

±1100kV 特高压直流输电工程创新实践

刘泽洪

(国家电网有限公司, 北京市 西城区 100031)

Findings in Development of ±1100kV UHVDC Transmission

LIU Zehong

(State Grid Corporation of China, Xicheng District, Beijing 100031, China)

ABSTRACT: The Zhudong-Anhui ±1100kV UHVDC (ultra-high voltage direct current) transmission project is currently the world's "four most" project with the highest voltage level, the largest transmission capacity, the longest transmission distance, and the most advanced technology. It has realized fully enhancement in DC voltage, transmission capacity, and the voltages of connected AC systems, from the UHVDC pilot project, it has created many world records. This paper introduced the characteristics of the project. Feasible solutions were put forward in face of multiple problems such as main circuit scheme, DC filter design, overvoltage and insulation coordination, indoor DC yard selection, main equipment selection and research, control and protection, electromagnetic environment, etc. The innovation was elaborated and effectively verified in system commissioning. Since the commercial operation of the project, good engineering and social benefits have been achieved. This practice has greatly enhanced China's influence in the international world.

KEY WORDS: ±1100kV; UHVDC transmission; main circuit; over-voltage; insulation coordination; air gap; DC filter; electromagnetic environment; control and protection

摘要：准东-安徽±1100kV 特高压直流输电工程是目前世界上电压等级最高、输送容量最大、送电距离最远、技术水平最先进的“四最”工程，首次实现“直流电压、输送容量、交流网侧电压”的全面提升，创造了新的世界纪录。该文介绍了该工程特点，面临主接线选型、过电压与绝缘配合、换流站空气间隙及户内直流场选型、直流滤波器设计、主设备选型及研制、输电线路空气间隙、外绝缘和电磁环境等多方面的难题，首次创新性地提出可行的解决方案，阐述取得的创新成果，并在工程调试中进行有效验证。工程投产至今，取得了良好的工程和社会效益，工程实践大幅提升我国在国际电力工业界的影响力和话语权。

关键词：±1100kV；特高压直流输电技术；主接线；过电压；

绝缘配合；空气间隙；直流滤波器；电磁环境；控制保护

0 引言

自 1980 年以来，世界上已经实施并运行超过 100 个直流工程，巴西、印尼、韩国、美国、墨西哥等国都规划有高压直流输电工程。巴西美丽山±800kV 特高压输电二期工程已经投运，印度比斯瓦纳特恰里亚利—阿格拉±800kV 特高压直流工程已经建成，赖格尔—普加卢尔±800 千伏特高压直流输电线路正在建设。未来，特高压直流输电工程的建设将对解决巴西、印度等许多国家所面临的远距离输电问题有很大的优势^[1]。

本世纪以来，中国电力需求持续快速增长^[2]。全社会年用电量由 2000 年的 1346.6TW·h 增加到 2010 年的 4199.9TW·h，预计到 2020 年末，将达到 7512.7TW·h。总装机容量由 2000 年的 319GW 增加到 2010 年的 967GW，预计 2020 年末将达到 2082GW^[3]。其中，增加的用电需求量三分之二以上位于我国中南和东南地区。本世纪初，上述区域的火电发展迅速，但由于环境和资源限制，火电增速放缓或停止。自 2000 年以来，中国西南地区的水电装机容量已超过 120GW，火电装机容量约 100GW，华北和西北地区的风能和太阳能装机容量超过 200GW，能源与负荷逆向分布，供需相距超过 2500km，必须推进实施能源大范围优化配置方案^[4-6]。

特高压直流输电系统具有输送容量大、输电距离远等特点，能够点对点、大功率、远距离直接将电力送往负荷中心^[7-8]。特高压直流输电工程是国家重要的能源战略通道和骨干电网的重要组成部分。2010 年首批 2 个试点±800kV 特高压直流输电项目投入运行，国家电网公司向家坝—上海±800kV 特

高压直流输电示范工程额定电压为 ± 800 kV、4000A、6.4GW，输电距离为1917km^[9-10]。目前国家电网公司已建成10回 ± 800 kV特高压直流工程，额定输送功率主要是8GW，其中3个工程额定功率已到达10GW。与国内标准化的 ± 500 kV、3000A、3GW直流输电工程相比，特高压直流输电技术具有以下优势：1)每千瓦每公里造价由2.5元降低到1.5元；2)损耗率由每千公里的6.94%降低到2.79%；3)单位走廊宽度传输容量由120MW/m提高到235MW/m^[11-13]。

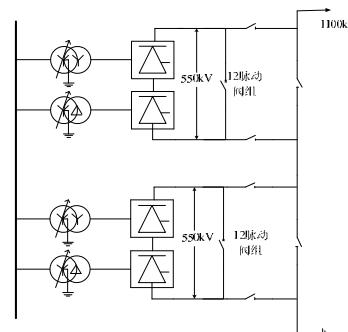
自2015年以来，新疆西北部开发了越来越多的坑口热电厂配套的风能和太阳能，输送至华东负荷地区传输距离达3000多公里，本地消纳不足，外送需求突出^[14-15]。超远距离输送决定了必须研发更高电压等级输电技术。 ± 1100 kV特高压直流输电工程经济输电距离可达到3000~5000km左右，每千公里最大损耗仅约1.75%，仅为 ± 800 kV输电工程的60%左右。

2019年9月，电压等级最高、输送容量最大、送电距离最远、技术水平最先进的准东—安徽 ± 1100 kV特高压直流输电工程已投入运行。本工程额定直流电压 ± 1100 kV，额定输送容量12000MW，线路全长达到3324km，成功实现了“直流电压、交流电压和输送容量”的全面提升，大幅提高了电力系统的资源优化配置能力，是国内外高压输电领域的重大技术跨越和重要里程碑。

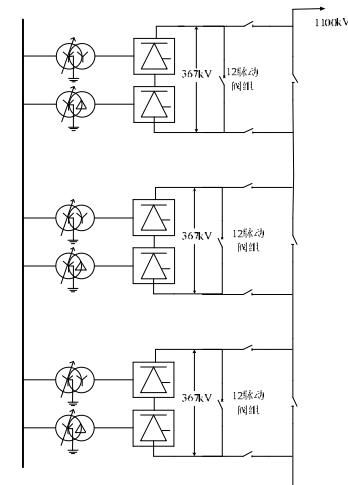
± 1100 kV特高压直流输电技术在世界范围内尚属首次应用，国际上没有相关成熟的技术经验可以借鉴，为准东—安徽 ± 1100 kV特高压直流输电工程所研发的 ± 1100 kV特高压直流输电技术和设备制造技术代表了世界直流输电的最高水平，汇集了绝缘、电磁、机械等诸多领域的尖端技术。立足自主创新，全面掌握 ± 1100 kV特高压输电系统分析、工程设计、设备制造、施工安装和调试试验核心技术，扩大了我国高压输电技术的国际领先优势。

本文在详细介绍该工程特点的基础上，综合论述了工程关键技术、主设备选型及研制、输电线路关键技术等方面的可行解决方案，阐述了取得的创新成果。

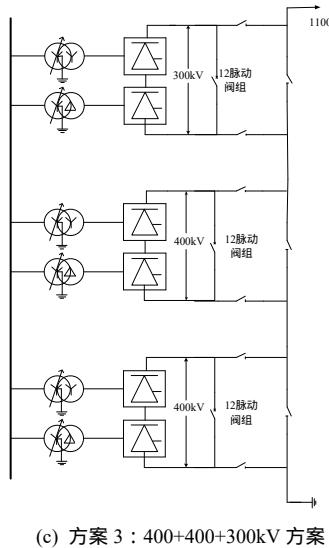
1 ± 1100 kV特高压直流工程关键技术研究


1.1 ± 1100 kV特高压直流工程主接线选型

作为 ± 1100 kV特高压直流工程系统成套设计的基础，主接线设计方案对于工程各个方面均有极其


重要的影响，如直流主设备研制、系统可靠性可用率、系统损耗、甚至是工程实施难度等^[16-17]。对于换流站主接线方案设计，主要包括确定换流站的接线方案以及相应的交流、直流设备具体配置方案，并应分别从技术方案可行性、工程可靠性、以及工程经济性等方面进行完整全面的研究论证，最终确定一套最优的换流站主接线技术方案。

综合考虑现有技术水平， ± 1100 kV特高压直流工程可选用每极2个12脉动换流器或3个12脉动换流器的型式，并采用换流器串联的接线方案。以 ± 800 kV特高压直流输电研究成果和工程实践经验为基础^[11]，初步考虑以下3种不同主接线型式，单端单极拓扑结构见图1，交流系统接入方案见表1。


确定主接线方案的关键因素包括换流变压器的设计制造和运输、主设备的复杂程度、控制保护的复杂程度、直流场的复杂程度等。其中，考虑换流变压器的设计制造和运输方面的因素，高端换流变压器的绝缘是设计时的主要限制条件，不论是2个12脉动换流器还是3个12脉动换流器的串联方案，换流变压器的设计制造难度和运输限制基本相当；考虑主设备、控制保护和直流场的复杂程度，3个

(a) 方案1：550+550kV方案

(b) 方案2：367+367+367kV方案

(c) 方案 3 : 400+400+300kV 方案

图 1 十二脉动换流器串联方案

Fig. 1 Scheme of 12-pulse converters in series connection

表 1 交流系统接入方案
Tab. 1 Scheme of AC system connection

方案	接入送端交流	接入受端交流
	系统电压等级/kV	系统电压等级/kV
方案 1	750	500/1000
方案 2	750	500/500/1000
方案 3	750	500/500/1000

12 脉动换流器串联方案的设备、控制保护和直流场的复杂程度较 2 个 12 脉动换流器串联方案更高，降低了工程可靠性。综合考虑以上因素，2 个 12 脉动换流器串联方案优于其他 2 方案^[17]。因此，推荐±1100kV 特高压直流工程主接线采用方案 1。

对于交流系统接入方案，若将工程受端完全接入 500kV 交流电网，其功率过大难以消纳，选择采用分层接入方式接入 500kV/1000kV 不同交流电压等级的交流电网，有利于直流输送的大功率分散消纳^[18]。因此，交流系统接入方案采用送端直接接入 750kV 交流电网，受端低端接入 1000kV 交流电网，受端高端接入 500kV 交流电网。

1.2 ±1100kV 特高压直流工程过电压与绝缘配合

在±800kV 特高压直流工程的基础上，±1100kV 特高压直流工程的电压等级比±800kV 工程提升了 37.5%。大幅的电压等级提升将导致设备绝缘水平的提升。若将±800kV 特高压直流工程绝缘配合依照线性外推法折算到±1100kV，高端换流变压器的绝缘水平将高达 2200kV，设备的研发难度大，经济代价极高，这为±1100kV 特高压直流工程的实施带来了极大的挑战^[19-21]。

针对±1100kV 特高压直流换流站，为了通过降

低过电压水平以减少设备制造难度和工程造价，提出图 2 所示的避雷器配置方案。与±800kV 特高压直流工程的避雷器配置方案相比^[22-23]，本方案主要有如下特点：1) 保留 MH、CBL2、ML 和 DB 等传统避雷器；2) 新增 AH 和 AL 避雷器以降低高端和低端 Yy 换流变压器的阀侧绝缘水平^[24]。

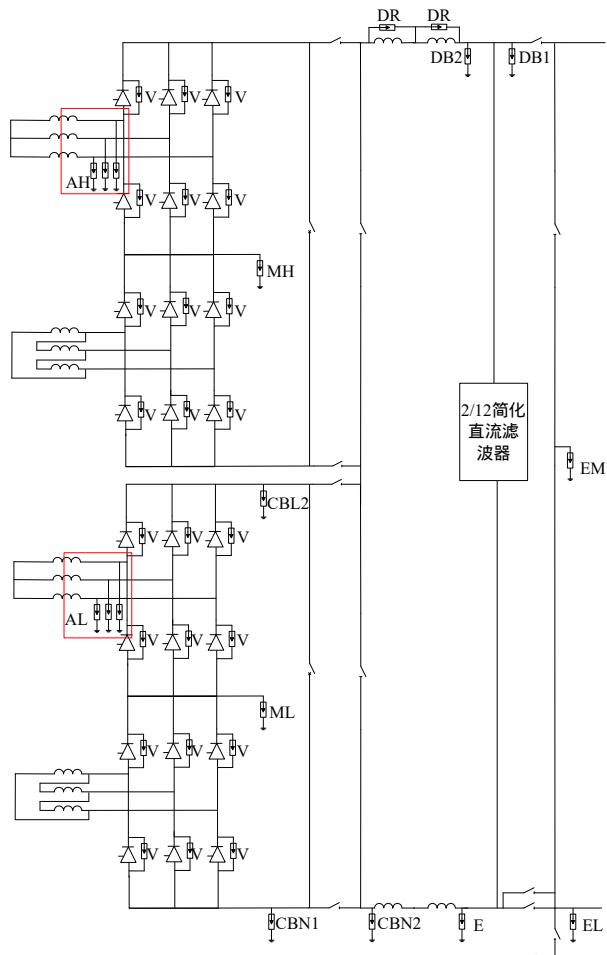


图 2 ±1100kV 避雷器配置方案

Fig. 2 ±1100kV arrester configuration

本方案与传统±800kV 特高压直流工程方案相比，显著降低了设备的研发难度和制造费用，成功将高端 Yy 换流变压器的阀侧操作绝缘水平降低了 6%，从 2214kV 减少到 2093kV；将低端 Yy 换流变压器的阀侧操作绝缘水平降低了 17%，从 1415 kV 减少到 1182kV；极线设备绝缘水平降低了 8%以上，从 2268kV 减少到 2100kV^[25]。

1.3 ±1100kV 特高压直流工程换流站空气间隙及户内直流场选型

±800kV 特高压直流工程中直流场极线设备对地距离的决定性因素是污秽外绝缘，而直流电压从±800kV 提升至±1100kV 后，外绝缘要求大幅提高，这使直流场设备设计和制造面临严峻挑战^[11]。

$\pm 1100\text{kV}$ 特高压直流工程中, 极线操作冲击耐受水平达到 2100kV , 直流场极线设备对地距离的决定性因素变为空气间隙。在空气间隙计算中应考虑绝缘距离和电场不均匀程度两方面。通过设置均压球或优化电极形状可以控制电极表面电场强度, 从而减小安全空气间隙的距离。设计时, 主要考虑采用传统的户外直流场方案和户内直流场方案。

若采用户外直流场方案, 需充分考虑淋雨、多柱支柱绝缘子并联、邻近设备支架和其他地面结构体、电极微小缺陷、绝缘子之间连接导体、以及绝缘裕度等因素对间隙系数的影响。因户外直流场中淋雨的影响, 很难通过优化电极形状减小安全空气间隙。设计时按照棒板间隙模型计算, 绝缘子将长达 18m , 极线设备对地距离大于 20m , 这对设备电气和机械性能带来挑战。

若采用户内直流场方案, 无需考虑淋雨和风荷载对设计方案的影响, 可主要通过优化户内直流场的电极形状和保持较高的电极形状系数, 从而减小同一操作冲击电压要求的最小空气间隙。采用户内直流场方案后, 其极线设备对地距离仅为 13m 左右。户外、户内直流场不同因素对间隙系数的影响见表 2。

表 2 户外、户内直流场不同因素对间隙系数的影响

Tab. 2 Different factors influence on the gap coefficient for outdoor or indoor DC yard

影响因素	户内场影响程度/%	户外场影响程度/%
淋雨	-5	0
多柱支柱绝缘子并联	-6	-6
邻近设备支架和其他地面结构体	-3	-3
绝缘子之间连接导体	+5	+5
绝缘裕度	+5	+5
综合影响因素	-4	1

综上所述, 相比户外直流场方案, 户内直流场方案对设备高度的要求大幅降低, 在设备研发难度、设备机械性能要求、设备运行条件等方面均有较大优势。另外, 综合考虑基建成本、设备成本和停电损失等因素, $\pm 1100\text{kV}$ 直流工程采用了户内直流场方案^[21]。

1.4 $\pm 1100\text{kV}$ 特高压直流工程简化直流滤波器设计

在架空输电线路的直流工程中, 直流滤波器用于抑制换流器在直流侧产生谐波对邻近通信线路产生干扰^[26-30], 通过为特定频率谐波提供低阻抗通路, 降低流入直流线路和接地极引线中的谐波分量^[31-36]。

虽然现有直流滤波器技术成熟, 但其造价高且占地面积大^[37], 其中, 高压电容器塔高度通常直接决定了整个直流场的高度。对于 $\pm 1100\text{kV}$ 直流工程,

工程电压等级高且输送容量大, 直流滤波器设计对整个主接线方案设计影响很大, $\pm 1100\text{kV}$ 工程直流滤波器体积庞大、造价高, 研制难度大, 传统直流滤波器的缺点不可忽视, 必须进行优化设计。

优化设计时, 从直流滤波器设计性能指标的角度考虑, 现在通信光缆已普遍使用^[38-41], 通信网络的综合屏蔽能力较以前有了大幅度提高^[42], 直流谐波对其干扰大大降低, 可放开对等效干扰电流 I_{eq} 的限制, 仅考虑限制出口处的谐波电压和防止直流线路谐振等因素, 可通过取消直流滤波器高频支路的方式简化直流滤波器设计, 从而有效降低设备总体造价^[38]。

通过综合分析各种极端条件组合以及考虑对通信的影响, 新方案将主电容由 $1.45\mu\text{F}$ 降低到 $0.6\mu\text{F}$, 大幅降低了直流滤波器的制造难度, 造价降低到原方案的 50%, 共节省投资超过 1 亿元。 $\pm 1100\text{kV}$ 工程简化直流滤波器型式和参数见表 3。

表 3 直流滤波器型式和参数

Tab. 3 DC filter parameters

元件	参数
分组类型	2/12
总滤波器组数	4
调谐频率/Hz	100/600
$C_1/\mu\text{F}$	0.6
L_1/mH	408.4
$C_2/\mu\text{F}$	0.267
L_2/mH	2719.7
R_1/Ω	4130
R_2/Ω	9560
品质因数(电感)	100
电容的 $\tan \delta(50\text{Hz} \text{ 下})$	0.0002

2 $\pm 1100\text{kV}$ 特高压直流工程主要设备选型与研制

相比于 $\pm 800\text{kV}$ 直流输电工程, $\pm 1100\text{kV}$ 直流输电工程的直流电压等级更高、输送容量更大, 且在接入交流系统方面, 送端直接接入 750kV 交流电网, 受端分层接入 $500/1000\text{kV}$ 交流电网。这样的主接线方案使得本工程设备研制难度极大, 不仅要克服电压和容量同时提升造成的电气应力大幅提升的难题, 又要克服设备尺寸增加带来的机械设计和运输的难题^[21]。 $\pm 1100\text{kV}$ 主设备在选型和研制方面实现了多项技术创新, 包括换流变压器、穿墙套管、换流阀、以及控制保护等方面的技术创新。

2.1 换流变压器选型与研制

与 $\pm 800\text{kV}/10\text{GW}$ 工程换流变压器相比,

$\pm 1100\text{kV}/12\text{GW}$ 工程换流变压器的容量提高 20%，阀侧绝缘水平提高 31%，铁芯重量提高 50%，全装长度提高 45%，全装重量提高 55%，其制造难度极大，在磁密、电密、出线装置、以及机械强度等多方面均面临极大的挑战^[21]。

1100kV 换流变压器阀侧和网侧耐压水平均大幅提升，换流容量和尺寸重量远超以往直流工程，绝缘设计、温升控制、机械设计协同优化难度大。换流变压器研制突破了一系列关键技术。严控换流变压器铁芯开窗高度，高端 $\geq 3.6\text{m}$ ，受端低端 $\geq 3.3\text{m}$ ；严控电密、磁密，电密 $\leq 3.2\text{A/mm}^2$ ，磁密 $\leq 1.75\text{T}$ ；严格绝缘电场设计校核，安全裕度至少 1.2 倍以上，且不低于以往特高压换流变压器；提高试验考核要求，阀侧套管冲击试验电压按绕组绝缘 1.1 倍，外施直流耐压时间从 120min 增加至 180min；采用强化磁屏蔽设计，降低损耗，线圈绝缘采用精细化油道，严格控制温升。

高端换流变压器阀侧套管从箱顶出线，有效利用套管长度，降低出线和器身设计难度，保证对地净距；加大油箱结构强度(箱底 40mm，箱壁 12mm，阀侧套管升高座区域油箱 $\geq 40\text{mm}$)，套管升高座设置加强型支撑架，减小加筋间距，提高机械裕度。

与 $\pm 800\text{kV}/10\text{GW}$ 工程换流变压器相比，新方案中的 $\pm 1100\text{kV}$ 换流变压器的电、磁、机械和热应力都无增加，设计裕度不低于 $\pm 800\text{kV}/10\text{GW}$ 分层接入直流工程。换流变压器外形见图 3。

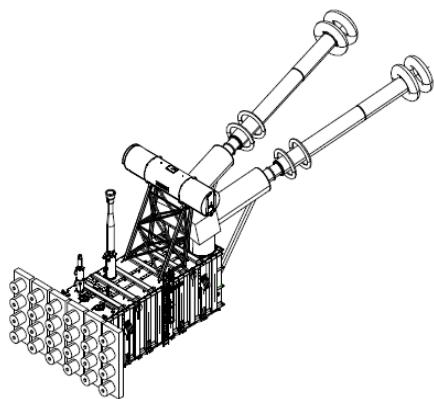


图 3 $\pm 1100\text{kV}$ 换流变压器外形

Fig. 3 $\pm 1100\text{kV}$ converter transformer

为解决换流变压器的运输问题，提出现场组装方案以确保设计裕度，最终送端采用升级改造换流站附近的昌吉变压器工厂，制造变压器，就近运输至现场的方式。受端采用水路+短途公路的方式，解决了换流变运输的难题^[20]。

2.2 1100kV 直流穿墙套管选型与研制

与 $\pm 800\text{kV}$ 直流穿墙套管相比， $\pm 1100\text{kV}$ 直流

穿墙套管的户内侧干弧距离提高 40%，由 6.7m 变为 9.3m；户外侧干弧距离提高 40%，由 8.9m 变为 12.3m；总长度增加 40%，由 18.8m 变为 26.2m；重量增加 87.5%，由 4t 变为 7.5t^[21]。

1100kV 直流穿墙套管需要在绝缘耐受水平显著提高的条件下，确保套管轴向、径向电场合理分布，并妥善解决端子受力、温升等引起的复合形变对内绝缘的影响。开展均压电极和净距取值协同设计，提高户外侧干弧距离(12.3m)；校核了内绝缘净距，较 800kV 穿墙套管增加约 44%；提出防 SF₆ 低温液化的系列措施：控制 SF₆ 压力($\leq 0.57\text{MPa}$)，保证户内场最低温度($\geq 10^\circ\text{C}$)，控制套管安装角度($\leq 5^\circ$)，辅以套管电加热装置；导电杆直径较 800kV 增加 19%，明确了温升、热胀冷缩、外部受力等条件下导电杆形变对内绝缘影响的试验验证方案。通过 863 项目，完全以国内技术研发了两种技术路线(纯 SF₆ 气体绝缘和环氧芯体 SF₆ 气体复合绝缘)的 1100kV 穿墙套管，并分别在两侧换流站投入使用。

2.3 1100kV 换流阀选型与研制

相比 $\pm 800\text{kV}$ 特高压直流工程换流阀， $\pm 1100\text{kV}$ 特高压直流工程换流阀晶闸管参数由 7.2kV/6250A 提升为 8.5kV/5500A；单阀晶闸管级数由 72 增加为 95。本工程中首次采用 8.5kV/5500A 的晶闸管，单片容量已接近 6 英寸晶闸管极限，比以往工程用的晶闸管容量更大；串联晶闸管级数最多达 95 片，导致内部电压显著增大，不均匀系数控制较为困难^[21]。

通过开展均压特性、屏蔽特性、冷却性能、放电特性等多项优化设计和试验工作，保证本工程的安全裕度与 $\pm 800\text{kV}$ 特高压工程相当。研发新规格 6 英寸晶闸管，控制关断时间、通态压降等参数，确保器件可靠，提高抵御换相失败能力；开展换流阀本体全域电场仿真，优化均压电极尺寸，改善内部杂散电容分布，控制阀塔不均匀系数；合理选取进阀水温，防止阀塔凝露。

2.4 1100kV 控制保护装置研制

$\pm 1100\text{kV}$ 特高压工程的超高压、超长输电距离、超长通信延时，使得工程的运行性能出现了新的特征、新现象，给控制保护装置的研制提出了挑战。

由于直流电压和线路长度增加，一极故障形成的电压快速变化，在另一极耦合形成电流快速上升，从而导致健全极换相失败^[43]。这是 1100kV 直

流线路长的特有问题，通过分析电压、电流突变的规律^[44]，提出一种引入电压、电流的突变量作为动作判据的换相失败预测方法。经试验验证，该方法可有效预测由极间互感引起的换相失败。

由于通信延时的增加，逆变侧单阀组退出运行时，整流侧无法快速跟踪，整流站因尚未收到逆变站的保护闭锁信号而未及时执行闭锁时序，瞬时电流上升很快，容易导致逆变侧健全极发生换相失败。经研究和仿真，通过优化切换电压测点和故障阀组退出时序，提出了一种可有效避免发生换相失败的新策略。

由于线路长度大幅增加，线路对地电容增大，建立电压的速度较慢，整流站单阀组闭锁隔离后，极线电压在恢复过程中，经仿真对比从移相结束到电压升到90%的时间， ± 1100 kV工程较线路长度为1200km左右的 ± 800 kV工程要增加40%以上，极易引起直流线路低电压保护误动作。因此，提出了一种基于阀组移相后加快角度恢复速率的整流站单阀组保护闭锁优化策略，经试验验证该策略可有效避免直流线路低电压保护误动。

3 ± 1100 kV 特高压直流工程输电线路关键技术研究

3.1 直流线路空气间隙

± 1100 kV 特高压直流线路与 ± 800 kV 直流线路相比^[45]，其过电压水平由1.70pu降低到1.58pu，操作冲击要求的最小间隙距离在海拔0m地区由5.10m增大到8.30m，增加了62.7%。若 ± 1100 kV特高压直流线路最大过电压也按1.70pu计算，则其海拔0m地区要求的间隙距离为9.50m，相比于 ± 800 kV线路，间隙距离增加了86.3%。因此， ± 1100 kV 线路的过电压水平按照实际的过电压水平考虑。为降低空气间隙对塔头的要求， ± 1100 kV特高压直流配置了线路避雷器以限制操作过电压。线路避雷器为单柱结构，采用无间隙金属氧化物避雷器(重约2.6t，长约19.7m)，安装于线路操作过电压水平较高的中间区段指定塔位的两极，能有效降低线路操作过电压。如图4所示。

在 ± 1100 kV 特高压直流线路安装线路避雷器后，能将全线最大操作过电压倍数从1.58pu限制到1.50pu(基准值1122kV)以下，最大操作过电压由1773kV降低到1683kV以下，操作过电压间隙可减小0.8m左右，从而缩小塔头尺寸，塔重减轻约2%，节约工程投资约4200万元。

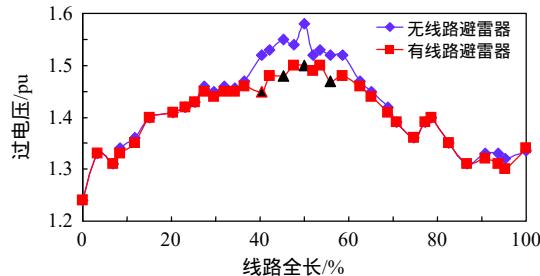


图4 直流线路过电压
Fig. 4 Overvoltage of DC line

3.2 直流线路外绝缘

与 ± 800 kV 输电线路相比， ± 1100 kV 线路经过路径更长，经过的环境涵盖了极干旱、干旱、半干旱、半湿润、湿润等5个典型气候区，污秽等划分差异化更为明显。基于污耐压法计算获得的污秽外绝缘配置与电压等级线性关系，同污秽等级和海拔高度条件下， ± 1100 kV 复合绝缘子结构高度比 ± 800 kV 线路复合绝缘子结构高度增大约37.6%。耐张串采用盘式绝缘子，基于污耐压法^[46]，同时考虑了不同环境下的积污特性、南北方降雨差异以及已有输电线路运行经验，计算获得的 ± 1100 kV 耐张绝缘子串长比 ± 800 kV 线路绝缘子串长增大37%~57%。

3.3 直流线路电磁环境

电压等级提高到 ± 1100 kV，给线路电磁环境研究和控制提出了前所未有的挑战。根据以往工程经验，可听噪声是主要瓶颈，因而须重点关注这一参数。世界上无 ± 1100 kV 直流线路工程先例，缺乏借鉴经验。确定合理的导线截面和分裂型式，对 ± 1100 kV 直流线路工程至关重要，为了控制 ± 1100 kV 直流线路的电磁环境，导线分裂数需增加到8或更多，已超出现有可听噪声等预测公式适用范围，若将现有公式的适用范围强行扩大并应用于 ± 1100 kV 工程，由此产生的误差可能导致工程投资过大或环境不达标。我们利用特高压直流试验基地电晕笼和试验线段，开展了 ± 1100 kV 电磁环境真型试验研究，得出了具有我国自主知识产权的适用于 ± 1100 kV 电压等级的线路可听噪声声压级预测公式，解决了确定线路导线型式时无有效预测方法的难题。为了将 ± 1100 kV 直流线路电磁环境控制在标准要求的范围内(线路下地面合成电场最大值小于30kV/m等)，提出了导线型式、极导线间距、极导线高度和线路走廊宽度等电磁环境控制措施方案： ± 1100 kV 直流线路可采用 $8 \times 1250\text{mm}^2$ 导线，极间距取22m，线路最小对地距离取25m。采用大截面导线，有利于降低工程损耗，提高电流和工程输电容量。 ± 1100 kV

直流线路电磁环境实测值低于 $\pm 800\text{kV}$ 线路水平。

4 主要经济指标

在计算工程主要经济指标时，综合考虑项目建设成本、运维成本和电能损耗等几个方面的因素。

根据 $\pm 1100\text{kV}$ 换流站主要设备技术特点测算设备价格及换流站工程造价， $\pm 1100\text{kV}$ 输电方案工程静态投资为 395 亿元。

根据现有跨区输电工程运维成本情况，按照固定资产投资的 2%综合考虑项目运维成本，工程年运维成本分别为 7.90 亿元。

根据系统计算， $\pm 1100\text{kV}$ 输电方案电能损耗率为 6.10%。按输电利用小时数 4500 考虑，年输电量为 5400 万 MWh ，年损失电量为 329.40 万 $\text{MW}\cdot\text{h}$ 。2015 年新疆标杆电价为 250 元/ $\text{MW}\cdot\text{h}$ ，电能损耗成本为 82350 万元。

按项目运行期 30 年考虑，财务基准收益率按国家发展改革委、建设部发布的《建设项目经济评价方法与参数》中送电电网项目的收益率 7%考虑。在综合考虑建设成本、运维成本、电能损耗几方面因素的情况下， $\pm 1100\text{kV}$ 输电工程的年总成本费用为 47.97 亿元。

5 结论

本文针对 $\pm 1100\text{kV}$ 直流工程带来的新挑战，在工程关键技术、主设备选型及研制、输电线路关键技术等方面创新性地提出了可行的解决方案，且得到了实践验证。

1) 通过分析不同主接线方式对系统可靠性、控制保护系统复杂程度、交流系统、设备制造成本、大件运输成本、换流站建设成本和直流系统运行等因素的影响，推荐 $\pm 1100\text{kV}$ 特高压直流工程采用双 12 脉动等压串联的主接线方式。

2) 提出了一种有效限制谐波电压和降低主电容值的简化直流滤波器设计方案，大大降低了设备造价；提出了一种新的绝缘配合方案，极线设备操作绝缘水平降低了 8%以上。

3) 在研究确定直流场极线设备对地距离要求的基础上，除显著改善电极形状外，对户内外直流场进行了分析比较，推荐 $\pm 1100\text{kV}$ 特高压直流工程采用户内直流场。

4) 针对 $\pm 1100\text{kV}$ 直流工程电压、容量双提升给主设备研制带来的挑战，给出了切实可行的解决方案，成功研制全系列关键设备。

5) 提出 $\pm 1100\text{kV}$ 工程直流线路外绝缘配合、过电压抑制、电磁环境控制全系列关键技术，形成了 $\pm 1100\text{kV}$ 工程线路设计标准。

6) 通过系列研发进步和强力工程管控，将工程总静态投资降低至 395 亿元。输电价格低至 0.08 元/ $\text{kW}\cdot\text{h}$ ，具有极大的竞争力。

随着全球经济和社会的发展，远距离、大容量输电的需求将更加明显，特高压直流输电的应用将更为广泛。 $\pm 1100\text{kV}$ 特高压直流输电工程中取得的创新成果为未来特高压直流输电工程的发展提供了借鉴和参考。

特高压直流输电深刻影响着电网形态，交直流系统之间的相互影响更为复杂，送受端之间的耦合日趋紧密，电网安全稳定运行面临新的技术挑战。未来特高压直流输电技术发展的重点方向有如下几点：一是提升交流系统支撑能力；二是提升特高压直流性能；三是实现全网综合控制和源网荷协同控制；四是推进特高压直流受端应用柔性直流技术发展。

参考文献

- [1] 谷琛，范建斌，李鹏，等. 特高压直流输电国际标准化研究进展[J]. 中国标准化，2020(S1)：291-296.
Gu Chen, Fan Jianbin, Li Peng, et al. Research on the development of international standardization on UHV DC transmission[J]. China Standardization, 2020(S1) : 291-296(in Chinese).
- [2] 刘振亚. 特高压交直流电网[M]. 北京：中国电力出版社，2013.
Liu Zhenya. Ultra-high voltage AC & DC grid[M]. Beijing : China Electric Power Press, 2013(in Chinese).
- [3] 刘振亚，舒印彪，张文亮，等. 直流输电系统电压等级序列研究[J]. 中国电机工程学报，2008，28(10)：1-8.
Liu Zhenya, Shu Yinbiao, Zhang Wenliang, et al. Study on voltage class series for HVDC transmission system[J]. Proceedings of the CSEE, 2008, 28(10) :1-8(in Chinese).
- [4] 舒印彪，张文亮. 特高压输电若干关键技术研究[J]. 中国电机工程学报，2007，27(31)：1-6.
Shu Yinbiao, Zhang Wenliang. Research of key technologies for UHV transmission[J]. Proceedings of the CSEE, 2007, 27(31) :1-6(in Chinese).
- [5] 张文亮，于永清，李光范，等. 特高压直流技术研究[J]. 中国电机工程学报，2007，27(22)：1-7.
Zhang Wenliang, Yu Yongqing, Li Guangfan, et al. Researches on UHVDC technology[J]. Proceedings of the CSEE, 2007, 27(22) :1-7(in Chinese).
- [6] 刘振亚，张启平. 国家电网发展模式研究[J]. 中国电机

- 工程学报, 2013, 33(7): 2-10.
- Liu Zhenya, Zhang Qiping. Study on the development mode of national power grid of China[J]. Proceedings of the CSEE, 2013, 33(7): 2-10(in Chinese).
- [7] Huang Daochun, Shu Yinbiao, Ruan Jiangjun, et al. Ultra high voltage transmission in China: developments, current status and future prospects[J]. Proceedings of the IEEE, 2009, 97(3): 555-583.
- [8] 梁旭明, 张平, 常勇. 高压直流输电技术现状及发展前景[J]. 电网技术, 2012, 36(4): 1-9.
- Liang Xuming, Zhang Ping, Chang Yong. Recent advances in high-voltage direct-current power transmission and its developing potential[J]. Power System Technology, 2012, 36(4): 1-9(in Chinese).
- [9] 国家电网公司. 向家坝-上海 ± 800 kV 特高压直流输电示范工程-设备研制卷[M]. 中国电力出版社, 2014.
- State Grid Corporation of China. Xiangjiaba-Shanghai ± 800 kV UHVDC demonstration project-equipment development volume[M]. China Electric Power Press, 2014(in Chinese).
- [10] 北京网联直流工程技术有限公司. 向家坝-上海 ± 800 kV 特高压直流输电工程功能规范书[R]. 2006.
- [11] 舒印彪, 刘泽洪, 高理迎, 等. ± 800 kV 6400 MW 特高压直流输电工程设计[J]. 电网技术, 2006, 30(1): 1-8.
- Shu Yinbiao, Liu Zehong, Gao Liying, et al. A preliminary exploration for design of ± 800 kV UHVDC project with transmission capacity of 6400 MW[J]. Power System Technology, 2006, 30(1): 1-8(in Chinese).
- [12] 刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005.
- Liu Zhenya. Ultra-high voltage grid[M]. Beijing: China Economic Publishing House, 2005: 15-20(in Chinese).
- [13] 赵婉君. 高压直流输电工程技术[M]. 中国电力出版社, 2004.
- Zhao Wanjun. HVDC transmission engineering technology[M]. China Electric Power Press, 2004(in Chinese).
- [14] 舒印彪. 我国特高压输电的发展与实践[J]. 中国电力, 2005, 38(11): 1-8.
- Shu Yinbiao. Development and execution of UHV power transmission in China[J]. Electric Power, 2005, 38(11): 1-8(in Chinese).
- [15] 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J]. 中国电机工程学报, 2016, 36(19): 5103-5110.
- Liu Zhenya. Research of global clean energy resource and power grid interconnection[J]. Proceedings of the CSEE, 2016, 36(19): 5103-5110(in Chinese).
- [16] 李立涅. 特高压直流输电的技术特点与工程应用[J]. 电力设备, 2006, 7(3): 1-6.
- Li Licheng. Technical characteristics and engineering applications of UHVDC power transmission[J]. Electrical Equipment, 2006, 7(3): 1-6(in Chinese).
- [17] 刘泽洪, 余军, 郭贤珊, 等. ± 1100 kV 特高压直流工程主接线与主回路参数研究[J]. 电网技术, 2018, 42(4): 1015-1022.
- Liu Zehong, Yu Jun, Guo Xianshan, et al. Study on main connection line and main circuit parameters of ± 1100 kV UHVDC[J]. Power System Technology, 2018, 42(4): 1015-1022(in Chinese).
- [18] 刘振亚, 秦晓辉, 赵良, 等. 特高压直流分层接入方式在多馈入直流电网的应用研究[J]. 中国电机工程学报, 2013, 33(10): 2-7.
- Liu Zhenya, Qin Xiaohui, Zhao Liang, et al. Study on the application of UHVDC hierarchical connection mode to multi-infeed HVDC system[J]. Proceedings of the CSEE, 2013, 33(10): 2-7(in Chinese).
- [19] 赵峰, 马为民. 并联换流器特高压直流输电系统可靠性研究[J]. 电力建设, 2016, 37(9): 86-92.
- Zhao Zheng, Ma Weimin. Reliability research for UHVDC transmission system with parallel converters[J]. Electric Power Construction, 2016, 37(9): 86-92(in Chinese).
- [20] 郭贤珊, 付颖. ± 1100 kV 特高压直流工程换流变最优短路阻抗[J]. 全球能源互联网, 2018, 1(4): 496-503.
- Guo Xianshan, Fu Ying. Study on optimal short-circuit impedance of converter transformer for ± 1100 kV UHVDC [J]. Journal of Global Energy Interconnection, 2018, 1(4): 496-503(in Chinese).
- [21] 刘泽洪, 郭贤珊, 乐波, 等. ± 1100 kV/12000MW 特高压直流输电工程成套设计研究[J]. 电网技术, 2018, 42(4): 1023-1031.
- Liu Zehong, Guo Xianshan, Yue Bo, et al. System design of ± 1100 kV/12000MW UHVDC transmission project[J]. Power System Technology, 2018, 42(4): 1023-1031(in Chinese).
- [22] 中华人民共和国电力工业部. DL/T 605—1996 高压直流换流站绝缘配合导则[S]. 北京: 中国电力出版社, 1997.
- Ministry of Power Industry of the PRC. DL/T 605—1996 Guide for insulation coordination of HVDC convertor stations[S]. Beijing: China Electric Power Press, 1997(in Chinese).
- [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 311.3—2007 绝缘配合 第3部分: 高压直流换流站绝缘配合程序[S]. 北京: 中国标准出版社, 2017.
- General Administration of quality supervision, inspection and Quarantine of the people's Republic of China, National Standardization Administration of China. GB/T 311.3—2007 Insulation co-ordination—Part 3 :Procedures

- for high-voltage direct current(HVDC) converter stations [S]. Beijing: China Standard Press, 2017(in Chinese).
- [24] 郭贤珊, 赵峰, 付颖, 等. 昌吉—古泉±1100 kV 特高压直流工程绝缘配合方案[J]. 高电压技术, 2018, 44(4): 1343-1350.
- Guo Xianshan, Zhao Zheng, Fu Ying, et al. Insulation coordination scheme for ±1100 kV UHVDC project from Changji to Guquan[J]. High Voltage Engineering, 2018, 44(4): 1343-1350(in Chinese).
- [25] Zhang Zece, Hou Yushen, Guo Jingli, et al. Research on arrester protection scheme of converter station for ± 800 kV UHV DC project from Jiuquan to Hunan[J]. Journal of Electrical Engineering, 2015, 10(12): 1-6.
- [26] 陈东, 张凌, 熊万洲. 特高压直流滤波器滤波标准初步研究[J]. 高电压技术, 2006, 32(9): 125-128, 139.
- Chen Dong, Zhang Ling, Xiong Wanzhou. Discussion on DC filter performance criteria for UHVDC project[J]. High Voltage Engineering, 2006, 32(9): 125-128, 139(in Chinese).
- [27] 郑劲, 张小武, 孙中明, 等. 特高压直流输电工程的谐波限制标准及滤波器的设计[J]. 电网技术, 2007, 31(13): 1-6.
- Zheng Jin, Zhang Xiaowu, Sun Zhongming, et al. Harmonic current restriction standard and filter design for UHVDC project[J]. Power System Technology, 2007, 31(13): 1-6(in Chinese).
- [28] IEEE. IEEE Std 1124-2003 IEEE guide for analysis and definition of DC side harmonic performance of HVDC transmission systems[S]. Washington: IEEE, 2010.
- [29] IEC PAS 62001 Guide to the specification and design evaluation of a.c. filters for HVDC systems[S]. 2004.
- [30] 刘振亚. 特高压直流输电技术研究成果专集-2005 年 [M]. 北京: 中国电力出版社, 2006.
- Liu Zhenya. Research achievements of UHVDC transmission technology-2005[M]. Beijing: China Electric Power Press, 2006(in Chinese).
- [31] 田邑安, 张万荣, 行鹏, 等. ±800kV 特高压直流工程直流滤波器设计研究[J]. 高压电器, 2012, 48(10): 73-77.
- Tian Yian, Zhang Wanrong, Xing Peng, et al. Study on the DC filter design for ±800 kV UHVDC transmission projects[J]. High Voltage Apparatus, 2012, 48(10): 73-75(in Chinese).
- [32] 张万荣, 黄莹, 苟锐锋, 等. ±800 kV 特高压直流工程直流滤波器设计关键问题研究[J]. 南方电网技术, 2009, 3(6): 35-39.
- Zhang Wanrong, Huang Ying, Gou Ruifeng, et al. Study on the key issues of DC filter design for ±800 kV UHVDC transmission Projects[J]. Southern Power System Technology, 2009, 3(6): 35-39(in Chinese).
- [33] Hepworth J K, Klewe R C, Tozer B A. Impulse breakdown of large sphere-plane gaps[J]. Proceedings of the Institution of Electrical Engineers, 1972, 119(12): 1751-1753.
- [34] Schneider H M, Turner F J. Switching-surge flashover characteristics of long sphere-plane gaps for UHV station design[J]. IEEE Transactions on Power Apparatus and Systems, 1975, 94(2): 551-560.
- [35] 刘海峰, 徐政, 金丽成. 直流输电线路等效干扰电流限值的研究[J]. 高电压技术, 2001, 27(4): 16-17, 37.
- Liu Haifeng, Xu Zheng, Jin Licheng. Study on equivalent disturbing current limitation criteria for HVDC transmission lines[J]. High Voltage Engineering, 2001, 27(4): 16-17, 37(in Chinese).
- [36] 夏道止, 沈赞埙. 高压直流输电系统的谐波分析及滤波 [M]. 北京: 水利电力出版社, 1994.
- Xia Daozhi, Shen Zanxun. Harmonic analysis and filtering of HVDC transmission system[M]. Beijing: Water Conservancy and Electric Power Press, 1994(in Chinese).
- [37] 张帆, 苟锐锋, 任军辉. 取消直流滤波器对±800kV 直流输电系统谐波水平的影响[J]. 电力电容器与无功补偿, 2016, 37(2): 1-4, 10.
- Zhang Fan, Gou Ruifeng, Ren Junhui. Influence of Cancelling DC Filter on Harmonic Level of ±800 kV HVDC System[J]. Power Capacitor & Reactive Power Compensation, 2016, 37(2): 1-4, 10(in Chinese).
- [38] 刘泽洪, 余军, 郭贤珊, 等. ±1100kV 特高压直流工程简化直流滤波器研究[J]. 中国电机工程学报, 2017, 37(21): 6347-6352.
- Liu Zehong, Yu Jun, Guo Xianshan, et al. Research of ±1100kV UHVDC project simplified DC filter[J]. Proceedings of the CSEE, 2017, 37(21): 6347-6352(in Chinese).
- [39] 陈雅璁. 高压直流输电线路对通信线路电磁影响的分析 [J]. 电信技术, 2007(8): 76-78.
- Chen Yacong. The analysis of communication lines electromagnetism influence by HVDC transmission lines[J]. Telecommunications Technology, 2007(8): 76-78(in Chinese).
- [40] Rizk F A M. Influence of rain on switching impulse sparkover voltage of large-electrode air gaps[J]. IEEE Transactions on Power Apparatus and Systems, 1976, 95(4): 1394-1402.
- [41] Chen She, Zeng Rong, Zhuang Chijie, et al. Switching impulse breakdown characteristics of large sphere-plane air gaps compared with rod-plane air gap[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 839-844.
- [42] 周沛洪, 修木洪, 聂定珍. 同廊道架设交直流线路的相互影响[J]. 高电压技术, 2003, 29(9): 5-7, 28.
- Zhou Peihong, Xiu Muhong, Nie Dingzhen. The influence

- between AC and DC transmission line built in same corridor[J]. High Voltage Engineering, 2003, 29(9):5-7, 28(in Chinese).
- [43] 张云晓, 卢亚军, 蒲莹, 等. ± 1100 kV特高压直流工程控制保护方案研究[C]//全球能源互联网发展合作组织、山东大学. 超/特高压直流输电技术会议论文集. 济南: 全球能源互联网发展合作组织、山东大学《全球能源互联网》编辑部, 2018: 6.
- [44] 陶瑜. 直流输电控制保护系统分析及应用[M]. 北京: 中国电力出版社, 2015.
- Tao Yu. Analysis and application of DC transmission control and protection system [M]. Beijing :China Electric Power Press, 2015(in Chinese).
- [45] 丁玉剑, 律方成, 李鹏, 等. ± 1100 kV特高压直流杆塔间隙放电特性[J]. 电网技术, 2018, 42(4): 1032-1038. Ding Yujian, Lv Fangcheng, Li Peng, et al. Discharge characteristics of ± 1100 kV UHV DC tower air gaps[J]. Power System Technology, 2018, 42(4): 1032-1038(in Chinese).
- [46] 中华人民共和国国家市场监督管理总局, 中国国家标准管理委员会. GB/T 26218.4-2019 污秽条件下使用的高压绝缘子的选择和尺寸确定 第4部分: 直流系统用绝缘子[S]. 北京: 中国标准出版社, 2019.
- State Administration of Market Supervision and Administration of the People's Republic of China, National Standardization Administration of China. GB/T 26218.4-2019 Selection and dimensioning of high-voltage insulators intended for use in polluted conditions—Part 4: Insulators for d.c.systems[S]. Beijing : China Standard Press(in Chinese).

刘泽洪

在线出版日期: 2020-10-27。

收稿日期: 2020-08-03。

作者简介: 刘泽洪(1961), 男, 教授级高级工程师, 研究方向为特高压输电工程等, zehong-liu@sgcc.com.cn。

(责任编辑 邱丽萍)

Findings in Development of ± 1100 kV UHVDC Transmission

LIU Zehong

(State Grid Corporation of China)

KEY WORDS : ± 1100 kV; UHVDC transmission; main circuit; over-voltage; insulation coordination; air gap; DC filter; electromagnetic environment; control and protection

The Zhudong-Anhui ± 1100 kV UHVDC (ultra-high voltage direct current) transmission project is currently the world's "four most" project with the highest voltage level, the largest transmission capacity, the longest transmission distance, and the most advanced technology. It has realized fully enhancement in DC voltage, transmission capacity, and the voltage of connected AC system, which has created a new world record. This paper introduces the characteristics of the project. Feasible solutions were put forward in face of multiple problems such as main circuit scheme, DC filter design, overvoltage and insulation coordination, indoor DC yard selection, main equipment selection and research, control and protection, electromagnetic environment, etc. The innovation was elaborated and effectively verified in system commissioning. Since the commercial operation of the project, good engineering and social benefits have been achieved. This practice has greatly enhanced China's influence in the international world.

This paper is composed of three parts.

1) The key technologies of ± 1100 kV UHVDC project system design include main circuit scheme, overvoltage and insulation coordination, air gaps and indoor DC field scheme, and simplified DC filter design. By analyzing the influence of different main wiring methods on system reliability, control and protection system complexity, AC system, equipment manufacturing cost, bulk transportation cost, converter station construction cost, DC system operation and other factors, ± 1100 kV UHV is recommended. The DC project adopts the main circuit scheme of double 12-pulse series connection with equal voltage. Simplified DC filter design scheme that effectively limits the harmonic

voltage and reduces the main capacitance value is proposed, which greatly reduces the equipment cost. A new insulation coordination scheme is proposed, and the operating insulation level of the polar line equipment is reduced by 8% the above. Based on the research and determination of the distance requirements of the DC field pole line equipment to the ground, the indoor and outdoor DC fields are analyzed and compared, and it is recommended that the ± 1100 kV UHVDC project adopts the user's internal DC field.

2) Main equipment of selection and development includes converter transformer, DC wall bushing, converter valve, and control and protection system. In response to the challenges brought by the increase of ± 1100 kV DC engineering voltage and capacity to the development of main equipment, a practical solution was given, and a full range of key equipment was successfully developed.

3) Key technologies of power transmission line include air gap, insulation, and electromagnetic environment of DC power transmission line.

A full range of key technologies for the insulation coordination, overvoltage suppression, and electromagnetic environment control of the ± 1100 kV DC line have been proposed, and the ± 1100 kV DC line design standard has been formed.

With the development of the global economy and society, the demand for long-distance, large-capacity power transmission will become more obvious, and the application of UHVDC power transmission will become more extensive. The innovative results achieved in the ± 1100 kV UHVDC transmission project are good examples for the future development of UHVDC transmission project.