
 1 

  
Abstract—To realize the optimal operation of a battery 

swapping and charging system (BSCS), a game theory based 
closed loop supply chain (CLSC) management system is 
proposed. A CLSC is adopted to represent the 
battery-swapping-charging process between a battery charging 
station (BCS) and multiple battery swapping stations (BSSs). 
The arrival, departure and swapping service of the electric 
vehicles (EVs) at a BSS is modeled as distinct queues based on 
the network calculus theory. The depleted batteries (DBs) and 
well-charging batteries (WBs) based interaction among the 
BCS and BSSs is modeled as a Stackelberg game, where the 
BCS is the leader and the BSSs are the followers. The BCS sets 
optimized prices to maximize its utility and the BSSs optimally 
demand WBs, supply DBs and provide battery swapping 
services to maximize their own utilities while guaranteeing the 
quality of service (QoS) needed for battery swapping. The 
existence of Stackelberg equilibriums (SEs) of the proposed 
game is proved. A differential evaluation based hybrid 
algorithm is proposed to compute a SE. Simulation results have 
demonstrated the effectiveness of the proposed method, 
guaranteeing the QoS and balancing the benefits among the 
BCS and BSSs while maximizing social welfare. 
 

Index Terms—Battery swapping, closed loop supply chain, 
network calculus, game theory 

NOMENCLATURE 

A. Indices, sets and parameters 
i Index of time epochs. 
n Index of battery swapping stations (players). 
m Index of players. 
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ti Arrival time epochs. 

di Deadline time epochs. 

ni Number of EVs during i-th time slot. 
Γ SG. 

 Game. 

 BCS. 
n Strategy set of player n. 
   Set of battery swapping stations. 
T Number of time slots. 
NS Number of BSSs. 
N Number of players in the SG, N=NS+1. 
Bn(t) Maximal queue length in BSS n during time slot t. 
λDA(t) Day-ahead energy prices during time slot t. 
CA Price for backup batteries within BCS. 
Cp Cost of charging and discharging for batteries. 
hC/hDC Charging/discharging efficiency of batteries. 
DE Amount of energy needed by per DB. 
pC,max Maximal charging rate of per DB.  
pDC,max Maximal discharging rate of per DB. 

PPV(t) Day-ahead forecasting output of photovoltaic generation. 
during time slot t. 

PD(t) Day-ahead forecasting of demand during time slot t. 
pD,min  Minimal prices of DBs. 
pD,max Maximal prices of DBs. 
pW,min  Minimal prices of WBs. 
pW,max Maximal prices of WBs. 

B. Functions 
A(t) Cumulative arrived EVs during [0, t]. 
D(t) Cumulative departed EVs during [0, t]. 
Dmin(t) Cumulative minimum number of EVs by time t. 

n ( ) Utility function of player n. 

βn(t) Service curve of BSS n. 

Φ(x) Potential function. 

C. Variables 
NW,n(t) Demand for WBs of BSS n during time slot t. 
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ND,n(t) Supply for DBs of BSS n during time slot t. 
NS,n(t) Swapped batteries in BSS n during time slot t. 
pW(t)  Prices of WBs during time slot t. 
pD(t)  Prices of DBs during time slot t. 

CD,0(t) Base prices of DBs during time slot t, CD,0(t)≥0. 
CD,1(t)  Coefficients with respect to total DBs during time slot t. 
CW,0(t) Base prices of WBs during time slot t, CW,0(t)≥0. 
CW,1(t)  Coefficients with respect to total WBs during time slot t. 
xn Strategy of player n. 
x-n Strategy profile of players other than player n. 
x  Strategy profile of all players, x=Π xn.  

QW,n(t) Cumulative WBs of BSS n received from BCS by time t. 
QD,n(t) Cumulative DBs of BSS n sent to BCS by time t. 
NW,n(t) Number of DBs arrived at BSS n during (t, t+Dt]. 
ND,i (t)  Number of DBs delivered from BSS n during (t, t+Dt]. 

PDA(t) Day-ahead power exchange between the distributions. 
network and wholesale market. 

NA(t)  Demand of backup batteries during time slot t.  
PC(t) Charging rate of BCS during time slot t. 
PDC(t) Discharging rate of BCS during time slot t. 

D. Abbreviations 
EV Electric vehicle. 
BSCS Battery swapping and charging system. 
BSS Battery swapping station. 
BCS Battery charging station. 
DB Depleted battery. 
WB Well-charged battery. 
CLSC Closed loop supply chain. 
FSC Forward supply chain. 
RSC Reverse supply chain. 
QoS Quality of service. 
SG Stackelberg game. 
SE Stackelberg equilibrium. 
NE Nash equilibrium. 
DE Differential evaluation. 
CG Congestion game. 
DSO Distribution system operator. 
BLPP Bi-level optimization problem. 
MILP Mixed-integer linear programming. 
 

II. INTRODUCTION 
ITH rapid development of battery technologies [1], EVs 
are being widely adopted around the world, for their 

effectiveness in reducing emission, energy utilization and so on 
[1-2]. Plug-in charging and battery- swapping charging are two 
popular ways to fulfill the energy demand of EVs [2], [3]. 
Compared with plug-in charging, battery swapping charging 
has some attractive features, e.g., shorter serving time, and 
lower replacement cost [2]–[5]. These features can 

meritoriously stimulate the successful rollout of EVs, 
especially for electric buses and electric taxis [3]–[9]. 

To realize the benefits of battery swapping charging, a 
well-designed and efficiently operated battery swapping and 
charging system (BSCS) is the cornerstone. There are three 
subsystems in BSCSs, i.e., battery swapping stations (BSSs), 
battery charging stations (BCSs) and logistics systems between 
the BSSs and BCSs [2]–[12]. Some outstanding works have 
been carried out in the planning [3-5, 10] and operation [2], [6]–
[9], [11], [12] of BSCS. Based on the life-cycle cost method, an 
optimal design framework of BSSs and BCSs in distribution 
systems is presented in [3]. Optimally charging facility design 
and inventory management are given in [4] and [5], 
respectively. With limited information on battery swapping 
demand, a robust BSS design method is proposed in [10], 
where BSSs are selected for gas stations. 

The day-ahead operation of BCSs is the hot research area 
in BSCS operations. A robust optimization model for 
maximizing the day-ahead revenue of BCSs is proposed in [2], 
including the uncertainty of battery swapping demand and 
day-ahead wholesale market prices. In [6], an optimization free 
real-time decision making technique for a BSS is proposed to 
ensure the service availability. To manage the scalable charging 
in the BCS, a distributed optimal scheduling method is 
provided in [8]. A real-time operational strategy is proposed for 
an individual BCS to maximize its revenue under a market 
environment [9]. Furthermore, BSCS can provide ancillary 
services to power systems, e.g., operation reserves [9] and 
black start capacity [11]. Unlike the fixed charging method 
mentioned above, where EVs should come to the BSSs [1]–[11], 
an interesting mobile charging method is proposed in [12], 
including mobile battery swapping and mobile charging. 

According to the aforementioned works, BCSs establish 
the interaction between the BSCS [2], [3], [7], [9], [11] and 
power systems, while BSSs link BSCSs with EV users [5], [6], 
[8], [10]. However, these works only take the benefits of power 
systems [11], BSCS [2]–[4], [6]–[10] or EV users [5], [12] into 
consideration, while omitting the benefits of the others. To 
balance the benefits of all three entities, a detailed operational 
model of the BSCS is necessary. A BSCS has its own 
operational characteristics. Depleted batteries (DBs) should be 
swapped at BSSs and shipped to BCSs. After being charged, 
batteries should be delivered to BSSs as spares. The 
battery-swapping-charging operation within the BSCS is a 
closed logistic loop for batteries [13]. The logistic loop for 
batteries can be treated as a closed-loop supply chain (CLSC) 
[14]. 

CLSC is a novel logistical concept, which was proposed in 
2003 [14]. It has both forward supply chain (FSC) and reverse 
supply chain (RSC) features. CLSC management makes 
products achieve value maximization in the whole lifecycle 
through systematic design, control, and operations. Energy can 
be saved and environmental pollution can be reduced in the 
process of value maximization of the products [15], [16]. In the 
BSCS, providing well-charged batteries (WBs) from the BCSs 
to BSSs is a FSC, while collecting DBs from BSSs to BCSs and 
charging these batteries is a RSC. To guarantee QoS of battery 
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swapping services, BSSs should store spare WBs at BSSs [13] 
and the BSCS can have more flexibility with more batteries 
being available. However, the capital cost of batteries is still 
high [1], [2], maintaining too great a battery inventory is 
unaffordable [1], [5]. An efficient BSCS operation should be 
proposed to capture the conflict between economic efficiency 
(e.g., operational cost) and QoS. 

Drawing on the existing results, this work provides a 
CLSC framework to analyze the operation of BSCSs, where 
BCSs, BSSs and EV users are manufacturer, retailers and 
customers, respectively. Unlike the existing centralized 
operational methods [9], [12], [13], a game theory based 
management method is proposed to balance the benefits among 
BCSs and BSSs, while guaranteeing the QoS of the battery 
swapping service. There are two general classifications in game 
theory, i.e., cooperative game and non-cooperative game 
models [17]. Cooperative game models show how players 
cooperate as coalitions in unstructured interactions to create 
and capture value, by make binding agreements before playing 
the game [17]. The non-cooperative game model focuses on the 
strategy, utility and procedure, which enables each player to 
make decisions individually. In this paper, a non-cooperative 
game is adopted to model the competition among the BCSs and 
BSSs of the CLSC, where the BCS and BSSs are owned by 
different entities. 

As far as we know, it is the first time anyone has applied 
CLSC to model the closed battery loop in the BSCS. The 
contribution of this paper can be summarized as follows: 

1) The battery-swapping-charging process in a BSCS is 
modeled as a CLSC, including optimization of the charging 
process in the BCS and battery swapping services among BSSs. 
The queues of a BSS are modeled based on network calculus 
theory [18]. 

2) The interaction among the BCSs and BSSs is modeled 
as a Stackbelberg game (SG), in which the BCS acts as the 
leader by setting prices for DBs and WBs; the BSSs act as the 
followers by optimizing their demand for the WBs, supply for 
DBs and battery swapping services. 

3) The competition among the BSSs is modeled as an 
exact potential game, which includes at least one pure Nash 
equilibrium (NE). 

4) An evolutionary algorithm framework, i.e., differential 
evaluation (DE) is employed to compute the Stackelberg 
equilibrium (SE) of the proposed SG. 

The rest of this paper is organized as follows. Section II 
presents the CLSC based BSCS, which serves as the system 
model in the SG. The SG between the BCS and BSSs are 
presented in Section III. The mathematical features of the 
proposed SG are shown in Section IV. A DE based SE 
computing algorithm is shown in Section V. The simulation 
and conclusion are given in Section VI and Section VII, 
respectively. 

III. CLOSED LOOP SUPPLY BASED EV BATTERY SWAPPING 
NETWORKS 

A. Battery Swap and Charging System 
In this section, a genetic BSCS is introduced. As shown in 

[7], a BSCS has at least one BCS, multiple BSSs and a logistics 
system. BSSs are battery swapping service providers, who are 
responsible for providing battery swapping services to EV 
users within a certain area. BCS is a battery charging service 
provider, who is responsible for charging DBs collected from 
BSSs. The logistic system is the battery transportation between 
the BCS and BSSs, who is responsible for transferring WBs 
from the BCS to BSSs and collecting DBs from the BSSs to the 
BCS. A classical BSCS consists of three layers: 1) terminal 
device layer, 2) station management layer and 3) management 
center layer [7]. Focusing on the operation of a BSCS, this 
paper studies the station and management center layer 
operation. Here, the station refers to BSSs and a BCS 
management center refers to the interaction between the BCS 
and BSSs. 

A CLSC is an integrated logistics system, composed of 
manufacturer, retailers, consumers and logistic systems [14], 
[15]. In a BSCS, EV users are consumers, BSSs are retailers, 
BCS is the manufacturer and the logistics are the batteries 
between the BCS and BSSs, which can be observed in Fig. 1. 
With the features of the battery swapping model of the EVs 
considered, the following assumptions are made for illustrating 
the proposed strategy in this paper. 

1) Batteries within the BSCS are owned by the BCS, and 
there is only one BCS in this BSCS. 

2) Batteries are of the same type, DBs have the same state 
of charge, and the batteries are of the same SOC after charging. 

3) BSSs are owned by different entities. 
4) BCS are owned and operated by a distribution system 

operator. 
5) The deliver time between the BCS and BSSs is not 

taken into consideration. 
6) The total operational period is divided into discrete time 

slots. Let t denote the time epoch, t∈{1,2,…,T}. 
 

Battery swapping 
station 1Power 

system Battery swapping 
station 2

Battery swapping 
station N

Electric vehicle 1

Electric vehicle 2

Electric vehicle N

Battery charging 
station

Forward supply chain

Reverse supply chain Logistics

... ...
Photovoltaic 
generation

Manufacturer Retailers Customers

Power flow
 

Fig. 1.  CLSC based battery swapping and charging system. Providing WBs 
from the BCS to EV users via BSSs is the FSC. Collecting DBs from the EV 
users to the BCS via BSSs and charging the DBs at the BCS is the RSC. The 
logistics system is responsible for transferring WBs from the BCS to the BSSs 
and collecting DBs from the BSSs to the BCS. Bith theFSC and RSC, along 
with the logistics system formulate the CLSC. The relationship among the 
logistic system, the manufacturer and retailers leads to distinct types of CLSCs, 
as shown in Section III.C. 
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B. Battery Swap Station 
There are three queues in a BSS, as shown in Fig. 2, one 

queue of EVs, one queue of WBs and one queue of DBs. All 
these three queues capture the coupling nature of the 
battery-swapping-collecting process, which can be a general 
performance analysis framework for an individual BSS. These 
queuing models are presented based on the network calculus 
theory. 
1)  EV Flow Model 

To describe the flow of EVs for a given BSS, a cumulative 
curves methodology is employed in this work [18], [19]. This 
method model shows that the EVs can arrive in packets 
(packetized model) or in a continuum (fluid model). Let A(t), 
D(t) and Dmin(t) denote the arrival curve, departure curve, and 
the minimum departure curve, respectively. These functions are 
assumed to be right-continuous functions and are defined as 
follows. 
 

 
Fig. 2.  Queue models in BSS n. 
 

Definition 1 (Arrival Curve): An arrival curve A(t), t≥0, 
t∈, is the total number of EVs which have arrived in the time 

interval [0, t]. 
Definition 2 (Departure Curve): A departure curve D(t), 

t≥0, t∈, is the total number of EVs which have departed 

(served) in the time interval [0, t]. 
To model the arrival curve of EVs for a given BSS, a 

discrete-time model is adopted, as shown in Fig. 3. D(t)≤ 
A(t),∀t≥0 is treated as the causality constraint. To model the 
QoS requirements, a minimal departure curve concept is 
introduced as follows. 
 

 
Fig. 3.  Network calculus based  queuing model for EVs. 

 
Definition 3 (Minimal Departure Curve): For a given 

arrival curve A(t), a minimum departure curve Dmin(t) is a 
function such that Dmin(t) ≤ A(t), ∀t≥0, and is defined as the 
cumulative minimum number of EVs which would satisfy the 
QoS requirements if they departed by time t. 

Consider a fleet of EVs arrives at BSS n according to an 
arrival curve A(t). Let {ti} denote the arrival epochs, {di} the 
deadlines, and {ni} the sizes of the EVs, respectively. Dmin(t) is 
a piecewise constant function which jumps at times {ti+ di}, the 
sizes of the jumps being {di}, as shown in Fig.3 [18]. The 
function Dmin(t) can be viewed as the constraint function such 
that D(t)≥Dmin(t), ∀t≥0, which the departure curve must D(t) 
satisfy to satisfy the QoS requirements. It should be noted that 
the service policy in the BSSs is earliest-deadline-first, unlike 
the first-come-first in most network calculus models [19].  
2)  Battery Flow Model 

The battery flow is the description of 1) WBs from the 
BCS to BSSs and BSSs to EV users and 2) DBs from EV users 
to BSSs and BSSs to the BCS, which corresponds to the FSC 
and RSC as shown in Fig. 1 and Fig. 2. 

To guarantee QoS, each BSS should store sufficient WBs 
to fulfill the battery swapping demand of EV users. Each BSS 
should submit its bid for WBs, NW,n(t), ∀t≥0 to the BCS for the 
following day, according to prices of WBs set by the BCS. To 
charge DBs and manage the battery inventory, the BCS should 
collect DBs from BSSs. BSSs submit their offer for DBs, 
ND,n(t), ∀t≥0 to BSSs, responding to prices of DBs set by the 
BCS. 

C. Closed Loop Supply Chain for BSCS 
When managing the BSCS, three types of CLSCs can be 

applied, i.e., model C, model R, and model M, based on roles 
played by each player in the CLSC [15]. In model C, the 
manufacturer and retailer belong to one integrated firm, who is 
in charge of production, sales, and logistics. In Model R, the 
manufacturer produces the products, and the retailer is 
responsible for sales and logistics. In Model M, the 
manufacturer produces the products and manages the logistics, 
and the retailer is responsible for new product sales. Model C is 
a theoretical model and acts as a benchmark to evaluate the 
distributed models, namely, model R and model M. In this 
paper, BSSs and the BCS are assumed to be owned and 
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operated by different entities. Model M type CLSC is preferred 
in this paper, where the logistics is managed by the BCS. 

IV. CLOSED LOOP SUPPLY CHAIN GAME 

A.  Game Formulation 
As shown in Section II, in the day-ahead operation of the 

BSCS, BSSs submit their bids of WBs and offers of DBs to the 
BCS, responding to the prices set by the BCS. The BCS makes 
optimal scheduling to charge DBs, provide WBs to the BSS and 
collect DBs from BSSs according to the best bids and offers of 
the BSSs. Thus, the day-ahead operation of a BSCS is a 
leading-following decision making process, where the BCS is 
the leader and BSSs are the followers. This leading-following 
interaction among the BCS and BSSs is modeled as a SG in this 
section. 

SG, which is a type of non-cooperative game, deals with 
the multi-level decision making process of a number of 
independent decision makers or players (the followers) in 
response to the decision taken by a leading player (the leader) 
[21]. To model the competition among the BCS and BSSs, a SG 
is defined in normal form, Γ = {(∪), {n},n∈∪, 

{n},n∈ ∪}.  is N-tuple of pure strategy sets;  is N-tuple of 
payoff functions. The SG has the following components. 

1) BSSs which act as the followers in the game and 
respond to the price set by the BCS.. 

2) The strategy space n, n ∈  which corresponds to the 
battery swapping service, demand for WBs and supply for DBs, 
satisfying the constraints (6)–(13). The utility function of each 
BSS∈  (1) captures the benefit of the BSS by providing 
battery swap services. 

3) The strategy space , corresponds to the scheduling 
plan of the BCS and prices of providing and collecting batteries 
from BSSs, and satisfying the constraints (15)–(22). The utility 
function (14) captures the benefit of the BCS operator. 

B.  Decision Model for An Individual Bss 
For a BSS, it balances its benefits by providing battery 

swapping services and collecting DBs for the BCS and 
administering the cost of ordering well charged batteries from 
the BSSs. Its utility function can be depicted as follows. 
 

D, W , S,
D D, W W,( ), ( ), ( ), 0

max { ( ) ( ) ( ) ( )},
n n n

n n nN t N t N t t t
p t N t p t N t n

∀ ≥
= − ∀ ∈∑   (1) 

 
To avoid simultaneously demand of WBs or supply of 

DBs, pF(t) and pD(t) are set according to the following 
functions. 
 

 D D,0 D,1 D,( ) ( ) ( ) ( )n
n

p t C t C t N t
∈

= − ∑


 (2) 

 W W,0 W,1 W,( ) ( ) ( ) ( )n
n

p t C t C t N t
∈

= + ∑


 (3) 

 

What is more, the price for supplying DBs should always 
be bigger than 0. CD,0(t) and CD,1(t) should meet the following 
constrains. 
 

  D,0 D,1 D,( ) ( ) max( ( )), 0n
n

C t C t N t t
∈

≥ ∀ ≥∑


 (4) 

 
Remark 1: With the price rules (2), (3), the utility function 

(1) has the following characteristics. 
1) The utility function (1) of a BSS is non-decreasing with 

respect to per package of DBs to the BCS, when condition (4) 
holds. And the utility functions of the BSS are non-increasing 
with respect to per package of WBs from the BCS, as each BSS 
should pay for any increase demand of WBs unless it reaches its 
maximum demand level. 

2) The marginal benefit of a BSS is a non-increasing 
function, as the level of benefit of the BSSs gradually becomes 
saturated as more WBs are consumed and DBs are supplied, 
i.e., 
 

 
D, W,

0 0, 0,
( ) ( )

n n

n n

t n
N t N t
∂ ∂

≤ ≤ ∀ ≥ ∈
∂ ∂

 
，  (5) 

 
3) With (2), (3), the utility of a BSS depends not only on 

its strategy but also other BSSs’ strategies. When demand of 
WBs rises at BSS n, the market price for WBs would rise. On 
behalf of their own utilities, the other BSSs should decrease 
their demand of WBs in the FSC. The supply of DBs can be 
explained through a similar way. Thus, BSSs and the BCS are 
price makers for DBs and WBs, i.e., the prices of WBs and DBs 
are decided by BSSs and the BCS.  

(package)0

Pr
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e 
($

/p
ac

ka
ge

)

Demand for well-charged batteries

W,0(0, ( ))C t

W, W,0 W,1 W,( ( ), ( ) ( ) ( ))n n
n n

N t C t C t N t
∈ ∈

+∑ ∑
 

W, ( )n
n

N t
∈
∑



W,0 W,1 W,( ) ( ) ( )n
n

C t C t N t
∈

+ ∑
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(package)0
Supply for depleted batteries
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n n
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∈

− ∑


,0(0, ( ))DC t

 
 
Fig.4  Demand and supply prices of the BCS. (a) Demand curve of 
well-charged batteries at time t. (b) Supply curve of at time t. 
 

For a given BSS, its strategy x n, n ∈  should be 
subjected to the following constrains guarantee QoS.  

1) Deadline Constraint: For BSS n, the deadline 
constrains can be represented as follows. 

 
 min,( ) ( ) ( ), 0,n n nA t D t D t t n≥ ≥ ∀ ≥ ∈   (6) 
 

2) Queue Length: For a given arrival curve An(t) and 
departure Dn(t), the number of EVs within the queue is An(t)– 
Dn(t). Let Bn(t) denote the maximum queue length for BSS n at 
time t, the queue length can be depicted as follows. 
 
 max[ ( ) ( ),0] ( ), 0,n n nA t B t D t t n− ≤ ∀ ≥ ∈   (7) 
 

Furthermore, Bn(t) can be time-varying or time-constant. 
3) Service-Curve Constraint: The notion of service curves 

is an integral part of network calculus theory [13]. Given a 
service curve βn(t) and an arrival curve An(t), the quantity 
An(t)⊗βn(t) represents the minimum cumulative EVs that must 
be served by time t, where ⊗ is convolution in the min-plus 
algebra. Therefore, under network calculus theory, for any 
given service curve βn(t), the minimum departure curve can be 
obtained as follows. 
 
 min, ( ) ( ) ( ), 0,n n nD t A t t t n= ⊗ ∀ ≥ ∈ β  (8) 
 

4) Inventory Constraint: There are two kinds of batteries 
in a BSS, i.e., DBs and WBs. To provide guaranteed quality of 
the battery swapping service, a BSS should store sufficient 
WBs. Furthermore, the quantity of DBs within a BSS is limited 
by the number of EVs being served. Constrains for inventory 
can be represented as follows. 
 

 W, W,
1

( ) ( ), 0,
t

n n
h

Q t N h t n
=

= ∀ ≥ ∈∑   (9) 

 D, D,
1

( ) ( ), 0,
t

n n
h

Q t N h t n
=

= ∀ ≥ ∈∑   (10) 

 S,
1

( ) ( ), 0,
t

n n
h

D t N h t n
=

= ∀ ≥ ∈∑   (11) 

 W, ( ) ( ), 0,n nQ t D t t n≥ ∀ ≥ ∈   (12) 

 D, ( ) ( ), 0,n nQ t D t t n≤ ∀ ≥ ∈   (13) 

 D, ( ) ( ),n nQ T D T n= ∀ ∈   (14) 
 

Cumulative number of DBs, WBs and EVs departure are 
shown in (9)–(11). Constrains for DBs and WBs are shown in 
(12), (13), respectively. To efficiently utilize batteries, all DBs 
should be sent to the BCS by the end of operations, as shown in 
(14). 

C.  Decision Model for BCS 
Since the BCS is managed by DSO, a day-ahead DSO 

optimal scheduling is proposed as the decision model of the 
BCS. For given day-ahead wholesale market prices, DSO 
makes optimal day-head bidding to minimize its cost or 
maximize its revenue. Thus, the utility function for   can be 
depicted as follows: 
 

DA C
DC A

DA DA p C DC( ), ( ), 1 1( ), ( ),
0,

A A
1

max ( ) ( ) [ ( ) ( )]

( )

T T

P t P t t tP t N t
t n

T

n
t n

t P t C P t P t

C N t

= =
∀ ≥ ∈

= ∈

= − − +

− −

∑ ∑

∑ ∑











λ

 (15) 

 
The strategy of the BCS, x, should meet the following 

constraints. 
 

DC DC,max D, A
1 1

0 ( ) [ ( ) E ( ) E], 0
t t

n
h i h

P t p N h N h t
= =

≤ ≤ D + D ∀ ≥∑∑ ∑  (16) 

C C,max D, A
1 1

0 ( ) [ ( ) E ( ) E], 0
t t

n
h i h

P t p N h N h t
= =

≤ ≤ D + D ∀ ≥∑∑ ∑  (17) 

DC
C c D,

1 1dc

( )
[ ( ) ] ( ) E, 0

t t

i
h h i

P t
P t t N h t

= =

− D ≥ D ∀ ≥∑ ∑∑h
h

 (18) 

DC
C c , A

1 1 1dc

( )
[ ( ) ] ( ) E ( ) E, 0

t t t

D i
h h i h

P t
P t t N h N h t

= = =

− D ≤ D + D ∀ ≥∑ ∑∑ ∑h
h

 (19) 

 A0 ( ), 0N t t≤ ∀ ≥  (20) 
 DA C DC PV D( ) ( ) ( ) ( ) ( ), 0P t P t P t P t P t t+ − + = ∀ ≥  (21) 

D,min ,0 ,1 , D,max( ) ( ) ( ) , 0D D D n
n

p C t C t N t p t
∈

≤ − ≤ ∀ ≥∑


 (22) 

W,min W,0 W,1 W, W,max( ) ( ) ( ) , 0n
n

p C t C t N t p t
∈

≤ + ≤ ∀ ≥∑


 (23) 

 
The charging and discharging rate limitations within the 

BCS are shown in (16), (17), respectively. To meet the demand 
for WBs, the minimum energy should be absorbed in the BCS 
as shown in (18). Considering that backup batteries are DBs, 
the maximum energy the BCS can consume is shown in (19). 
The quantity limitation of backup batteries is shown in (20). 
Equation (21) depicts the power balance constrain within the 
distribution network. The price ranges of DBs and WBs are 
shown in (22), (23), respectively. 
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Definition 4 (Stackelberg equilibrium): Consider the SG 
Γ={, , } defined in Section III.A. A strategy profile x∗ ∈ 
constitutes the NE of game Γ, if and only if it satisfies the 
following set of inequalities: 
 

 ( , ) ( , ), ,i n n i n n n n n∗ ∗ ∗
− −≥ ∀ ∈ ∈   x x x x x   (24) 

V. EXISTENCE OF STACKELBERG EQUILIBRIUM 

A. Existence of NE for game among BSSs 
In noncooperative games, the existence of equilibriums (in 

pure strategies) is not always guaranteed [18]. Therefore, for 
the proposed closed loop supply chain game Γ, it is necessary to 
investigate the existence of SEs. As show in Section IV.A and 
Fig. 5, the best reaction of an individual BSS depends on not 
only the prices set by the BCS, i.e., CD,0(t) ,CD,1(t) , CW,0(t) and 
CW,1(t), but also the strategy of other BSSs. In addition, game Γ 
is a hierarchical game, where the BCS is the leader and the 
BSSs are the followers. To verify the existence of a SE 
corresponding to game Γ, the competition among the BSSs is 
scrutinized first to reveal the relationship between the best 
reactions of the BSSs and the strategy of the BCS. 

Definition 5 (Potential game): A function Φ:  → R is 

called an exact potential function for the game  if for each n ∈ 

 and all x−n∈−n, 
 

 * * * *( , ) ( , ) ( , ) ( , ),n n n n n n n n n− − − −Φ − Φ = − ∀ ∈  x x y x x x y x  (25) 
 

Game  is called an exact potential game if it admits a 
potential function. 

Proposition 1: The competition among BSSs, i.e., game  

={, {n}n∈ , {n}n∈ } is an exact potential game. 
Proof of proposition 1 is referred to in Appendix A. 
Lemma 1: Every potential game includes at least one pure 

Nash equilibrium (NE) [21]. 
Theorem 1: For fixed parameters, CD,0(t) ,CD,1(t) , CW,0(t) 

and CW,1(t), at least one pure NE exists for game . 
Proof of theorem 1 is referred to in Appendix B. 
Proposition 2: The NE of game  is the solution of 

following optimizaiton problem, 
 
 

,
max ( )

n n∈∏ ∈
Φ

 x
x  (26) 

 
Proof of proposition 2 is referred to in Appendix C. 

B. Existence of the SE for the Game Among the BCS and BSSs 
As shown in Section IV-A, the competition among BSSs, 

i.e., game  is an exact potential game, which admits at least 
one pure NE, when CD,0(t) ,CD,1(t) , CW,0(t) and CW,1(t) are given. 
It indicates that when CD,0(t) ,CD,1(t) , CW,0(t) and CW,1(t) exist, 
the best reactions of BSSs responding to the strategy of the 
BCS exist. Thus, the existence of a SE for game Γ depends on 
the existence of CD,0(t) ,CD,1(t) , CW,0(t) and CW,1(t). 

Proposition 3: The decision space of the BCS would not 
be empty, i.e., there exists at least one feasible operational plan 
for the BCS. 

Proof of proposition 3 is referred to in Appendix D. 
Theorem 2: There exists at least one SE for game Γ. 
Proof of theorem 2 is referred to in Appendix E. 
A SE of game Γ is the solution of the following 

optimization problem[22], in which the BCS sets its optimal 
strategy in response to the equilibrium demand of WBs and 
supply of DBs, i.e., 
 

 

,

max

(16) (23)
. . max ( )

i i i

s t
∈∏ ∈

−
 Φ




 


x

x
x

 (27) 

 

VI. SOLVING METHOD 
As shown in Section IV, a SE of game Γ is the optimal 

solution of (27) and (27) is a bi-level optimization problem 
(BLPP). Popular ways to solve these kinds of BLPPs are 
mathematical programming with equilibrium constraints 
(MPEC)[22] and evolutionary algorithms [23]. The MPEC 
requires assumptions of smoothness, linearity or convexity of 
the lower level optimization problem, based on the optimal 
conditions for lower level optimization problems [22]. 
However, the lower level optimization problem (26) is 
non-continuous, due to the variables in (1)–(14) being discrete. 
Consequently, an evolutionary algorithm, i.e., DE, is adopted to 
solve (27). Furthermore, with attracting features, e.g., fast 
convergence speed and robust searching ability [5], DE has 
been applied to compute the NE of two player games [24]. 
However, classical DE does not provide the constraint handling 
techniques, which is also a hot topic in evolutionary algorithms 
[25]. Luckily, when CD,0(t), CW,0(t), CD,1(t) and CW,1(t), ∀t≥0 
are optimized by DE, the upper level problem and lower level 
problem in (27) can be solved separately and efficiently by 
using mathematical algorithms, e.g., branch and bound, spatial 
branch and bound. 

In (27), the lower problem is an integer convex quadratic 
programming (ICQP) problem. ICQP can be solved efficiently 
by classical optimization techniques, e.g., spatial branch and 
bound [26]. In this paper, this ICQP is solved by a commercial 
software package, i.e., CPLEX 12.6 [26]. 

For the upper level problem of (27), when the prices, i.e., 
CD,0(t), CW,0(t), CD,1(t) and CW,1(t), ∀t≥0 are predefined, the 
decision model is a mix-integer linear programming (MILP) 
problem. MILPs can be solved efficiently by employing 
mathematical algorithms. This MILP is solved by the 
commercial software package, Gurobi 6.0, in this paper. 

Based on the foregoing statement, when the prices, i.e., 
CD,0(t), CW,0(t), CD,1(t) and CW,1(t), ∀t≥0 are given, the upper 
and lower problems can be solved separately by using 
mathematical methods. Thus, an enhanced DE is adopted in this 
paper to optimize the price profiles, i.e., adjusting prices 
considering the BCS and BSSs’ decisions simultaneously. The 
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details about DE are referred to in [27]. The pseudo code of the 
self-adapting DE algorithm, together with the mathematical 
algorithms for becoming a SE, is presented in algorithm 1. 
 
Algorithm 1. Self-adapting DE algorithm 
Step 1 Randomly generate Np number of initial trial solutions 
P, F and CR parameters. 
Step 2 For i = 1 to Np Produce an offspring Qi using the 
standard DE [27]. For offspring i = 1 to Np do 

2.1 Solve (26) by using CPLEX 12.6 
2.2 Obtain the solution in 2.1, solve (27) by using Gurobi 

6.0, and obtain the fitness of offspring Qi by (15). 
2.3 Assess the violation of constrains by using the 

constrain handling method in [25]. 
Step 3 Select between P and Q using the selection operation 
in [27]. 
Step 4  while stop criterion1 is not met, go to step 2. 
Noted: 1.The stop criterion in DE is an open question and depends on the 
problems in [27]. The stop criterion in this paper is referred to the maximal 
iteration should not exceed a predefined iteration, e.g., 1000 iterations.  

VII. CASE STUDY 

A.  Case Description 
To verify the effectiveness of the proposed method, a 

simulation test system is adopted in this paper. In this test 
system, there are one BCS with three BSSs. Among the BSSs, 
two of them are for electric taxis and the other one is for electric 
buses. There are 1,000 of electric taxis and 200 electric buses in 
the test system, where each electric bus has four battery 
packages. The battery swapping demand for each of the EVs is 
taken from [28]. It is further assumed that the EVs should be 
swapped within 1h, 2h with proposition 0.5 and 0.5, 
respectively. The arrival and minimal departure curve for each 
BSS is shown in Fig.5. 

The day-ahead price profile is taken from CAISO on 
July-1 2016 [29]. The load profile and outputs of the PV are 
taken from [30]. The upper boundaries for CD,0(t) , CD,1(t), 
CW,0(t) and CW,1(t) are set to 23.2927 $/package, 0.1288 
$/package2, 5.7906 $/package and 0.01 $/ package2, 
respectively. The lower boundaries for CD,0(t) , CD,1(t), CW,0(t) 
and CW,1(t) are set to 10.0534 $/package, 0 $/package2, 0 
$/package and 0 $/ package2,respectively. 23.2927 $ is 
calculated according to the fuel price [31], electric vehicle 
efficiency and fueled vehicle efficiency [32], the equivalent 
price for each WB. 10.0534$  is calculated according to the net 
present value of batteries and electric price obtained from [31], 
where the discount rate is set to 10%, which can guarantee the 
benefit of the BCS. CA = 200$/kWh, which is the same prices of 
Tesla batteries nowadays [33].  pC,max =120 kW, pDC,max 

=120kW, DE=50kWh, hc=0.9, hdc=0.85, Cp = 0.0884$/kWh, 
pD,min=0 $/package, and pD,max=5.7906 $/package,  
pW,min=10.0534 $/package and pW,max =23.2927 $/package. 
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Fig.5 Arrival curves and minimal departure curves of BSSs. 
 

In CLSCs, the model C type CLSC is always treated as a 
benchmark for other type CLSCs [15]. The decision model for 
model C type CLSC is depicted as follows. 
 

DA C
DC A

, ,
,

DA DA p C DC( ), ( ), 1 1( ), ( ),
( ), ( ),
( ), 0,

A A
1

max ( ) ( ) [ ( ) ( )]

( )

. .(6) (14), (16) (21)

D n F n
S n

T T

P t P t t tP t N t
N t N t
N t t n

T

t

t P t C P t P t

C N t

s t

= =

∀ ≥ ∈

=

= − − +

−

− −

∑ ∑

∑



 λ

 (28) 

 
The objective function in (28) is referred to as the social 

welfare of game Γ.In this paper, model (28) is a benchmark of 
the proposed method. Furthermore, three step by step scenarios 
are established to verify the proposed model M based CLSC 
BSCS operation method. These three scenarios are shown as 
follows. 

 Scenario I: The departure curve of each BSS i equals 
its arrival curve, which means each BSS would 
provide battery swapping service as EVs’ arrival 
curve. Model C type CLSC management is applied. 

 Scenario II: Model C type CLSC management is 
applied. 

 Scenario III: Model M type CLSC management is 
adopted, where the BSCS is managed by the 
proposed Stackelberg game in Section IV. 

It is noted that, the comparison between scenario I and 
scenario II is to show the benefits for BSCS considering the 
flexibility of the battery swapping demand, and the comparison 
between scenario II and scenario III is to show whether the 
competitions among the BSSs and BCS will result in efficiency 
lose and whether the proposed method can balance the benefits 
among players or not. 

The maximal iteration of DE is set to 1,000, and Np=300. 
The simulation is implemented on a PC with 8G RAM and Intel 
i7-4770MQ@2.4GHz. 

B. Results of Scenario I and Scenario II 
When BSSs provide battery swapping services as EVs’ 

arrival curve and the BCS optimizes the charging process, the 
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results are shown in Fig.6. As shown in Fig. 6 (a), to meet BSSs’ 
demand for WBs during 1:00 to 5:00, which can be observed 
from Fig.5, the BCS needs to charge more backup batteries in 
Scenario I. On the other hand, the battery shortage periods is 
shifted to 5:00, 8:00 and 20:00, as shown in Fig. 6 (b). This shift 
reduces the number of backup batteries from 142 to 101, which 
is about 28.87% smaller than scenario I, as shown in Table I. 
The reduction of backup batteries results in the decrease of total 
cost by 92.22%. 
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Fig.6 Curves of DBs and WBs under scenario I and scenario II 
 
 

Table I  
SIMULATION RESULTS UNDER SCENARIO I AND II 

 Energy Cost ($) 

Number of 
Backup 
Batteries 
(package) 

Total Cost ($)1 

Scenario I 15361.54 142 13174651.99 
Scenario II 15269.62 101 1025236.00 
Scenario III 15269.62 101 1025236.00 

Note: Total cost is the total cost related to the BCS and BSSs, i.e. , negative 
value of the objective function in (28). 
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Fig. 7.  Arrival, departure and minimal departure curves under scenario II. 

The battery swapping service curve of each BSS is shown 
under scenario II in Fig.7. As shown in Fig.7, 1) the battery 
swap service curve is below both the arrival curve and WBs 
curve, 2) the battery swap service curve is beyond the minimal 
departure curve , and 3) the WBs curve is beyond the DBs 
curve. It can be concluded that, when model C type CLSC is 
adopted, the QoS of battery swapping can be guaranteed. 
Base on the simulation results shown in Fig. 6, Fig. 7 and Table 
I, it can be concluded that through the optimal operation of the 
BSSs, the BSCS can realize optimal inventory management 
while guaranteeing QoS of the battery swapping service. 
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C. Results of the Proposed Method 
In this section, model M type CLSC is implimented. When 

algorithm 1 is adopted to compute the SE, the convergence 
curve of the BCS’ utility (15) is shown in Fig.8. As shown in 
Fig.8, after 1,000 iterations, the BCS’ utility converges to 970 
702.41$. Considering the result in Table I, the utility for each 
BSS is –12 894.46$, –30 837.24$ and –16107.60$, respectively, 
and the total utility of BSSs is –54533.59 $. It should be noted 
that the operational plan under Scenario II and Scenario III are 
the same, i.e., the swapping service, supply of DBs, demand of 
WBs in each BSS and operational plan in the BCS are the same 
under Scenario II and Scenario III. 
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Fig. 8.  Convergence curve of the BCS’ utility under Scenario III. 
 

As shown in Fig. 9 and Fig. 10, pW(t)∈[11.7906, 
23.2927]$/package, pD(t) ∈[0, 5.7906]$/package. These prices 
are within a feasible boundary, which means the EVs are more 
attractive than fuel vehicles while guaranteeing the benefit of 
the BCS and BSSs. 
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Fig. 9.  Prices for WBs under Scenario III. 
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Fig. 10.  Prices for DBs under Scenario III. 

The simulation results above have demonstrated the merits 
of the proposed method: balance the benefits among the BCS 
and BSSs while guaranteeing the efficiency and QoS, since the 
total costs under Scenario II and Scenario III are the same, 
which is shown in Table I. 

VIII. CONCLUSION 
In this paper, a closed-loop supply chain management 

system is proposed for a BSCS. In the BSCS, there is one BCS 
and multiple BSSs, where the BCS is managed by a DSO and 
the BSSs are owned and operated by other players. The network 
calculus is employed to model the arrival, departure and 
swapping services of EVs at a BSS. An M type CLSC is 
proposed to model the battery-swapping-charging 
characteristics between the BCS and BSSs. Furthermore, a SG 
based method is proposed to balance the benefits among the 
BCS and BSSs. In the SG, the BCS acts as the leader to 
maximize its utility by setting optimal prices and a operational 
day-ahead operational plan. BSSs act as followers to maximize 
their own benefits by optimally demanding WBs, supplying 
DBs and providing battery swapping services while 
guaranteeing the QoS. The existence of SEs for the proposed 
game is proved. A DE based hybrid algorithm is proposed to 
compute the SE for the SG. 

Based on real-world data and a step by step simulation, 
results have demonstrated the effectiveness of the proposed 
method, 1) improving the operational efficiency, 2)  
guaranteeing QoS and 3) balancing the benefits among the BCS 
and BSSs while maximizing the social welfare. 

As the SOC of the DBs might not be the same, further 
work should propose some classification methods [34]. The 
BCS can provide not only demand response but also ancillary 
services to power systems. Last but not least, network calculus 
has the potential to model the demand flexibility in the smart 
grid.  

In this paper, the batteries are assumed to be owned by the 
BCS and the logistic system is managed by the BCS. When the 
batteries are owned by the BSSs and the BSSs compete for the 
charging capacity in the BCS, a generalized Stackelberg game 
is a powerful tool to manage the competition among this BSCS. 
This will be our future work in managing the BSCS. 
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APPENDIX 

A. Proof of Proposition 1 
Proof: Considering the following potential function Φ(x) 

for game . 

 

2
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， ，

x x

(A1) 

Φ(x) meets condition (25). This completes the proof. 

B. Proof of Theorem 1 

Proof: According to proposition 1, game  is an exact 
potential game, when CD,0(t) ,CD,1(t) , CW,0(t) and CW,1(t) are 
given. Furthermore, an exact potential game admits at least one 
pure NE. Thus, game  has at least one pure NE. 

C. Proof of Proposition 2 

Proof: Consider the optimal solution x*=ΠN n=1 x* 
n ∈ of 

(26). For any n∈, if there exist any better strategies for yn, 
with respect to ΠNS m=1,n≠m x* 

m, i.e.,  
 * * * * *( , ) ( , ) ( , ) ( , ) 0,n n n n n n n n i− − − −Φ − Φ = − > ∃ ∈  y x x x y x x x  (C1) 

Consequently, x* is not the optimal solution of (26), which 
is contradictory to the premise. This completes the proof. 

D. Proof of Proposition 3 

Proof: Consider following x, where CD,0(t)=0, CD,1(t)=0, 
CW,0(t)=0, CW,1(t)=0, NA(t)=ND(t), PC(t)hc=ND(t)DE and 
PDC(t)=0,∀t≥0. x is a feasible solution to the BCS’s decision 
making problem (14)–(22), which completes the proof. 

E. Proof of Theorem 2 
Proof: as shown in proposition 2, the strategy space of the 

BCS is non-empty. Based on Theorem 1, the NE of game  
depends on the prices set by the BCS. Thus, the optimal 
solution of the BCS’s decision making problem is the SE of 
game Γ. This completes the proof. 
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