appearing in the Nash equilibrium is re-
quired to allocate after market transactions, but there is
no surplus in the competition equilibrium;

3) The optimization in mathematics is achieved by the
Nash equilibrium and the optimization in economics is
realized by the competition equilibrium;

4) The Nash equilibrium and competition equilibrium are
uniform when the characteristics of the power network
are disregarded.
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