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Transmission Network Expansion Planning
Considering the Generators’ Contribution to

Uncertainty Accommodation
Xingning Han, Student Member, IEEE, Liang Zhao, and Jinyu Wen, Senior Member, CSEE, Member, IEEE

Abstract—This paper presents an optimization for transmis-
sion network expansion planning (TNEP) under uncertainty
circumstances. This TNEP model introduces the approach of
parameter sets to describe the range that all possible realizations
of uncertainties in load and renewable generation can reach.
While optimizing the TNEP solution, the output of each generator
is modeled as an uncertain variable to linearly respond to changes
caused by uncertainties, which is constrained by the extent to
which uncertain parameters may change the operational range of
generators, and network topology. This paper demonstrates that
the robust optimization approach is effective to make the problem
with uncertainties tractable by converting it into a deterministic
optimization, and with the genetic algorithm, the optimal TNEP
solution is derived iteratively. Compared with other robust TNEP
results tested on IEEE 24-bus systems, the proposed method
produces a least-cost expansion plan without losing robustness.
In addition, the contribution that each generator can make to
accommodate with every uncertainty is optimally quantified.
Effects imposed by different uncertainty levels are analyzed to
provide a compromise of the conservativeness of TNEP solutions.

Index Terms—Expansion planning, renewable energy, robust
optimization, transmission network, uncertainty.

NOMENCLATURE

A. Indices and sets
n Load bus.
i Generator bus.
j Renewable energy integrated bus.
mk Indices of transmission lines between bus m and

k.
SD Set of load bus.
SR Set of renewable energy integrated bus.
SG Set of generators.
<ΓD

,<ΓR
Set of variations which are controlled by budget
parameters.

Ω Set of all candidate transmission lines.
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B. Uncertain parameters

PDn Load at bus n
∆PDn Load variation at bus n, i.e. deviation from

forecast value
PRj Renewable generation at bus j
∆PRj Renewable generation variation at bus j, i.e.

deviation from average output
∆PD

Gi,∆P
R
Gi Adjustment provided by generator at bus i to

accommodate load and renewable generation
variations, respectively.

C. Decision variables

PGi Output level of generation at bus i.
Min Dispatch flexibility generator at bus i for load

variation at bus n.
Tij Dispatch flexibility generator at bus i for renewable

generation variation at bus j.
∆PRj Renewable generation variation at bus j, i.e. devia-

tion from average output.
αmk Number of candidate line between bus m and k.
rn Load curtailment at bus n.
L System’s voltage stability index.

D. Parameters
Pmin

Dn , Pmax
Dn Minimum and maximum value of load at bus

n.
P̄Dn Expected value of PDn, i.e. forecast load at bus

n.
Pmin

Rj , Pmax
Rj Minimum and maximum output of renewable

energy at bus j.
P̄Rj Expected value of PRj.
ΓD,ΓR Uncertainty budget parameters for load and

renewable generations, respectively.
Pmin

Gi , Pmax
Gi Minimum and maximum output of generator at

bus i.
p Penalty for load curtailment.
η Weighted coefficients of voltage stability index.
Smk Element of branch-bus incidence transpose ma-

trix.
f̄mk Power flow limit of a line between bus m and

k.
α0
mk, α

max
mk Initial and maximum number of lines between

bus m and k.
Llim Limit of voltage stability index.
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I. INTRODUCTION

THE transmission network expansion planning (TNEP)
problem aims at a least-costing expansion planning

scheme in a centralized power system which should serve load
reliably [1]. Traditionally, loads forecasted for the future plan
have been considered as uncertain elements in TNEP [2]. In
recent decades, the trend of delivering power in a low-carbon
way has impelled renewable energy technology to develop at
a highly rapid pace. This increasing penetration of renewable
energy further intensifies the uncertainty in the power system,
due to the inherent intermittency and high volatility. Hence, the
impacts of renewable energy on TNEP should be investigated
to obtain a cost effective design that is also applicable to
accommodate both renewable energy and load uncertainties.

Several advanced mathematical approaches have provided
means to account for uncertainty in planning TNEP and many
other works have been reported in literature [3]–[9]. The main
difference lies on the means of describing uncertainty and
how to tackle an optimization with uncertainty. Stochastic
optimization converts constraints into a probabilistic formu-
lation. For instance, the reliability criterion is formulated as
the probability of load curtailment over a specified threshold
in [6]. The probabilistic constraints are enforced for a range of
scenarios of random variables which are simulated according
to the probability distribution function (PDF). This could lead
to inaccuracies and less robustness because an exact PDF is
hard to obtain in practice and scenario sampling methods can-
not ensure full coverage. In contrast, the robust optimization
only requires the information of variation range, which is rel-
atively easy to obtain, to model the uncertainty set [10], [11].
Reference [7] was the first paper proposing the concept of
robust TNEP design with uncertainties in loads and renewable
generations. Relevant works were proposed in [8] and [9]
to produce robust TNEP designs with different formulations.
Reference [8] employed a Benders decomposition framework
to minimize the worst-case curtailment when making a final
decision, whereas in [9] the maximum variations of renewable
generations and loads were explicitly presented in inequality
constraints involved with uncertainties. The application of
robust optimization is shown to get rid of the reliance of the
PDF assumption, and these proposed models have proven the
effectiveness and superiority of robust optimization in dealing
with uncertainty.

Other than bringing about the uncertainty concern, the
increasing integration of renewable energy also imposes
greater requirements on the flexibility of power systems. The
flexibility is defined as an ability to respond to variability
in [12]. Other than expanding networks to avoid transmission
congestion, a major means of flexibility comes from the
generators which can adjust their output to accommodate
changes in power. Conventional generators play a significant
role in harnessing renewable energy in TNEP optimization.
This is discussed in [6] with a deterministic TNEP model,
and results indicate that the total investment cost is quite
different when given different dispatches of generators. In
the probabilistic formulation of the TNEP model [6], the

output of the generator is considered as a deterministic variable
which will be optimized in each scenario of the realization of
wind power. As the stochastic optimization approach needs
to generate a large amount of scenarios based on the PDF
of uncertainties to convert the probabilistic model into a
deterministic one to solve, the output of the generators is the
scenario-based result. Actually, the output of the generators in
the reported robust TNEP models [7], [8] is also considered
as a scenario-based deterministic variable. This is because in
references [7], [8] several representative scenarios that reflect
the worst-case situations are selected and tested during the
solving process to ensure the final solution could be robust,
i.e. immunized against changes from uncertain parameters
in the models. Hence, the output of generators could differ
significantly in every considered scenario, because there is
not a direct correlation between the output of generators and
changes from uncertainties of renewable generation and load.

In this paper, a robust optimization for transmission net-
work expansion planning under uncertainty circumstances is
presented. The effects imposed by different uncertainty levels
are also analyzed to compromise the conservativeness on
TNEP solutions. In particular, the behavior of generators is
considered as being able to respond to changes of renewable
generation and load power, so that the output of each generator
is dealt with as an uncertain parameter limited by its physical
operational range. Through quantifying each generator’s ad-
justment with regard to any change caused by uncertain param-
eters, the formulation proposed in this paper is able to evaluate
the contribution that generators can make to accommodating
uncertainties during generating the optimal TNEP solution,
which could provide insights for decision makers on the
required generation flexibility while maintaining load balance.
At the same time, this formulation eliminates the assumption
of slack bus which is introduced in the TNEP model proposed
in [9] to compensate imbalance power. The slack bus in [9]
should have a strong ability to deal with all deviations to reach
the power and obtain a feasible result, which is not fully prac-
tical in real circumstances. Meanwhile, in the power systems
with integrated renewable energy, replacing generation from
conventional generators with renewables which are weaker
in voltage support has led to a higher probability of voltage
instability or collapse. The voltage stability assessment is also
an essential issue for TNEP optimization [13], [14]. Therefore,
this paper introduces a voltage stability constraint based on the
well approved static voltage stability index [15], to guarantee
a more secure and applicable TNEP scheme.

The remainder of this paper is organized as follows. Sec-
tion II presents the approach to model uncertainties with
parameter sets and how the generators adjust their output
to accommodate changes caused by the uncertainties, and
proposes the formulation of robust TNEP model. Section III
explains the solving approach based on the generic algorithm
(GA) and presents the approach to convert a linear problem
with uncertainty into a deterministic linear programming by
utilizing the theory of robust optimization. The proposed
model is tested on the modified IEEE 24 bus-system in Section
IV, and conclusions are presented in Section V.
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II. ROBUST TRANSMISSION NETWORK EXPANSION
PLANNING

A. Modelling Uncertainties

TNEP is the comprehensive solution to meet the require-
ments of load increase and generation expansion planning, and
other considerations that may make requests on the capacity of
delivering power in transmission networks. Two main factors
are considered in this paper. The first is load increase for a
future scenario, one of the primary incentives for generation
and network expansion. The value of load could however be
inaccurate, due to uncertainties in the development of the
economy, the forecast approaches that have been utilized and
other factors. Another major uncertain element considered is
the generation from renewable energy. Intensive integration of
renewable energy is one of the ongoing measures to relieve
environmental issues. A high penetration rate of renewable
energy could provide clean electricity for energy consump-
tions, but give rise to the concern of uncertainty to power
balancing in planning and operational time frames due to their
inherent characteristics. Hence the load at bus n, PDn, and
renewable generation at bus j, PRj, are considered as uncertain
parameters to deal with TNEP in a future scenario.

A set with a maximum value, minimum value and expected
value is employed to model each uncertain parameter. For
load, the expected value P̄Dn is the forecast value of load
at bus n, which can be predicted beforehand from various
forecast methods and indicate a high probability of occurrence.
The expected value of renewable energy P̄Rj could take the
average output level to represent the expected contribution of
renewable generation to load balance. The quantity of P̄Rj

could be the median value of actual output recorded over a
long term period. The maximum and minimum values limit
the realization of the actual value of the uncertain parameter,
i.e. the possible value can’t exceed the maximum value or be
less than the minimum value. The maximum and minimum
values of load, Pmax

Dn and Pmin
Dn , could be expanded by the

forecast value P̄Dn and a prediction error. As for the renewable
energy, the minimum value Pmin

Rj is obviously taken as zero
value. The maximum value Pmax

Rj could be the nameplate
capacity of renewable energy to cover all possible realizations
of generation; this is the most conservative case. In fact, most
of the actual output of renewable energy concentrates at a
lower level compared with the nameplate value. Pmax

Rj can
take some representative values that can cover a broad range
of output. In this situation, the excess of renewable generation
will be possibly curtailed. Hence, the load and renewable
generation are allowed to take any value within the limits[
Pmin

Dn , Pmax
Dn

]
and

[
Pmin

Rj , Pmax
Rj

]
, respectively.

In this paper, the emphasis is placed on the variations,
which are defined as the extent that the actual realization of
uncertainty deviates from the expected value:

∆PDn = PDn − P̄Dn, n ∈ SD (1)
∆PRj = PRj − P̄Rj, j ∈ SR. (2)

Here ∆PDn and ∆PRj are the variations of load and renew-
able generation respectively. The variations, represented with

the ∆-notation, are indeed uncertain parameters and can be
modelled with a set, given by:

∆PDn ∈
[
∆Pmin

Dn ,∆Pmax
Dn

]
, n ∈ SD (3)

∆PRj ∈
[
∆Pmin

Rj ,∆Pmax
Rj

]
, j ∈ SR. (4)

The size of new parameter sets is respectively modified by
subtracting the corresponding expected values as:{

∆Pmin
Dn = Pmin

Dn − P̄Dn

∆Pmax
Dn = Pmax

Dn − P̄Dn

, n ∈ SD{
∆Pmin

Rj = Pmin
Rj − P̄Rj

∆Pmax
Rj = Pmax

Rj − P̄Rj

, j ∈ SR

and the expected values of ∆PDn and ∆PRj are equal to zero.
To deal with variations, a parametric relationship with

respect to the variations from load and renewable generation
is introduced for each conventional generator in the system.
The parametric relationship is described as follows:

∆PD
Gi =

∑
n∈SD

Min∆PDn,Min ≥ 0, i ∈ SG (5)

∆PR
Gi = −

∑
j∈SR

Tij∆PRj, Tij ≥ 0, i ∈ SG (6)

where ∆PD
Gi and ∆PR

Gi are the respective adjustment provided
by a conventional generator i regarding variations ∆PDn and
∆PRj; Min, Tij are the allocation coefficients that represents
the capability of a conventional generator i to respond to a
unit variation in load at bus n and renewable generation at
bus j, respectively. Equation (5) provides a constraint that
each conventional generator has a capability to adjust its
output and follow the variation of its load. Equation (6) shows
that the conventional generators will inversely respond to
variations from renewable generation; this suggests that there
is a transfer of power between conventional generators and
renewables, reflecting that the renewable generation is given
to ia prioritized dispatch.

The power balance has to be fulfilled, i.e.∑
i∈SG

∆PD
Gi =

∑
n∈SD

∆PDn, and
∑
i∈SG

∆PR
Gi =

∑
n∈SD

∆PRj.

After incorporation, two constraints limiting the range of
allocation coefficients can be obtained:∑

i∈SG

Min = 1, n ∈ SD (7)∑
i∈SG

Tij = 1, j ∈ SR. (8)

Constraints (7) and (8) represent that there is a distribution
between the contribution that each conventional generator can
make to accommodate variations.

With the parametric relationship described by (5)–(8), the
capability of adjustment of each conventional generator differs
by the optimal value of allocation coefficients Min and Tij .
A positive value of the allocation coefficients means that the
corresponding generator is active in providing adjustment if
a variation occurs. If the value of allocation coefficients is
zero, generator i is unavailable to respond to any changes. The
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parametric relationship quantified by allocation coefficients
turns out to share the power imbalance with all available
generators. This is more reasonable compared with setting
a slack bus that should be strong enough [9]. In addition,
the formulation of a parametric relationship maintains the
linearity of the model and provides an approach to deal with
uncertainties.

B. Robust TNEP Formulation

The aim of a robust TNEP is to obtain a least-cost planning
scheme while maximizing the voltage stability margin, under
the consideration of variations of load and renewable energy
varying within their parameter sets. The formulation is stated
based on a dc load as follows:

Min

{ ∑
mk∈Ω

cmkαmk + p
∑
n∈SD

rn + ηmax {L− Llim, 0}

}
(9)

subject to∣∣∣∣∣ ∑
k∈SG

Smk

(
P̄Gk + ∆PD

Gk + ∆PR
Gk

)
+
∑
k∈SR

Smk

(
P̄Rk + ∆PRk

)
−
∑
k∈SD

Smk

(
P̄Dk + ∆PDk

)
+
∑
k∈SD

Smkrk

∣∣∣∣∣
≤
(
α0
mk + αmk

)
f̄mk (10)∑

i∈SG

(
P̄Gi + ∆PD

Gi + ∆PR
Gi

)
+
∑
j∈SR

(
P̄Rj + ∆PRj

)
+
∑
n∈SD

rn =
∑
n∈SD

(
P̄Dn + ∆PDn

)
(11)

Pmin
Gi ≤ P̄Gi + ∆PD

Gi + ∆PR
Gi ≤ Pmax

Gi , i ∈ SG (12)
0 ≤ rn ≤ PDn, n ∈ SD (13)

α0
mk ≤ αmk ≤ αmax

mk (14)
αmk ∈ {0, 1} ,mk ∈ Ω (15)

and constraints related to variations ∆PDn and ∆PRj (3)–(8).
The objective (9) is composed of the expansion cost of

candidate lines in the transmission network, punishment of
load curtailment, and the voltage stability index; p and η
are the weighted coefficients. Based on the dc power flow
model, (10) stands for the branch power flow limit which is
represented by injected power at each bus and corresponding
coefficients from the branch-bus incidence transpose matrix. It
is noted that Smk is affected by the network topology, i.e. it is
a function of the result of TNEP. The power balance is ensured
in (11). The output of the conventional generator is constrained
within its operational range in (12) where P̄Gi is the output
corresponding to the expected value of uncertainties, i.e. P̄Dn

and P̄Rj. This variable can be used in the evaluation of the
voltage stability index. Inequality (13) confines the limit of
the load curtailment. The constraints (14) and (15) defines
requirements of the network expansion variables.

The voltage stability index [15] of the system L is quantified
as:

L = max
n∈SD

{∣∣∣∣∣∑
i∈SG

Z∗niṠi

V̇i

∣∣∣∣∣
/
Vn

}
(16)

where V̇i, Vn are the vectors of voltage at the generator bus i
and load bus n; Ṡi is the equivalent power at bus I which
stems from the other loads of the system; and Z∗ni is the
complex conjugate of mutual impedances between bus i and
n. A smaller value of L represents a larger voltage stability
margin. L could be used to check the voltage stability of the
TNEP to obtain an optimal result. The voltage stability index
could be easily calculated by utilizing an ac power flow model
when the result of the TNEP and output of generator P̄Gi are
solved. To guarantee a reliable voltage stability margin, Llim

is set as 0.8. Then an estimation of L which is less than Llim

is acceptable, or it leads to a punishment to re-optimize the
solution.

In the model, as the uncertainty of load and renewable
energy are modeled by a parameter set that limits the range
of taking values, the optimal TNEP scheme could be accom-
modative with any realization within the set, i.e. robust to the
changes caused by the uncertainty. In addition, this proposed
TNEP model considers the contribution of all generators for
accommodating uncertainties. The formulation is a mixed-
integer nonlinear optimization with uncertainties confined
within the given set, which cannot be solved directly using
MILP. To make it tractable, Section III presents an approach
via the genetic algorithm (GA) and robust optimization is
employed to deal with uncertain elements.

III. SOLVING APPROACH

A. Solving with a Genetic Algorithm

The nonlinearity of the proposed formulation exists in (10)
where the branch-nodal incidence transpose matrix element
Smk multiplies corresponding deterministic and uncertain vari-
ables. In fact, Smk depends on the network structure. If a
TNEP scheme is given beforehand, Smk is parameterized,
making the problem easy to be tractable.

In this paper, the GA which has been proven efficient
to model integer variables in TNEP problems [16], [17], is
adopted in this paper to initialize the network expansion vari-
ables. Constraints (14) and (15) are confined when GA updates
its population to generate new candidate TNEP schemes.

The optimal solution of TNEP is derived iteratively via
GA. The fitness function of GA is (9), the objective of
the proposed robust TNEP. It is calculated separately. First,
for each population which represents one kind of network
expansion planning scheme, the expansion cost is determined
after the population is formulated or updated. Then the infea-
sibility of each population represented by a load curtailment is
obtained with a given TNEP scheme through optimization with
uncertainty considered. The voltage stability index is finally
calculated.

When one kind of candidate TNEP scheme {αmk,mk ∈ Ω}
is given by the population of GA, the goal turns out to
minimize the load curtailment that represents the infeasibility
of the TNEP solution under constraints of (3)–(8) and (10)–
(13). As the variations of the load and renewable energy are
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the main factors affecting the behavior of the generators and
expansion needs of the network, the formulation could be
rewritten, by substituting (5) and (6) into (10)–(13), comprised
of the objective:

Min

{∑
n∈SD

rn

}
(17)

subject to (7) and (8), and∣∣∣∣∣ ∑
k∈SR

XR
mk∆PRk +

∑
k∈SD

XD
mk∆PDk +

∑
k∈SG

SmkP̄Gk

+
∑
k∈SD

Smnrk +
∑
k∈SR

SmkP̄Rk −
∑
k∈SD

SmnP̄Dk

∣∣∣∣∣
≤
(
α0
mk + αmk

)
f̄mk (18)∑

i∈SG

P̄Gi +
∑
j∈SR

P̄Rj =
∑
n∈SD

P̄Dn − rn (19)

Pmin
Gi ≤ P̄Gi +

∑
n∈SD

Min∆PDn −
∑
j∈SR

Tij∆PRj ≤ Pmax
Gi ,

i ∈ SG (20)
0 ≤ rn ≤ P̄Dn + ∆PDn, n ∈ SD (21)

where

XR
mk = Smk−

∑
i∈SG

SmiTik, and XD
mk =

∑
i∈SG

SmiMik−Smk.

Thus the above formulation is a linear programming and un-
certain parameters are only involved in inequality constraints.

As the uncertainties represented by variations of load and
renewable energy are limited within the defined parameter
sets in (3) and (4), they could be well incorporated within
the approach of robust optimization, which has been proved
to be an effective means to deal with uncertainty in linear
optimization problems [18]. In the idea of robust optimization,
the worst-case scenario is considered to have a great impact on
the optimal decision. The worst-case scenario refers to that in
which uncertainty takes the extreme value of its parameter
set. If the decision is accommodative with the worst-case
scenarios, it is also accommodative with scenarios in which
uncertainty takes any value within the set, i.e. the optimal
decision obtained under the worst-case scenario is robust
to all realizations of uncertainty within the parameter set.
However, the worst-case scenario can also be regarded as being
too conservative. A budget parameter is thus introduced to
control the size of the parameter set to relax the conservative
consideration of uncertainties [11], [19]. Here, two budget
parameters are investigated: ΓD is for load and ΓR is for
renewable energy. Then parameter sets (3) and (4) are restated
as follows:

<ΓD
=
{
γn∆Pmin

Dn ≤ ∆PDn ≤ γn∆Pmax
Dn , n ∈ SD

}
(22)

constrained by

{
0 ≤ γn ≤ 1,

∑
n∈SD

γn ≤ ΓD

}
, and

<ΓR
=
{
βj∆P

min
Rj ≤ ∆PRj ≤ βj∆Pmax

Rj , j ∈ SR

}
(23)

constrained by

0 ≤ βj ≤ 1,
∑
j∈SR

βj ≤ ΓR

; where γn and

βj are the coefficients determined by the choice of ΓD and
ΓR, respectively. If the budget parameter reaches the maximum
value, namely the number of uncertainty, γn and βj are forced
to be 1, meaning that the worst-case scenario is considered
in the optimization. If the budget parameter is less than its
maximum value, γn and βj will be allocated with a value that
is less than 1, reducing the size of the corresponding parameter
set of uncertainty.

Formulations (22) and (23) are the limits of variations of
load and renewable generation. Actually, according to [19],
they are not necessarily limited by the symmetrical distribution
to the zero median value. This assumption has a broad range
of applications when modeling uncertainties in the real world,
especially for generation from renewable energy.

B. Robust Counterpart Formulation

The optimization (17) is linear and can be formulated in the
compact form:

min cx

s.t. Ax ≤ b

Gx = H

l ≤ x ≤ u

(24)

where x ∈ Rn is the vector of the decision variables with
upper and lower bounds u, l ∈ Rn, and coefficient matrixes
c ∈ Rn, b ∈ Rm, A ∈ Rmn, G ∈ Rtn, and H ∈ Rt.
Inequality constraints are comprised of (18), (20), and (21),
and equality constraints include (7), (8), and (19). Obviously,
the uncertain parameters, i.e. variations of load and renewable
energy ∆PDn and ∆PRj are only shown in inequality con-
straints, and equality constraints are related to deterministic
variables.

An equivalent linear formulation, namely the robust counter-
part, of the inequality constraints with uncertain data modeled
by a parameter set could be formulated. Assume aij is the
uncertain paramter; the parameter set of aij is [aLij , a

U
ij ],

the expected value is āij . With the budget parameter Γi to
control the size of the parameter set, the set [aLij , a

U
ij ] could

be represented as that in (22). Then the inequality constraint
aijxj ≤ bi could be converted into the counterpart formulation
as:

aijxj ≤ bi ⇔


n∑

j=1

āijxj + Γizi +
∑
j∈Ji

pij ≤ bi

zi + pij ≥ max
{

(aUij−āij)xj , (āij−aLij)xj
}

(25)
where positivevariables zi and pik are introduced without
physical meaning. This conversion is obtained by utilizting
the duality theory and the detailed explanations and proofs can
be found in reference [19]. The robust counterpart formulation
remains linear, and is able to ammunize against any realization
of uncertainty within its parameter set. In addition, the conver-
sion to a robust counterpart will not affect the repersentation
of the objective function.
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The right part of (20), taken as an example to show the
explicit representation of robust counterpart, is then converted
into the following form:

P̄Gi + ΓRµ
R
i +

∑
j∈SR

ξRij + ΓDµ
D
i +

∑
n∈SD

ξDin ≤ Pmax
Gi ,

i ∈ SG

µR
i + ξRij ≥ max(−Tij∆Pmax

Rj ,−Tij∆Pmin
Rj ), j ∈ SR

µD
i + ξDin ≥ max(Min∆Pmax

Dn ,Min∆Pmin
Dn ), n ∈ SD

µR
i , ξ

R
ij , µ

D
i , ξ

D
in ≥ 0, i ∈ SG, j ∈ SR, n ∈ SD

(26)
where µR

i , ξ
R
ij , µ

D
i , ξ

D
in are newly introduced variables, which

in fact are dual variables of constraints of the uncertainty sets
(22) and (23). By introducing these variables, the worst-case
scenario of variations of load and renewable generation can
be quantified in the constraints and can make an impact on
the solution. The choice of budget parameters ΓR and ΓD

reflects that there is a tradeoff to control the conservatism
of uncertainty. The maximum value of budget parameters is
the number of uncertain elements, meaning that the maximum
variation range is considered. A smaller value means that part
of the uncertainties is limited to take value in a relatively
narrow range. The complete robust counterpart formulation
could be obtained by converting all constraints in (18), (20)
and (21) in the same way.

By utilizing the robust optimization approach to deal with
uncertain parameters in the inequality constraints, the problem
(24) is finally converted into a linear optimization in which all
variables are deterministic. Therefore, the final optimization is
composed of the objective (17), equality constraints (7), (8)
and (19), and the robust counterpart formulation of inequality
constraints (18), (20) and (21), and can be solved efficiently.

C. Summary of the Algorithm
The optimal robust TNEP scheme is iteratively derived by

applying GA. The solution process is described as follows:
1) Prepare the input data, including the original network,

candidate lines, and the generator’s operational range.
Formulate the uncertainty set by determining the load
prediction errors and maximum variations of the re-
newable generations. Determine the preferred choice of
budget parameters.

2) Initialize the parameters of the genetic algorithm, such
as the population size, maximum number of iteration,
mutation rate and crossover rate of the GA process.

3) Create the initial population which represents a range of
candidate planning schemes. For each planning scheme,
solve the robust counterpart of (24) to obtain the load
curtailment which represents the infeasibility of the
solution. The output of the generators corresponding to
the expected values of the uncertainties is obtained at the
same time, then the voltage stability index is evaluated.
The value of the fitness function for each population is
finally calculated based on the formulation of (9).

4) Generate the new planning scheme by selection,
crossover and mutation operations and then update the
population for the next iteration.

5) The process is terminated if the maximum number of the
GA iteration is reached. The best population with a least
value in the fitness function is regarded as the optimal
TNEP scheme. Otherwise, it goes to 4).

It is noted that the GA operation including crossover and
mutation is random so that there may exist the same population
in different iterations. If each population in each iteration is
checked by infeasibility, it can cause a heavy computational
burden in solving the robust TNEP optimization. To avoid this
situation, a checked candidate set Ψ is introduced. Ψ is used
to store all TNEP candidates that have been checked in the
GA process. If the new population is already stored in Ψ, the
corresponding fitness value can be loaded directly, otherwise,
it should be checked and stored in Ψ. This strategy is proven
to be effective in solving the proposed robust TNEP model
and also save a large number of computational calculations.

IV. NUMERICAL RESULTS

The TNEP optimization accommodating uncertainties by
generators is tested on the IEEE 24 bus-system [20]. The
solving algorithm based on GA and its robust counterpart is
implemented using Matlab R2014a on a PC with Intel Core
i5 of 1.8 GHz CPU and 4.0 GB RAM.

The GA parameters are set as follows: 0.01 for the mutation
rate and 0.8 for the crossover rate. The population size and
the maximum number of iterations are set as 60 and 30,
respectively, to overcome the local optimum problem. The
checked candidate set Ψ is assumed to have a size that can
record all populations.

In the 24 bus test system, there are 34 existing lines and 41
candidates in planning TNEP. Each candidate can be added up
to 3 extra lines, making a maximum value of 4 lines in total
between two buses. Cost information of the candidates can be
found in [21].

For a future condition, the base case data of 17 load buses
is expanded to 3 times the original value, which is regarded as
the average value of loads. A 5% prediction error is assumed
to formulate the load uncertainty set, i.e., the uncertain load
variation takes −5%–5% deviation from the forecast data. The
penalty coefficients of load curtailment p and voltage stability
index η in (9) are set to be 105 in order to find the planning
scheme without load curtailment and with a reliable voltage
stability margin.

All generator’s capacities are expanded to 3.3 times for a
future consideration and all generators are assumed to have the
dispatch flexibility. Two wind sources are integrated into bus 7
and bus 22 with the same capacity of the original conventional
generators. Bus 7 is connected to the system with only one
line in the existing structure, so bus 7 can be considered
as a remote area with a weak link to the load areas. The
assumption that wind farms are located at bus 7 can simulate
the situation in which the generation from intensive wind
farms are merged into one bus and delivered with common
transmission lines. Compared with bus 7, bus 22 is connected
to a system closed to load areas and other generators. Thus
two kinds of wind farm locations are considered in this
simulation. The maximum value of the renewable generation
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is the nameplate capacity; the minimum value is zero; the
expected value of the wind power is assumed to be one third
of the nameplate capacity. This indicates the most conservative
case that renewable generation can take any value within the
capacity.

A. Robust TNEP Solutions

The base case is obtained by assuming all uncertainty
budget parameters are equal to the maximum value, i.e., ΓD =
17 and ΓR = 2. The optimal TNEP solution in the base
case is as follows: n1−8 = 1, n2−8 = 2, n14−23 = 1,
n3−24 = 1, n6−10 = 2, n7−8 = 3, n8−10 = 1, n10−12 =
2, n12−13 = 1, n15−24 = 1. A total of 15 lines are added
in the modified system to expand the transmission capacity
to meet the requirement of load increase and generation
expansion. The total expansion cost is $5.98 million. As this
case represents the most conservative situation (maximum
value of budget parameters), the corresponding result is the
most robust against all realizations of uncertainties.

The indicator “robustness” is then introduced to estimate the
feasibility of TNEP solutions when any realization of uncertain
parameters is tested. The following approach is implemented
to quantify the robustness of an optimal TNEP solution:

1) Generate scenarios of all uncertainties by implementing
the Monte Carlo simulation. The number should be large
enough to ensure the reliability of the statistical result.

2) For each scenario, given the TNEP solution that is
checked, calculate the quantity of adjustment each gener-
ator should provide based on the realization of uncertain-
ties and corresponding allocation coefficients, and then
check the violation of constraints (18) and (20). If the
actual output of the generator exceeds the operational
range or the actual power flow in each line exceeds the
transmission capacity limit, it is regarded to be infeasible
under this scenario. This is equivalent to employing a dc
power flow to check whether there is a curtailment of
load and renewable generation. As the requirement of
no curtailment is implicitly considered in constraints (5)
and (6), a violation on either of the two constraints could
represent an infeasible case.

3) After testing all generated scenarios, count the number
of the infeasibility. The ratio of infeasibility to the total
number of scenarios is the probability of violation. The
robustness index is represented by the ratio of feasibility
to the total number of scenarios.

Here a common set of parameters for the implementation
of the Monte Carlo simulation is presented. The number of
sample scenarios that are used to estimate the robustness
is assumed to be 16,600 [8]. The prediction error of load
is assumed to be normally distributed with a 5% standard
deviation. For the realization of renewable generations, the
Weibull distribution is first adopted to simulate the wind
speed [22], [23] with a scale and shape factor as 8.4 m/s and
1.9622 m/s. Then the simulated wind speed data are used to
generate the wind power data according to the wind turbine
output relationship:

P s
w =


0 0 ≤ V s < Vci

Prate(V s − Vci)/ (Vrate − Vci) Vci ≤ V s < Vrate

Prate Vrate ≤ V s ≤ Vco
0 V s > Vco

(27)
where V s is the simulated wind speed data; P s

w is the
corresponding wind power data. Parameters including cut-in
speed Vci, rated speed Vrate, cut-out speed Vco and nameplate
capacity Prate are taken from [5]. The simulated wind power
could not exceed the capacity.

As the base case is obtained with the most conservative
consideration, then the robustness index is estimated to be
100%, which is shown in Table I.

TABLE I
ROBUST TNEP RESULTS FOR IEEE 24-BUS SYSTEM WITH RENEWABLE

ENERGY AND LOAD UNCERTAINTIES

Models Optimal Scheme Cost
($, million)

Robustness
(%)

Proposed

n1−8 = 1, n2−8 = 2,
n14−23 = 1, n3−24 = 1,
n6−10 = 2, n7−8 = 3,
n8−10 = 1, n10−12 = 2,
n12−13 = 1, n15−24 = 1

5.98 100

TOATa [7]

n1−8 = 1, n2−8 = 1,
n14−23 = 1, n3−24 = 1,
n6−10 = 2, n7−8 = 3,
n8−10 = 1, n10−12 = 2,
n12−13 = 1, n15−24 = 1,
n16−17 = 2

6.37 94.2b

BD [8]

n1−8 = 1, n2−8 = 2,
n14−23 = 1, n3−24 = 1,
n6−10 = 2, n7−8 = 3,
n8−10 = 1, n10−12 = 2,
n12−13 = 1, n15−24 = 1,
n21−22 = 1

6.92 100

aThe optimal scheme that has a higher robustness is presented here for
comparison. Other optimal schemes can be found in [7].
bThe data is quoted from [7], however, it is marked much lower in [8].

In addition, in Table I, the optimal TNEP solution obtained
from the proposed method is compared with that from the
TOAT method [7] and BD method [8]. The case illustration
in [7] and [8] is the same as the assumption adopted in the
base case in this paper, so that a comparison can be carried
out between the optimal result of the proposed robust TNEP
method and the state of art robust TNEP approaches. The
robustness index of the two solutions come from the original
references.

Obviously, the proposed method is better compared with
the recently reported works. The optimal TNEP scheme is
the most cost-saving approach without losing robustness. The
result from TOAT is not absolutely feasible for all possible
values varying within the uncertainty sets. In addition, the
total cost is 6.5% higher than that of the proposed method.
The BD method produced the planning scheme that holds
the 100% percent robustness whereas it costs a 15.7% higher
investment in network expansion. The difference between
expansion plans obtained from the proposed method, TOAT
method and BD method can be seen in Table I, where the
latter two methods require 1 or 2 more lines than the proposed
method to accommodate uncertainty.

The average computational time of the proposed method
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is 27 min. For power system planning optimization, the
computational performance is acceptable. The convergence
characteristics of the proposed algorithm are shown in Fig. 1,
with the pre-set population size and maximum iteration. It
demonstrates that computational efficiency can be guaranteed
within limited generations. In addition, by utilizing the set
Ψ, 930 repetitious computations are avoided for infeasibility
checks on average.
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Fig. 1. Fitness curve of the algorithm.

B. Output of Generators and Allocation Coefficients

The proposed method not only produces the cost-saving and
robust TNEP scheme but also optimizes the average output
level of each generator and quantifies the contribution each
generator can deliver to accommodate uncertainties caused by
load forecast errors and renewable generations.

In the base case, the optimal allocation coefficients rep-
resenting the contribution of generators to accommodating
uncertainties are depicted in Fig. 2.

Fig. 2(a) is focused on the allocation coefficients regarding
to renewable energy at bus 7 (blue) and bus 22 (red). The
quantity is shown with a bar, and the length of bars represents
the participation of each generator. G1, G2, G3 are mainly
responsible for accommodating with the variations coming
from R1, and G5 and G6 are mainly responsible to respond
to variations from R2. G3 and G7 do not provide adjustments
for either R1 or R2.

Fig. 2(b) depicts the distribution of allocation coefficients
with respect to variations of load. For convenience, all buses in
the system are listed in the horizontal axis of Fig. 2(b) where
17 of them are load buses. If the load bus has a generator
connected, the generator could be the major source that
provides the upward and downward adjustments to variations
of the load, for instance, G2, G3, G5, and G6, or the generators
connected at adjacent buses which will respond to changes like
G8.

The optimization of allocation coefficients is bound by sev-
eral constraints including the extent of variations, operational
range of generators, and transmission capacity. So the solution
shown in Fig. 2 is a comprehensive result.

The output of generator PGi is modeled as an uncertain
parameter in this model, as it is the sum of the average
output P̄Gi corresponding to the expected value of uncer-
tainties, and the adjustment with regard to variations, i.e.
PGi = P̄Gi + ∆PD

Gi + ∆PR
Gi. The quantity of P̄Gi in the base
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Fig. 2. The allocation coefficients of each generator with respect to variations
of wind power (a) and load (b). Generators and renewable energy are labeled
as “Gx/y” and “Rx/y” respectively, where “x” represents the number of
generator/renewable energy and “y” denotes the corresponding integrated bus
in the IEEE 24-bus system.

case is optimized, and is shown in the third column in Table II.
It indicates the behavior of each generator when the average
power that renewable energy can generate and the forecast
value of load are considered. From Table II, all generators
can maintain a relatively high output level when compared
with their capacity (listed in the second column).

TABLE II
THE OUTPUT LEVELS OF GENERATORS IN THE BASE CASE (IN MW)

No./Bus Capacity Average
G1/1 633.6 564.5
G2/2 633.6 414.7
G3/13 1,950.3 1,780.9
G4/15 709.5 638.4
G5/16 511.5 420.9
G6/18 1,320 830.3
G7/21 1,320 1,277.3
G8/23 2,178 2,023.0

C. Tradeoff Analysis

To overcome the conservatism of the uncertainty consider-
ation in optimizing TNEP, two strategies are implemented to
analyze the tradeoffs for network investment.
1) Reduce the Range of Renewable Generation

In the base case, the maximum value of the renewable
generation Pmax

Rj is assumed to be the capacity value. To relax
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the conservatism, Pmax
Rj is assumed to be 0.7, 0.8 and 0.9 of the

capacity, respectively, as the renewable generation can rarely
reach the maximum value based on the historical data [24].

Results are shown in Table III. The optimal TNEP solutions
are not affected with changes in Pmax

Rj , so the total expansion
costs are the same. The size of the parameter set of variations
∆PRj is narrowed by decreasing the value of Pmax

Rj , the
solution of P̄Gi and the corresponding allocation coefficients
differ in the three cases. When implementing the estimation
of robustness, it is found that the operational range of the
generators can cover the actual output of the generators in
the three cases, but the power flow of some lines may exceed
the transmission capacity. This results in the robustness of
the TNEP solution falling down when the value of Pmax

Rj

decreases.

TABLE III
TNEP SOLUTIONS WITH DIFFERENT CONSIDERATIONS OF THE

MAXIMUM RENEWABLE GENERATIONS

Max/Cap Cost ($, million) Robustness (%)
1.0 5.98 100
0.9 5.98 96.70
0.8 5.98 89.04
0.7 5.98 88.03

2) Control the Budget Parameters
In the base case, the budget parameter of loads and re-

newable generations is set as the maximum value, i.e. the
number is 19. To demonstrate the effects of budget parameters,
the optimization is carried out with the sum of the budget
parameters varying from 0 to 19.

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

0 1 2 3 18 19

V
io

la
ti

o
n
 P

ro
b
ab

il
it

y
 (

%
)

C
o
st

 (
$
, 
M

il
li

o
n
)

Budget parameter

Fig. 3. Expansion cost of TNEP solutions (green line) and corresponding
robustness (purple line) versus the choice of budget parameter.

Results of representative cases where the sum of the budget
parameters is 0, 1, 2, 3, 18, and 19 are taken and are shown
in Fig. 3. Other cases where the sum of the budget parameters
take values between 4 to 17 have the same result as that from
18 and 19, which are not shown here.

In Fig. 3, total expansion cost in each case is depicted by
the green line, indicating an increase in the cost with the
increase of the budget parameters. Remember that the value
of the budget parameter controls the size of the uncertainty

sets considered in optimization. In the theory of robust op-
timization, the conservative condition is always considered
in the solving process. When the budget parameter is less
than the maximum value, those uncertainties which vary in
the relatively small parameter sets are prior to being set as
deterministic parameters with their expected values. Therefore,
cases where the sum of the budget parameters is equal to 1
and 2 are related to uncertainties existing in renewable energy,
we let the load buses take the forecast value. From Fig. 3,
it indicates that the increase of load is a major element to
expand the network, resulting in a total cost of $4.17 million.
Then the cost increases to $5.82 million and $5.98 million,
implying that uncertainties of renewable generation impose
a dominate influence on the increase of expansion costs. It
can be seen that the cost remains constant when the budget
parameter takes a value more than 2. It means that variations
of load could be easily adjusted by generators and will not
cause transmission congestion under the network expansion
with a total cost of $5.98 million. However, the robustness in
each case differs. As the probability of violation represents
infeasible conditions, the larger the value of the probability of
violation is, the lower the robustness of the TNEP solution is.
In Fig. 3, the blue and red bars represent the probability of
violation in transmission capacity constraint (18) and (20), and
the purple line is drawn with the maximum length of blue and
red bars in each budget parameter case which is considered
as the probability of infeasibility of the TNEP solution in that
case. If no variation is considered for all uncertainties, i.e. the
expected values of uncertainties are used in optimizing the
TNEP solution, the violation probability could be 55%, which
mainly happens in the constraint of transmission capacity (blue
bar). Then it falls down with an increase of the value of the
budget parameters, indicating an increase in the robustness.

V. CONCLUSION

This paper presented an approach for a centralized system
to reach a robust TNEP solution when uncertainties of load
and renewable generation are considered. A linear model is put
forward in the TNEP optimization to quantify the contributions
that each generator can make in response to any changes in
every uncertainty by optimizing the allocation coefficients. The
approach of robust optimization is introduced in this paper to
deal with all uncertain parameters limited within the sets. The
estimation of voltage stability is also included to ensure the
security of the system.

The increase of renewable energy imposes more concerns
of uncertainty and requires more costs on network expansion
to ensure a full integration. Compared with previous works
on robust TNEP modeling, the proposed method can reach
a TNEP solution with costs that are 15.7% lower while
maintaining a 100% robustness against uncertainty within an
acceptable computational time. The quantified contributions
that each generator can make to adjusting its output when
changes happen can provide insights to decision makers.
In addition, this formulation has shown other compromise
TNEP solutions with less conservativeness, while estimating
the robustness to provide a reference.
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For further research, this static formulation can be extended
for a multi-stage outlook period. In the multi-stage formula-
tion, each stage could be presented with a static formulation
which is equivalent to the model proposed in this paper, and
other constraints related to the sequential relationship between
different stages are added. Based on the GA algorithm, the
decision variables in each stage can be initialized and updated
iteratively to derive the final results. Then the year-by-year
expansion on the transmission network could coordinate the
yearly increase on demand, generation expansion, and integra-
tion of renewable energy.
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