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Abstract—This paper presents a systematic analysis of DC 

voltage stability of a multi-terminal VSC-HVDC (MTDC) system, 
with the emphasis on a comparative study of the most ubiquitous 
droop control configurations. The paper introduces a general 
framework for the analysis of various droop control 
configurations employed in MTDC systems. This framework is 
then used to compare leading droop control configurations in 
terms of their impact on the relative stability, performance and 
robustness of the overall MTDC system. A generalized analytical 
MTDC model that contains detailed models of AC and DC system 
components is derived. Limitations imposed by DC power flow, 
DC inductor, cable modeling and AC network impedance on DC 
system stability are identified. Classical and multivariable 
frequency response analysis and eigenvalue analysis are applied to 
open-loop and closed-loop models to compare the stability and 
robustness of five leading droop controllers, with the focus on 
feedback signal selection and controller parameterization. This 
paper also proposes an active stabilizing controller, which takes 
the form of a modified constant power control, to enhance the 
controllability and robustness of the DC voltage control.  

 
Index Terms—VSC HVDC, MTDC control, stability, droop 

control, mathematical modeling. 

I.  INTRODUCTION 
oltage source converter (VSC) HVDC is a rapidly 
developing technology and has a great potential in future 

power systems for renewable energy integration and AC 
system reinforcement. Multi-terminal VSC-HVDC (MTDC) 
systems, which are likely to be developed gradually by 
interconnecting point-to-point links, are expected to offer 
enhanced reliability, flexibility and controllability.  

In a MTDC system, DC voltage indicates the power balance 
and stability of the DC network. DC voltage control needs to 
be able to handle the fast electromagnetic dynamics of the DC 
network. Relying on fast telecommunications for DC system 
stabilization is generally considered to be unreliable, hence the 
DC voltage control of MTDC systems is likely to be based on 
local converter signals and employ a distributed architecture.  

Droop control is recommended by a majority of previous 
literature for this kind of distributed control i.e. DC voltage and 
power sharing [1]-[6]. The basic idea of this control is to allow 
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multiple converters to simultaneously regulate their DC 
voltages by enabling a proportional steady-state droop 
relationship between the DC voltage and power/current. 
However the dynamic implementation of this control has not 
been standardized and the impact of the droop control 
structures on MTDC stability requires further analysis.  

In order to analyze MTDC stability considering various 
types of DC voltage controllers, a generalized mathematical 
model including detailed AC and DC component models is 
required. A single converter or point-to-point system with 
constant DC voltage control is generally used for stability 
analysis of VSC-HVDC [7-11]. A number of previous papers 
regarding droop control have focused on the steady-state and 
dynamic simulation aspects [1, 3, 4, 6, 12, 13]. Stabilities of a 
single VSC converter model with several types of voltage 
droop structures are compared in [14]. Some good work exists 
investigating mathematical modeling and AC/DC interaction 
analysis of MTDC systems [5, 15], but none yet provides a 
comparative stability analysis of MTDC systems considering 
different droop implementations. 

This paper primarily aims to address the key limitations 
imposed on MTDC stability, and comparatively evaluate the 
stability of MTDC systems with five ubiquitous types of DC 
voltage droop control structures. Another key contribution of 
this paper is to provide a generalized mathematical framework 
which is suitable for stability and robustness analysis of 
various DC voltage control controllers. Under this framework, 
classical and multivariable frequency response analysis and 
eigenvalue analysis are employed to investigate MTDC system 
stability. This paper also proposes an active stabilizing control 
to enhance the robust stability for MTDC systems installed 
with large reactors.  

This paper is structured as follows. In Section II, a dynamic 
modeling framework that is suitable for DC voltage stability 
studies is presented. General constraints posed by DC power 
flow, DC inductor, cable modeling and AC system strength on 
droop control stability are analyzed in Section III. A 
comparative study of the leading droop controllers is 
performed in Section IV to identify specific limitations of the 
controllers. Finally, an active stabilizing controller is proposed 
to mitigate the negative impedance effect and improve 
robustness with respect to power flow. 

II.  ANALYTICAL MODELING 
A generalized analytical modeling approach is presented in 

this section for the analysis of MTDC system stability.  
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A.  Converter System Modeling 
The converter system model employed in this paper is 

primarily based on the average-value model (AVM) developed 
in [16] and [17] for modular multilevel converters (MMC). As 
depicted in Fig. 1, the converter AC terminal is modeled by a 
controlled voltage source interfacing with the point of common 
coupling (PCC) through a lumped impedance representing both 
transformer and arm impedances. The AC system strength is 
quantified by the short-circuit ratio (SCR) which is directly 
linked to the system impedance. The converter DC side is 
modeled by a controlled DC current source based on the power 
balance principle. An equivalent DC capacitance Cdc is 
computed based on the derivations presented in [18]. The arm 
inductor is also modeled on the DC side, since one third of the 
DC current flows through the arm inductor in each phase [16].  

As shown in Fig. 2, a cascaded control system for VSC-
HVDC is typically implemented in a dq synchronous frame, 
where the transformation angle is provided by a phase-locked 
loop (PLL). The active current reference is provided by a DC 
voltage (DV) controller or an active power (AP) controller. 
The AC voltage or reactive power is controlled by 
manipulating the reactive current. 

B.  Candidate Droop Controllers 
According to existing literature (see below), dynamic 

implementations of the DC voltage droop controller can be 
classified into five types that are depicted in Fig. 3. These 
designs aim to achieve similar or identical steady-state voltage 
droop characteristics. The droop constant Kdr, which is 
interpreted here as the ratio between the steady-state deviation 
of DC voltage to change in ac or DC power, is likely to be 
selected primarily based on power flow requirements in terms 
of power sharing and DC voltage deviation [3, 4, 6, 13].  

The Type 1 model has been widely used in previous 
literature [2, 5, 19], where the V-Pac droop characteristic is 
realized by modifying the active power reference in proportion 
to the DC voltage error. The Type 1 droop control effectively 
acts as the outer control of the active power control. 
Alternatively, as shown in Type 2, V-Pac droop can be achieved 
by modifying the standard DV controller using a 
supplementary signal in proportion to the active power error 
[3].  

In Type 3 and Type 4, DC power or DC current imported by 
the converter is used to produce the supplementary signal for 
the DV controller adjustment to obtain V-Pdc or V-Idc droop 
respectively [1, 4, 13]. These two types are of particular 
interest if system operators are more concerned with DC rather 
than ac power flow.  

Type 5 is derived based on the frequency droop concept that 
droop control can be obtained by adding a proportional 
feedback loop around the main controller [20]. This 
implementation is very similar to the standard design for 
generator governors and STATCOM controls; however it has 
rarely been discussed for MTDC applications. One possible 
drawback of this design is that specified V-P droop 
characteristics cannot be perfectly achieved by Type 5 due to 
the mismatch between the active power and d-axis active 
current. 

C.  Generalized Droop Controller Modeling 
The droop implementations and typical AP or DV 

controllers described in Section II B can all be represented in 
the generalized form shown in Fig. 4. A new droop variable fvP, 
which is defined as the sum of the DC voltage multiplied by 
DV droop gain Kdv and AC/DC current/power multiplied by 
AP droop gain KdP, is considered as the new output signal to be 
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Fig. 3.  Average-value model (AVM) for VSC-HVDC 
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Fig. 4.  VSC-HVDC control structure. 
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Fig. 1.  Five types of dc voltage droop control implementations. 
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Fig. 2.  Generalized droop control structure.  
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controlled in order to have a zero steady-state error. As shown 
in Table I, the DV and AP droop gains Kdv and KdP are related 
to the slope Kdr as: Kdr=KdP/Kdv. The main controller K(s) is 
normally a PI controller for typical droop schemes but a more 
complex controller can be easily incorporated in this 
generalized droop structure.  

This generalized droop control structure shown in Fig. 4 
enables various types of DV/AP controllers to be evaluated 
under a common framework. A similar control structure is also 
applicable to the general representation of a constant ac voltage 
control, reactive power control and droop AC voltage control. 
Furthermore, functionality and flexibility of the mathematical 
modeling of MTDC systems are also greatly improved by 
utilizing this control topology.  

The DV controller Kv(s) and AP controller KP(s) presented 
in Fig. 3 are typically PI controllers. The superscripts ‘v’ and 
‘P’ denote whether the related PI controllers are designed 
based upon the DC voltage plant or the active power plant 
respectively. Please note that per unit representation is used 
throughout this paper.  
 The PI AP controller KP(s) can be tuned using the Skogestad 
internal model control (SIMC) method [21]: 

 1,P Pid
p i

des des

K Kτ
τ τ

= =  (1) 

where τid is the time constant of the d-axis current loop and τdes 
is the desired time constant of the AP control loop.  

SIMC can also be applied for the tuning of the PI DV 
controller and the resulting parameters are:  

 2,
4( )

v vdc dc
p i

des id des id

C CK K
τ τ τ τ

= =
+ +

 (2) 

where Cdc is the equivalent DC link capacitance and τdes is the 
desired time constant of the DV control loop. For similar 
closed-loop bandwidth, the proportional gain in the DV 
controller Kv(s) is usually much larger than the proportional 
gain in the AP controller KP(s), since at low frequencies the AP 

plant model is dominated by a large steady-state gain whereas 
the DV plant model is dominated by an integrator. 
 Type 5 controllers can be shown in the generalized droop 
control structure with K(s) represented as a lag compensator: 

 1 1 1( ) , , 1 .
1

v
p
v v

dr i p dr

KTsK s where T
K Ts K K K

β
β

+
= ⋅ = = +

+
 (3) 

D.  Cable Modeling  
The cascaded π-section cable (CPIC) model is commonly 

adopted for mathematical modeling of VSC-HVDC systems [5, 
8, 22]. However, as identified in [11], relying on the CPIC may 
give false judgement of DC system stability since the 
resistance of the CPIC model can be much lower than that of a 
frequency-dependent (FD) cable model [23]. Therefore, a 
modified π-section cable (MPIC) model proposed in [11] is 
utilized here for state-space modeling of DC lines to give a 
more accurate representation of DC system dynamics. In the 
MPIC model shown in Fig. 5, each π section is comprised of 
multiple parallel RL branches to provide a degree of 
frequency-dependency. For a symmetrical monopole system, 
based upon the FD cable model in PSCAD/EMTDC, frequency 
scan results of the series impedance of both positive and 
negative poles are employed to account for the mutual 
impedance. Vector fitting is utilized for the parameterization 
process [24].  

A DC inductor LCB, which is required by DC circuit 
breakers for fault current limiting, is included at both ends of 
each cable as shown in Fig. 5. A state-space model of a cable 
model that consists of n parallel branches and m π sections has 
(mn+m+3) state variables. 

E.  Open-Loop and Closed-Loop Models 
This section briefly describes the open-loop and closed-loop 

formulations of a generalized small-signal MTDC model. 
 All the differential equations which describe the dynamics of 
ac and DC systems, converters and controllers need to be 
identified and linearized around a specified operating point, 
which is provided by a power flow calculation. Detailed 
derivations of these linearized equations are provided in [19, 
22]. The open-loop VSC system model used to assess DV/AP 
control structures is formulated by interconnecting multiple 
sub-systems, as illustrated in Fig. 6, where xQ and xvac represent 
the states of the RP and AV controllers respectively; the states 
of the PI current controllers are denoted by xid and xiq; the state 
of the PLL loop filter is denoted by xpll; θ is the output angle of 
the PLL; and the notation of the states related to converter ac 
and DC plants are shown in Fig. 1 and Fig. 2. In Fig. 6, w1 and 
w2 represent exogenous input vectors, whereas z1 and z2 are 
exogenous output vectors.  

In a MTDC system, a general state space model for the jth 
VSC system can be written as , where xj and uj are the state 
variables and the input vector of the jth converter respectively. 
The DC current injected into the jth converter idc(j) and the 
converter DC voltage vdc(j) are treated separately from other 
inputs/outputs, since converter models and the DC network 
models are integrated together through the exchange of DC 
voltages and currents.  
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Fig. 5.  Cable model with parallel RL branches. 
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 The state-space model of the overall DC network is formed 
by aggregating all the cable models and it can be written as:  
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For a MTDC system with n terminals, by interconnecting 
the analytical models of all the converter systems in the form 
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where BGj is the jth column of the input matrix BG, CGj is the 
jth row of the output matrix CG, and the zeros are submatrices 
with appropriate dimensions. This modeling approach can be 
conveniently applied to suit different MTDC dynamic studies.  

Fig. 7 shows the structure of the multi-input-multi-output 
(MIMO) plant model for the DC voltage control, which can be 
extracted directly from the overall state-space MTDC model. 
The vector w represents the exogenous input vector which is 
comprised of the commands and disturbances, with the active 
current reference excluded. The vector z represents the 
exogenous output vector which is comprised of all the output 
variables to be observed, with the DC voltage vdc and the droop 
variables fvP excluded. 

From the single-input-single-output (SISO) perspective, the 
generalized droop controller can be connected with this plant 
model, as presented in the closed-loop block diagram in Fig. 8, 
where H is the 2×1 transfer function matrix between vDC, 
Pac/PDC/iDC as outputs and id

* as input. The plant model G(s), 
the sensitivity transfer function S(s) and the complimentary 
sensitivity T(s) can be represented as: 

 *

1 ( ) ( )( ) , ( ) , ( )
1 ( ) ( ) 1 ( ) ( )

vP

d

f K s G sG s S s T s
i K s G s K s G s

= = =
+ +

 (8) 

In Fig. 7 and Fig. 8, the DV and AP droop gains are 
considered as part of the plant model G(s) to allow classical 
stability analysis to be conducted and to provide a more 
general framework for comparative droop control study.  

Closed-loop MIMO representation of the DC voltage 
control problem is shown in Fig. 9. Constant DV and AP 
controls as well as various droop controls can all be 
incorporated within this framework. In this MIMO model, the 
droop control plant model G(s) referred in this paper for the jth 
converter is the transfer function that relates the jth id reference 
as the input to the jth droop function fvP as the output. It is 
important to note that the droop gains KdP and Kdv are part of 
the plant model, which will greatly facilitate stability analysis.  
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Fig. 8.  Open-loop MTDC model for dc voltage control studies.  
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Fig. 10.  Closed-loop diagram for DC voltage control. 
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Fig. 7.  Four-Terminal VSC MTDC test system.  

TABLE II 
. CONVERTER PCC POWERS IN THE TWO POWER FLOW SCENARIOS. 

Scenario VSC1(p.u.) VSC2(p.u.) VSC3(p.u.) VSC4(p.u.) 
PF1 -0.750 -0.600 0.759 0.580 
PF2 0.750 0.600 -0.781 -0.580 
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III.  DC STABILITY LIMITATIONS 
This section aims to address some key stability limitations 

that are independent from the droop control implementations. 
A four-terminal MTDC system schematically shown in Fig. 10 
is used throughout this paper. Analytical models of this test 
system are built in MATLAB based on the methodology 
presented in Section II-E. A more accurate model using a FD 
cable model is built in PSCAD for time-domain simulations.  

Two power flow scenarios, which are parameterized in 
Table II as PF1 and PF2, are used for all test cases. Inverter 
orientation (P>0 for inverters) and per unit values are used in 
this paper. VSC3 and VSC4 employ voltage droop control 
whereas active power control is applied to VSC1 and VSC2. 
The nominal value of the droop constant Kdr is 5%, for both 
VSC3 and VSC4. The nominal bandwidths of the DV and AP 
controllers are selected to be 18 Hz.  

A.  DC Inductor and DC Power Flow 
DC circuit breakers rely on large DC inductors to limit the 

rise of the DC fault current. The DC inductor may however 
degrade the stability and transient performance of MTDC 

systems [22, 25]. The detrimental effect caused by this 
component requires further in-depth analysis.  

From the DC grid perspective, an inverter in constant 
power control can be approximated as a DC power sink. The 
DC current imported by this power sink can be linearized as:  

 2
ac ac aco

con con dc
dc dco dco

P P Pi i v
v v v

∆
= ⇒ ∆ = − ∆  (9) 

where the subscript ‘o’ denotes the operating point. A DC link 
model shown in Fig. 11 is used to represent a simplified 
system and conceptually illustrate the impact of the DC 
inductor. An inverter in constant power mode behaves as a 
negative resistance in parallel with a DC current sink. The 
negative resistance will impose negative damping and reduce 
relative stability of the system. A similar effect has been 
analyzed in [26, 27] for DC links of low-power inverter drive 
systems.  

For the generic DC link shown in Fig. 11, if the voltage vdc1 
is to be controlled by varying the DC current icon1, the 
numerator of the transfer function relating icon1(s) to vdc1(s) is: 

 2
2 2

1 1aco L acoL

L dc dco L dc dco

P R PRs s
L C v L C v

   
+ − + −   

   
. (10) 

Sufficiently large values of inductance LL and power 
operating point Paco result in a pair of positive roots of , which 
are then reflected as a pair of right-half-plane (RHP) zeros in 
the plant vdc1(s)/icon1(s). RHP zeros pose several fundamental 
limitations including high-gain instability, bandwidth 
limitation and inverse response [21]. Increasing the DC 
inductance or the inverting power of the power sink increases 
the possibilities of RHP zeros and degrades the controllability 
of the DC link. The effect of DC inductors on MTDC stability 
is highly dependent on the DC power flow, particularly the 
VSCs in constant power control mode.  

With the DC inductor size varying from 0 to 150 mH, 
trajectories of selected closed-loop eigenvalues of the four-
terminal model under two power flow conditions are shown in 
Fig. 12. The increase of LCB reduces the oscillating frequencies 
and damping of the poles associated with the DC network. 
Using a larger LCB has a more significant destabilizing impact 
on the PF2 scenario than the PF1 scenario. A low-frequency 
dominant mode migrates into the RHP and renders the closed-
loop system unstable for the PF2 case, where both converters 
operate as inverters in constant power control mode and 
impose virtual negative admittances.  

Under scenarios PF1 and PF2, frequency responses of the 
open-loop plant model with respect to VSC4 operating in 
droop control are presented in Fig. 13, for the four-terminal 
models with and without DC breaking inductors of 100 mH 
[25]. The scenario PF2 always has a larger phase lag than PF1 
above 4 Hz due to the RHP zeros caused by the power flow 
direction. This implies that, with identical control settings, the 
system with fewer inverters in constant AP control mode is 
likely to have better stability margins especially phase margins, 
and be more robust to unmodeled high-frequency dynamics. 
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Fig. 11.  Simplified dc link model with linearized DC power sink.  
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Fig. 12.  Trajectories of selected closed-loop eigenvalues for scenarios PF1 and 
PF2 as the dc inductor varies from 0 to 150 mH (Type 2 droop, Kdr=5%).  
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The introduction of the 100 mH inductor into the system 
significantly amplifies the frequency-domain peaks. The loop 
transfer function L(s) in this case is therefore more likely to 
cross 0 dB at these frequency peaks and this could severely 
degrade the phase margin and may cause instability, especially 
when relatively high-gain controllers are employed. The DV 
controller gain should be sufficiently low around these 
resonant frequencies to allow acceptable stability margins.  

B.  DC Cable Modeling  
The impact of DC cable modeling on MTDC stability has 

been neglected in a majority of previous literature. The 
eigenvalues of the MPIC-based and the CPIC-based test 
system models are shown in Fig. 14. The high-frequency DC 
network modes resulting from the CPIC-based model are 
located quite close to the imaginary axis, whereas the DC 
system modes of the MPIC-based model have much better 
damping. The dominant poles in Fig. 14 show that, with 
identical controllers, the closed-loop model based on the CPIC 
model may have much poorer stability than the MPIC based 
model. The CPIC-based model also exhibits more and sharper 
high-frequency resonant peaks, which could cause high cross-
over frequencies and negative phase margins. With respect to 
VSC3 using the Type 3 droop control, the frequency responses 
of the MPIC-based and CPIC-based plant models are compared 
in Fig. 15. The frequency peak for the CPIC-based model 
around 30 Hz is much higher than the MPIC-based model and 
this is likely to result in a larger bandwidth and worse stability.  

A more realistic MPIC model should therefore be 
considered since the CPIC model will exaggerate stability 
problems.  

C.  Short-Circuit Ratio 
For a VSC system connected to a weak ac system, the PCC 

voltage could be sensitive to the active and reactive current 
variations of the converter system, and this leads to a more 
nonlinear relationship between the active power and d-axis 
current. Such nonlinearities can cause RHP zeros in the plant 
models of both the active power and DC voltage control for 
converters in rectifier operation [19]. The RHP zeros will 
locate closer to the origin for a system with a lower SCR and 
larger rectifying power. As the SCR of the droop-controlled 
VSCs of the test system varies from 5 to 1.7, the trajectories of 
the dominant closed-loop eigenvalues are shown in Fig. 16. 
The stability of the system using a Type 2 controller is not 
severely affected by the SCR variation. Conversely, the system 
based upon the Type 3 controller becomes unstable for 
SCR<1.9 due to the poles bing at 75 Hz. In this case, the RHP 
zeros caused by lower SCRs are more likely to be excited for a 
Type 3 droop due to the plant model having higher resonant 
gains than that for the Type 2 droop. This demonstrates a key 
advantage of the Type 2 control over Type 3 control in terms 
of robustness.  

IV.  DROOP CONTROLLER COMPARISONS 
Most of the stability limitations addressed in Section III are 

generally applicable to all five types of DC voltage controls. 
The following comparative study investigates key stability 
features of the five droop implementations considered in this 
paper.  

A.  Selection of Output Signal 
Control Types 2 to 4 have identical controller structure and 

are essentially differentiated by the selection of output signals, 
namely, ac power, DC power and DC current.  
 Frequency responses of the plant models for Types 2 to 5 are 
compared in Fig. 17, with respect to droop control 
implemented on VSC4. The differences of Type 3 V-PDC droop 
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Fig. 17.  Frequency responses of the plant models fvP4(s)/ i*

d4(s), for Types 2 to 
5 regarding droop control using VSC4, for systems with/without LCB (PF2, 
Kdr=5%).  
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and Type 4 V-IDC droop is negligible in the frequency domain, 
since the converter DC current and DC power contain almost 
identical dynamic information. Hence only Type 3 will be 
considered out of these two controller types for further study. 
Within low frequencies below 24 Hz, there is little difference 
between the plant models for Type 2 V-Pac droop and Type 3 
V-PDC droop. However, the plant model for Type 3 tends to 
have a larger phase drop than the model for Type 2 as 
frequency increases. Consequently, with identical controller 
parameters, the closed-loop system for Type 3 will have a 
worse phase margin than Type 2, if the cross-over frequency is 
higher than 24 Hz. Moreover, the plant model for Type 3 also 
has a larger resonant peak at 53 Hz than that for Type 2. This 
together with the phase lag effect implies that V-PDC droop is 
likely to be more prone to high-gain instability than V-Pac 
droop.  

Adding 100mH DC inductors does not impact the low-
frequency response of the plant models for Type 2 and Type 3, 
as shown in Fig. 17(b). However, the plant model for Type 3 
contains more and sharper resonant peaks above 100 Hz than 

that for Type 2, since the signal PDC is significantly affected by 
the overall DC network dynamics. Type 3 control is thus much 
more likely to be affected by modeling of the DC components 
such as DC cable and DC inductor.  
 DC voltage control using droop control can be decomposed 
into multiple SISO closed-loop systems. The SISO sensitivity 
and complementary sensitivity transfer functions S(s) and T(s) 
resulting from Types 1, 2, 3 and 5 are compared in Fig. 18(a) 
and (b), for droop control implemented on VSC3 and VSC4 
respectively. The bandwidth of Type 1 control is much higher 
than the other droop types because the equivalent integral gain 
of Type 1 is much larger than the others, as the PI controller of 
Type 1 is identical to the AP controller. Therefore, Type 1 
droop has better low-frequency disturbance rejection capability. 
However, it may be more vulnerable to RHP zeros and 
unmodeled dynamics due to its high bandwidth. The 
comparison between sensitivity peaks suggests that Types 2 
and 5 tend to provide better stability than Types 1 and 3. Type 
5 droop has slightly lower bandwidths than Types 2 and 3. 
However the complementary sensitivity T(s) for Type 2 droop 
may not roll off sufficiently fast at high frequencies and may 
need additional low-pass filters to improve noise attenuation.  

As shown in Fig. 18(b) when considering droop control 
implemented on VSC4, frequency-domain peaks of S(s) and 
T(s) at 70 Hz for Type 3 control are significantly higher than 
the others. This indicates that a closed-loop system utilizing the 
Type 3 control structure gives a much poorer stability and 
robustness under this condition. The large gain of the plant L(s) 
at 55 Hz for Type 3 results in a high cross-over frequency 
which then seriously worsens the stability margins. This 
clearly shows a key weakness of using DC power rather than 
ac power as the feedback signal for droop control.  
B.  Droop Parameterization 

This section is focused on analyzing the robustness of the 
candidate controllers with respect to droop parameterization. 

The maximum singular value , which represents 
the maximum gain of a multivariable system G(jω) as a 
function of frequency, is a very effective frequency domain 
measure for MIMO performance and robustness [21].  

In a MTDC system, the converters operating in AP control 
mode act as disturbances to the converters regulating DC 
voltage. The maximum singular value plots are shown in Fig. 
19(a) and (b) respectively for the closed-loop model between 
the disturbances [P1

∗ 
P2

∗] and DC voltages, and the model 
between [P1

∗ 
P2

∗] and the powers of VSCs in droop control.  
As shown in Fig. 19, the DC voltages are less perturbed by 

the disturbances at low frequencies for Type 1. However, this 
comes at a cost of more excessive usage of the active powers 
associated with VSC3 and VSC4. The Type 1 controller 
struggles to maintain system stability as the unacceptably high 
gain at 37.5 Hz implies very poor damping. Type 1 and Type 2 
controls share identical output signals and are differentiated by 
the parameterization of K(s), as the Type 1 control can be 
written in the form of Type 2 but with K(s)=KP(s)/Kdr instead 
of K(s)=Kv(s). This implies that utilization of a relatively small 
droop Kdr will result in a high-bandwidth DV control loop if 
Type 1 is employed.  

The singular value plots suggest that Types 2 and 5 have 
very similar frequency-domain characteristics. Slightly worse 
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Fig. 20.  Trajectories of closed-loop eigenvalues as Kdr varies from 1% to 20% 
(PF2, LCB=100 mH). 
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disturbance rejection performance is provided by Type 3 in the 
frequency range of 35 to 100 Hz.  

Fig. 20 shows the sensitivity of the closed-loop eigenvalues 
as the droop Kdr varies from 1% to 20%. As shown in Fig. 20(a) 
for Type 1 control, reducing the droop constant increases the 
DV control bandwidth and the overall system becomes more 
vulnerable to the constraints discussed in Section III. As shown 
in Fig. 20(c) for Type 3 control, the closed-loop system modes 
located above 35 Hz migrate towards the right-half s-plane as 
Kdr increases, since increasing of the weight of the DC 
power/current in fvP creates larger resonant peaks in the plant. 
As shown in Fig. 20(b) and (d), the high-frequency modes for 
Types 2 and 5 are much more robust to droop variation than 
those for the other controllers, which is a clear advantage of 
using ac power or current for droop control. 

When large droop constants Kdr are used, using DC power 
or current for droop control may result in high-frequency peaks 
in the plant and cause poor stability. For better stability, a low-
pass filter (LPF) with an appropriately designed bandwidth is 
recommended to filter the measured DC power/current before 
feeding to Type 3 and 4 controllers.  

The critically-damped dominant modes for Types 2, 3 and 5 
migrate towards the origin as Kdr decreases. The application of 
very small droop constants can result in very slow modes and 
long settling time for Types 2, 3 and 5, as the interactions 

between the integrators of droop controllers become stronger. 
Furthermore, the steady-state power sharing between droop-
controlled terminals will be more dependent on DC system 
impedance for the use of a very small Kdr [12].  

As the desired time constant τdes that is used for AP or DV 
controller design varies from 40ms to 4ms, the eigenvalue 
trajectories of the systems employing Type 1 and Type 2 
control are shown in Fig. 21. For the configuration of Type 1 
droop with Kdr=5%, increasing the gains of the AP controller 
KP(s) enhances both the damping and response speed of the 
system. Contrarily, as shown in Fig. 21(b) for the case with 
Kdr=2.5%, increasing the gains of KP(s) could easily cause 
instability of the system. This effect implies that the controller 
parameters of Type 1 have to be retuned upon the variation of 
the droop constant. In contrast, for the Type 2 control, the 
eigenvalue trajectories for variations of tuning parameters of 
Kv(s) are much less dependent on the selection of Kdr, as shown 
in Fig. 21(c) and (d). This shows another advantage of Type 2 
over Type 1 that the parameterization of the main droop 
controller K(s) is much more robust.  

The key stability and robustness features of the five types of 
droop controller are summarized Table III.  

 
 

 
TABLE III 

COMPARISON OF THE KEY STABILITY FEATURES BETWEEN THE FIVE TYPES OF DROOP CONTROLLERS 

Assessment Item Type 1 Type 2 Type 3 Type 4 Type 5 

Closed-loop bandwidth High  Moderate Moderate Moderate Moderate 

Usage of converter power High Moderate Moderate Moderate Moderate 

Low-frequency disturbance rejection Fast Moderate Moderate Moderate Moderate 

Robustness to DC network resonances Moderate/Poor Moderate Poor Poor Moderate 

Robustness to droop gain variation Poor Good Moderate/Poor Moderate/Poor Good 

Robustness to DV PI gain variations  Poor Good Moderate Moderate Good 

 
 

V.  ACTIVE STABILIZING CONTROL 
As the combined effect of DC power flow and DC 

impedance resonance could pose severe constraints on MTDC 
stability, there is a poorly damped mode at 17.8 Hz, as shown 
in Fig. 20 and Fig. 21, irrespective of the droop 
implementation. Such an oscillating mode is caused by the 
combined effect of constant power control and large DC 
inductors. An active stabilizing controller (ASC), which is a 
modified form of active damping control for inverter drive 
systems [26, 27], is proposed in this paper for MTDC systems 
to mitigate the negative admittance effect and inherently 
improve controllability and robustness of the DC voltage 
control. The key purpose of the ASC is to increase the dynamic 
damping by forming an additional feedback around the 
constant power control loop. According to Fig. 22, the active 
power reference Pac

∗ is modified by the ASC as: 
 ( )* *

ref a dc dco ref a dcP P K v v P P K v= + − ⇒ ∆ = ∆ + ∆  (11) 

where Ka is the stabilizing gain, vDCo is the filtered DC voltage 
and Pref is the steady-state power reference. By simplifying the 
closed-loop active power control to a first-order plant with a 
bandwidth of ωP, the active power output of a converter in the 
ASC control mode can be represented as:  

 *P P P
ref a dc

P P P

P P P K v
s s s

ω ω ω
ω ω ω

∆ = ∆ = ∆ + ∆
+ + +

. (12) 

Subsequently, the small-signal representation of the DC 
current source of the AVM can be linearized as:  

 
2

2

1

o
con dc

dco dco

a oP P
ref dc

P dco P dco dco

PPi v
v v

K PP v
s v s v v

ω ω
ω ω

∆
∆ = − ∆ =

 
⋅ ⋅ ∆ + ⋅ − ⋅ ∆ + + 

. (13) 

As shown in Fig. 22, the stabilizing gain Ka is given as:  

 p
a s o s

p

K P K P K
s

a
a

= + ≈ +
+

  (14) 

where Po is the converter power operating point, the filtering 
parameter αp shall be sufficiently large, and Ks is named as 
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virtual admittance gain. The equivalent input admittance of the 
converter with ASC can then be derived as:  

 2 2
a o o s oP P

eq
P dco dco P dco dco

K P P K PY
s v v s v v

ω ω
ω ω

 +
= ⋅ − = ⋅ − + +  

. (15) 

Natural admittance of 0 can be roughly achieved within the AP 
bandwidth by selecting Ks=0. However, Ks slightly larger than 
0 is recommended since ωP may not be sufficiently high to 
cover the resonant frequency of interest (i.e. 17.8 Hz in this 
case).  

The impact of applying the ASC control instead of the 
constant power control to VSC1 and VSC2 is demonstrated in 
terms of closed-loop responses in Fig. 23, where the maximum 
singular values of the disturbance models of interest are shown. 
For the original system without the ASC, stability and 
disturbance rejection performance of the system for the PF2 
scenario is significantly worse than that for the PF1 scenario. 
Replacing the typical AP control with the ASC enhances the 
stability of the system for the PF2 scenario, and significantly 
improves the robustness of the DC voltage control to power 
flow variations.  

The four-terminal model is also built in PSCAD based on 
the AVM converter model and FD cable model to verify the 
analytical results using time-domain simulations. Responses of 
the deviations of vDC2 and vDC3 to a 0.05 pu step change of Pref1 
are shown in Fig. 24, which agree very well with the frequency 
domain results shown in Fig. 23. The impact of ASC on the 
robustness improvement is evident, as the simulations for the 
two cases with ASC are both stable and well damped.  

When large droop constants are used, utilizing DC power or 
current for droop control may result in high-frequency peaks in 
the plant and cause poor stability. For better stability, a low-
pass filter (LPF) HF(s) with an appropriately designed 
bandwidth is recommended here for the power measurement of 
the Type 3 and 4 control, as shown in Fig. 25.  

The impact of this additional LPF for Type 3 droop on the 
frequency responses of the closed-loop disturbance models is 
shown in Fig. 26. The corresponding eigenvalues of interest 
are shown in Table III. A second-order LPF with a bandwidth 
of 15 Hz is employed. Using the Type 3 droop with Kdr=20% 
causes a series of singular value peaks, which implies poor 
damping and instability at the associated resonant frequencies. 
The LPF used for DC power filtering is effective in terms of 
stabilizing the oscillatory modes at 52 Hz and 124 Hz. 
However the LPF is not able to improve the poorly damped 
low-frequency modes caused by the negative admittance effect. 
This issue is much more effectively dealt with by employing 
the ASC control for VSC1 and VSC2, as shown in Fig. 26.  

v
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Fig. 22.  Active stabilizing controller.  
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With the system stabilized by the Type 3 controllers with 
LPF, responses of VSC1 and VSC3 to an ac fault at PCC2 are 
shown in Fig. 27, for three ASC control scenarios. The fault 
occurring at 2s caused 30% voltage sag at PCC2 and was 
cleared after 0.1s. A larger ASC is more effective in damping 
improvement but requires more usage of the converter power. 
DC voltages of the inverters in constant power control can be 
significantly more oscillatory than those converters in droop 
control, although this may not be a severe issue for systems 
without breaking inductors.  

VI.  CONCLUSION 
In this paper, a general framework for the analysis of 

various droop control configurations employed for MTDC 
systems has been proposed. This framework is then used to 
compare leading droop configurations in terms of their impact 
on controllability, closed-loop stability, robustness and 
dynamic performance of the overall MTDC system.  

The following stability limitations have been identified for 
the DC voltage control:  

1) The negative admittance effect caused by inverters 
operating in constant power mode limits DC voltage 
control bandwidth and degrades both robustness and 
stability of the DC system.  

2) The use of large DC inductors can severely deteriorate the 
controllability of the DC network and cause critical low-
frequency resonances for any of the droop configurations.  

3) Weak ac system connection can pose different bandwidth 
limitations on different types of droop controllers.  

The analysis in this paper leads to the following design 
recommendations for DC voltage droop control:  

1) All the five droop types can be applied with care. 
However, under severe plant constraints, Type 2 and 
Type 5 droop generally possess better stability and 
robustness than the others.  

2) In comparison to the droop control based on ac power or 
ac current, the control based upon DC power or DC 
current has similar low-frequency dynamic characteristics. 
However, it is more vulnerable to high-frequency DC 
resonances, weak ac systems and large droop constants.  

3) For Type 3 or Type 4 controls, to stabilize high-frequency 
oscillatory modes, the DC power or DC current is 
suggested to be appropriately filtered before it is fed to the 
droop controller.  

4) The PI parameters of the droop controllers should be 
tuned based upon the DC voltage plant model rather than 
the active power plant model, to avoid aggressive 
dynamic response and improve the system robustness to 
droop gain variations.  

5) Replacing active power control with the ASC control is 
very effective in mitigating the negative impedance effect 
and improving the robust stability with respect to power 
flow variations.   
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