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Multi-task Learning
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Abstract—Increase in permeability of renewable energy
sources (RESs) leads to the prominent problem of voltage stability
in power system, so it is urgent to have a system strength eval-
uation method with both accuracy and practicability to control
its access scale within a reasonable range. Therefore, a hybrid
intelligence enhancement method is proposed by combining the
advantages of mechanism method and data driven method. First,
calculation of critical short circuit ratio (CSCR) is set as the direc-
tion of intelligent enhancement by taking the multiple renewable
energy station short circuit ratio as the quantitative indicator.
Then, the construction process of CSCR dataset is proposed, and
a batch simulation program of samples is developed accordingly,
which provides a data basis for subsequent research. Finally, a
multi-task learning model based on progressive layered extraction
is used to simultaneously predict CSCR of each RESs connection
point, which significantly reduces evaluation error caused by
weak links. Predictive performance and anti-noise performance
of the proposed method are verified on the CEPRI-FS-102 bus
system, which provides strong technical support for real-time
monitoring of system strength.

Index Terms—Critical short circuit ratio, hybrid intelligence
enhancement, multi-task learning, system strength.

I. INTRODUCTION

W ITH rapid development of renewable energy sources
(RESs), mainly wind power and photovoltaic, stable

operation and planning of power system face new chal-
lenges [1], [2]. On one hand, reduction in the proportion
of conventional generation leads to a weakening of power
system strength, which in turn limits the RESs integration
scale [3]. On the other hand, as the proportion of RESs in
system increases, the scenario of RESs integration into a
weak AC system frequently occurs, leading to wide-frequency
oscillation, transient overvoltage and other problems [4], [5].
Therefore, a system strength evaluation (SSE) method, which
does not rely on off-line simulation and only uses response
information, is urgently needed to ensure stable operation of
the power system and solve limitation of RESs integration
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scale [6]–[8].
In order to effectively quantify impact of RESs integration

scale on system strength, in [9], a multiple renewable energy
station short circuit ratio (MRSCR) is constructed based on
the physical nature of short circuit ratio (SCR). MRSCR fully
considers interaction between the RESs plants and reactive
power influence of the RESs power generation equipment, so
it has good characterization ability. In the setting of stability
criterion, the critical value of MRSCR, namely critical short
circuit ratio (CSCR), is obtained by calculating typical grid
parameters. SSE is accomplished by comparing MRSCR and
CSCR. However, CSCR changes dynamically under different
scenarios, and the CSCR set by combining engineering experi-
ence with simulation, can only roughly characterize the critical
state of the system. Therefore, accuracy of SSE method based
on MRSCR is at a low level, which cannot meet current power
grid assessment needs. In fact, most SCR indicators suitable
for RESs use the above method to set the corresponding
CSCR, such as weighted short circuit ratio (WSCR) [10],
composite short circuit ratio (C-SCR) [11], equivalent circuit-
based short circuit ratio (ECSCR) [12].

In addition to the above method, some studies construct
SCR with a clear threshold according to voltage stability
conditions, to provide a basis for calculation of CSCR. Ref-
erence [13] constructed SCR-S based on ratio of system
short-circuit capacity and RESs grid-connected capacity, and
proposed calculation expression of CSCR based on power
transmission limit. In [14], site-dependent short circuit ratio
(SDSCR) was defined, and the characteristic value of static
voltage critical stability was derived as CSCR. In [15], a
generalized short circuit ratio (GSCR) is defined from a small
disturbance stability Angle, and it is proposed when Hopf
bifurcation occurs in the system, GSCR is CSCR. The above
calculation methods have strict mechanism support, but there
are many assumptions in the derivation process. Once all
assumptions are unshackled, its usefulness may decline. In
addition, calculation parameters required by some methods
are difficult to be measured in real time. CSCR of the above
SCR indices are listed in Table I, where Sac and Smax are
short circuit capacity and maximum transmission capacity,
respectively. Calculation of CSCR in Table I relies on manual
experience or assumptions, is not a response-based method,
and assessment accuracy cannot meet requirements.

In recent years, due to the breakthrough development of
deep learning (DL), application of DL to analyze power system
stability has once again become a research hotspot [16]–
[20]. This research directly uses the DL model to identify
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TABLE I
HYPER-PARAMETER SETTING OF MTL MODEL

Indicator name Numerical setting System strength Attribute
MRSCR [9] CSCR < 2 weak system empirical value
WSCR [10] CSCR < 1.5 weak system empirical value
C-SCR [11] CSCR < 1.5 weak system empirical value
ECSCR [12] CSCR < 3 weak system empirical value
SCR-S [13] CSCR = Sac/Smax critical stability theoretical value
SDSCR [14] CSCR = 1 critical stability theoretical value
GSCR [15] eigenvalue = 0 critical stability theoretical value

the stable form of the system, which has advantages of fast
identification speed and flexible modeling methods. Obviously,
introducing this research paradigm into the field of SSE
can not only simplify the evaluation process, but also avoid
defects of the CSCR calculation method. However, limited by
shortcomings of DL in terms of generalization performance
and interpretability, relying solely on DL models to solve
stability problems will face security risks. Therefore, this
paper focuses on the mechanism method, and regards DL
as an auxiliary decision-making tool, thus forming a hybrid
intelligence enhancement method. First, considering MRSCR
has strong characterization ability, this indicator is selected as
the research object of intelligence enhancement. By analyzing
the evaluation process of MRSCR, it is determined calculation
of CSCR is the link to be enhanced. Then, according to the
physical meaning of CSCR, the CSCR dataset corresponding
to MRSCR is constructed. Finally, considering the large num-
ber of RESs connection points, a multi-task learning (MTL)
model based on progressive layered extraction (PLE) is used to
mine the mapping relationship between power flow and CSCR
of each RESs connection point. Effectiveness of the proposed
method are demonstrated on the CEPRI-FS-102 bus system,
and compared with various DL models and empirical values.

The rest of this paper is organized as follows. In Section II,
the principle of MRSCR and construction process of CSCR
dataset are introduced. In Section III, necessity of multi-task
learning is analyzed and principle of PLE are introduced. In
Section IV, effectiveness of the proposed method is demon-
strated. In Section V, conclusions are given.

II. SCR SELECTION AND CSCR DATASET CONSTRUCTION

A. Definition and Expression of MRSCR

Assuming current injected into the AC system by the bus
of each RESs connection point is İ1, İ2, · · · , İn, then bus
voltage U̇RE1, U̇RE2, · · · , U̇REn of each connection point can
be expressed as:

U̇RE1

U̇RE2

...
U̇REn

 =


Żeq11 Żeq12 · · · Żeq1n

Żeq21 Żeq22 · · · Żeq2n

...
...

. . .
...

Żeqn1 Żeqn1 · · · Żeqnn



İ1
İ2
...
İn

 (1)

where Żeqij is element in row i and column j of equivalent
impedance matrix of the AC network at RESs connection
point. MRSCR is defined as relative magnitude between sys-
tem nominal voltage and RESs generated voltage, as follows:

MRSCRi =
|U̇Ni|
|U̇REi|

=
|U̇Ni|∣∣∣Żeqiiİi +
∑n

j=1,j 6=i Żeqij İj

∣∣∣
=

∣∣∣∣∣ U̇∗i U̇Ni

Żeqii

∣∣∣∣∣
/ ∣∣∣∣∣∣ṠREi +

n∑
j=1,j 6=i

ŻeqijU̇
∗
i

ŻeqiiU̇∗j
ṠREj

∣∣∣∣∣∣
(2)

where U̇Ni is bus nominal voltage of i-th RESs connection
point; U̇REi is voltage generated by RESs at i-th bus; ṠREi is
apparent power injected by bus of i-th RESs connection point.

In order to consider engineering application value, index
selects CSCR of connection point of RESs power generation
equipment as 1.5 according to calculation results of typical
power grid parameters. However, the empirical value obtained
by qualitative analysis is difficult to accurately represent
critical state of the system, so it is necessary to realize the
quantitative analysis of CSCR by intelligent enhancement, so
as to improve adaptability of this indicator.

B. Construction Process of CSCR Dataset

System strength requires explicit stability criteria to be
assessed. In analysis of static voltage stability, it is considered
the power system reaches transmission power limit as the crit-
ical state of the system strength, that is, stability criterion [21].
In this state, the MRSCR calculated by equation (2) is CSCR.
CSCR is the dividing line between whether a power flow has a
solution, and it can establish the relationship between MRSCR
and static voltage stability.

According to the above physical significance, construction
steps of CSCR dataset is as follows:

1) Total power of RESs is randomly divided into active
power of each station, and Initial power flow state (IPFS) of
system is obtained.

2) In order to obtain maximum available power (MAP) of
each RESs connection point, continuation power flow (CPF)
method is repeatedly used to trace power-voltage curve. First,
select an RESs power plant and make its active power increase
according to constant power factor, in which surplus power is
absorbed by the generator of the slack bus. Then, steady-state
behavior of the system under the power variation is tracked
until MAP of the corresponding connection points is obtained.

3) CSCR of each connection point is calculated according to
the MAP as the prediction label, and electrical features under
current IPFS are extracted as input features.

4) According to the required number of samples, repeat
steps 1–3 to obtain a large number of point sets of static
voltage stability critical point. Each point set constitutes the
boundary of static voltage stability domain corresponding to
the connection point. To facilitate storage of the dataset, input
features and prediction labels of all samples are combined in
a two-dimensional array.

Considering the ways in which active power of multiple
RESs power plants increase simultaneously are complex and
varied, step 2 obtains a relatively conservative CSCR by
simulating active power increase of a single plant. To facilitate
understanding of the above process, it is drawn in Fig. 1, where
M is the number of features, N is the number of samples,
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(a)N

Fig. 1. Construction process and data structure of CSCR dataset.

and K is the number of connection points. (a)1–(a)N , each
plane represents the stable domain boundary corresponding to
different RESs connection points.

III. INTELLIGENT ENHANCEMENT METHOD BASED
ON MTL

A. Principle of MTL

Typical learning mode of DL is single-task learning (STL),
which uses a specific model to solve a single task. For
complex multi-tasks, it can also be decomposed into simple
and independent single tasks to solve. When STL is used
for CSCR prediction tasks, the training process is shown in
Fig. 2(a).

(a)

(b)

Fig. 2. Comparison between single-task learning and multi-task learning. (a)
Single-task learning. (b) Multi-task learning.

Figure 2(a) shows STL needs to train T specific models for
T RESs connection points. However, a power system with high
penetration of RESs has a large number of RESs connection

points, which will lead to increased training complexity and
maintenance cost of the model. In addition, according to
electrical distance, there is a strong coupling relationship
between maps of different union points, while STL ignores
correlation information between each union point. Therefore,
STL is difficult to apply to CSCR prediction task, and MTL
needs to be used to solve the above problems.

MTL is a learning mode proposed for multi-task scenarios.
Its essence is to compute multiple tasks in parallel by a general
model with a sharing mechanism. According to feature sharing
mode, MTL is divided into hard parameter sharing and soft
parameter sharing. The former is multiple tasks use the same
feature sharing layer, while the latter is each task has dedicated
feature parameters, which need to be regularized to achieve the
effect of sharing information. Due to the large number of RESs
connection points, hard parameter sharing is simpler in terms
of model structure and feature parameters. Therefore, hard
parameter sharing is selected for CSCR prediction task, and
the training process is shown in Fig. 2(b). The general model
in Fig. 2(b) can obtain prediction results of all connection
points at one time, and its loss function is as follows:

min

[
K∑

k=1

Êk(ws, wk)

]
(3)

where Êk(ws, wk) = 1
N

∑N
i=1E(ft(xi, ws, wk), yki ) is the

prediction error of k-th connection point; K is the number
of RESs connection points; xi is the i-th sample; yki is the
true value of k-th connection point in i-th sample; ws and wk

are shared parameters and task parameters among different
tasks, respectively. f is the prediction function. Equation (3)
shows MTL helps the model to extract better abstract features
by mining shared information, thus improving prediction ac-
curacy of each task.

B. Principle of PLE

PLE is a MTL model based on hard parameter sharing
mechanism, consisting of shared network, expert network, gat-
ing network, and tower network [22]. Taking two connection
points as an example, the model structure of PLE is shown
in Fig. 3, where the lower corner mark of the sub-network



44 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 1, JANUARY 2024

Fig. 3. The model structure of PLE.

represents the number of tasks, and the upper corner mark
represents the number of networks or layers.

Workflow of the PLE in Fig. 3 is as follows:
1) According to number of RESs connection points, the

extraction network layer composed of shared network and
different expert networks is constructed. Both sharing network
and expert network consist of multiple sub-networks. Deeper

feature extraction can be realized by setting up multi-layer
extraction networks.

2) Input features are extracted by sharing network and
expert network first. Then, the gating network selectively fuses
the extracted features. The gating network is a single-layer
feedforward network, and its structure is shown in the middle
part of Fig. 3. V in Fig. 3 represents input vector, and gating
network output formula of task k is:

gk(x) = wk(x)Sk(x) (4)

where x is input, wk(x) is weighting function of k-th task:

wk(x) = Softmax(wk
gx) (5)

where wk
g is parameter matrix. Sk(x) is a selected matrix

consisting of output of the shared network and expert network
for task k:

Sk(x) =
[
(Ek

1 )T, · · · , (Ek
n)T, (Sk

1 )T, · · · , (Sk
n)T
]T

(6)

3) Output of gating network enters each tower network
to obtain the predicted output of each connection point.
Calculation method of the tower network is:

yk(x) = tk(gk(x)) (7)

where tk is tower network of task k.
Compared with traditional MTL model, PLE explicitly

separates the sharing network from the expert network, so the
expert network of different tasks can concentrate on learning
different knowledge. Combined with dynamic fusion of gated
networks, the tower network effectively handles balance be-
tween dependencies of different connection points.

C. Process of Intelligent Enhancement Method

According to the timing relationship, the process of the

START

Set multiple initial power flow states

Extract electrical
features

Obtain all critical
power flow states

CSCR
dataset

Calculate CSCR

Training set Testing set

Set hyperparameters Test

Train Training
model

Adjust
hyper-parameters

N YAchieve optimal
performance?

Offline stage

Data-driven Knowledge-driven

Real-time measurement data

Prediction
model

MRSCR

CSCR of each
connection point

MRSCR of each
connection point

Stability
criterion

Quantitative
index

Stability margin of
system strength

END

Intelligence enhancement

Online stage

Fig. 4. The evaluation process of the proposed method.
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proposed method is divided into offline stage and online stage,
as shown in Fig. 4.

Offline stage: First, the same number of IPFS are randomly
generated according to required number of samples, and
corresponding critical power flow state is obtained through
CPF. Electrical features of IPFS and the CSCR of each
connection point are used to construct the dataset. Then,
the dataset is divided into a training set and a testing set,
and hyper-parameters such as number of tasks, number of
sub-networks and the network structure are set. Finally, the
mapping relationship between electrical feature and CSCR
is constructed using PLE on the training set. According to
test results of the testing set, hyper-parameters are adjusted
repeatedly until evaluation performance is optimal.

Online stage: First, real-time measurement data is input
into the prediction model, and the model quickly predicts the
CSCR of each connection point under the current state accord-
ing to learned mapping relationship. Meanwhile, MRSCR of
each connection point is calculated according to (2). Then,
margin analysis of system strength can be completed by
calculating the difference between MRSCR and CSCR.

Figure 4 shows the proposed method completes SSE by
calculating quantitative indicator and prediction stability crite-
rion, which has the dual driving characteristics of knowledge
and data. The method uses the complementary relationship be-
tween mechanism method and data-driven method to achieve
intelligent enhancement, to improve practicability and accu-
racy of SSE method.

IV. CASE STUDY

Power system simulation software is PSD-BPA and deep
learning framework is Pytorch. Computer is configured with
an AMD Ryzen 7 5800 8-core 3.40 GHz CPU, 16 GB RAM
and NVIDIA GeForce RTX3060.

A. CSCR Dataset

In this experiment, CEPRI-FS-102 bus system is used as
test system, and its topology is shown in Fig. 5. The system

has 102 buses in total, of which active power of RESs is
900 MW (all located at sending end), and active power
of conventional power generation is 3700 MW. The system
contains 12 RESs power plants, including 6 wind power plants
and 6 photovoltaic power plants.

In order to realize the construction process of CSCR dataset,
a batch simulation program based on Python and PSD-BPA
is developed. The program has the following functions: 1)
Randomly generate a specified number of IPFSs, eliminate the
flow does not converge; 2) Under each IPFS, CPF is carried
out for each RESs connection point successively, and MAP
is automatically located; 3) Extract required electrical features
and calculate prediction label.

For test system, 10,000 IPFS are randomly generated by
the program, and voltage amplitudes and phase angles of all
buses, active power and reactive power of lines are extracted as
input features. Meanwhile, to improve difficulty of prediction
tasks, the CSCR of the RESs device connection point is used
as the prediction label to increase number of tasks. In addition,
fluctuation range of active power of W2 and other RESs
plants is set as 0–200 MW and 10–200 MW, respectively,
to increase difference of label distribution. After dataset is
generated according to the above settings, distribution of labels
is counted, as shown in Fig. 6. CSCR of each RESs connection
point in Fig. 6 changes dynamically, and fluctuation range is
between 1.2 and 2.3. Obviously, severe fluctuation makes it
difficult for experience value 1.5 to adapt to various scenarios,
which leads to large errors in evaluation results. In addition,
from distribution of CSCR, it can be seen there are both
similarities and differences among all connection points. In
particular, as shown in Fig. 6(b), distribution of peaks occurs
between 1.2 and 1.3. Therefore, this dataset is suitable for ver-
ifying feasibility of intelligence enhancement and rationality
of applying MTL.

B. Performance Comparison of Different Models

In order to verify effectiveness of PLE, multiple models
are selected for comparison in this experiment. In terms of
STL, deep neural network (DNN), decision tree (DT), gradient
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Fig. 5. CEPRI-FS-102 bus system topology.
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W3. (j) Connection point of W4. (k) Connection point of W5. (l) Connection point of W6.

boosting decision tree (GBDT) and support vector machine
(SVM) as comparison model. Parameters of the above model
are set as follows: he network structure of DNN is 512-
256-128-64-1; maximum depth of DT and GBDT is 10, and
number of GBDT base models is 50. Penalty factor C and
nuclear parameter γ of SVM are 200 and 1. In terms of
MTL, Bottom-Shared, One-gate Mixture-of-Experts (OMOE)
and Multi-gate Mixture-of-Experts (MMOE) are selected as
comparison models. Bottom-Shared consists only of shared
networks and tower networks. On the basis of Bottom-Shared,
OMOE and MMOE transform shared network into multiple
expert networks and introduce gated units to capture task
differences [21]. Hyper-parameters of the MTL model are
shown in Table II.

TABLE II
HYPER-PARAMETER SETTING OF MTL MODEL

Hyper-parameter Hyper-parameter value
Number of tasks 12
Optimizer Adam
Loss function MSE
Structure of expert network 512-256
Structure of shared network 512-256
Structure of tower network 128-64-1
Dropout 0.3
Number of sub-networks 4
Initial learning rate 0.001
Training epoch 50
Activation function RELU

In order to comprehensively evaluate prediction perfor-
mance of each model, mean absolute error (MAE), root
mean Square Error (RMSE), mean absolute percentage error
(MAPE) and R-square (R2) were selected as error indicators.
The calculation equation of the above indicators is as follows:

MAE =
1

N

N∑
i=1

|(yi − ŷi)| (8)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (9)

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (10)

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(11)

where yi is true value, ŷi is predicted value, and ȳi is average
value of yi.

In addition to the above Settings, 80% of the CSCR dataset
is divided into training set and the remaining 20% into testing
set. Average of 20 experimental results is taken as final result,
as shown in Fig. 7.

It can be seen from Fig. 7, SVM and DT have simple struc-
tures and relatively low prediction accuracy. GBDT and DNN
have achieved better prediction results by virtue of ensemble
learning and strong feature extraction capability, respectively.
In terms of MTL, Bottom-shared, OMOE and MMOE fall
into a seesaw phenomenon due to the complex correlation
among 12 connection points, that is, prediction accuracy of
some junction points is improved at the expense of prediction
accuracy of other connection points. This phenomenon leads
to a large difference in prediction accuracy among connection
points. Compared with other MTL models, PLE has a higher
balance among all connection points, and its error indicators
are in a good state. This is because PLE explicitly separates
shared experts from task-specific expert networks to avoid
interference with invalid parameters. Second, PLE introduces
multi-level expert and gated network to extract more abstract
features and realize more efficient knowledge transfer between
complex associative tasks. In addition, to further compare
applicability of MTL, time cost of each method is calculated,
as shown in Table III.
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Fig. 7. Comparison of evaluation performance of each model. (a) MAE. (b) RMSE. (c) MAPE. (d) R2.

TABLE III
TIME COST OF EACH MODEL

Mode Model Training time (s) Prediction time (s)
Offline simulation CPF — 7.46

STL

DT 10.63 0.00000437
SVM 41.43 0.000312
GBDT 246.79 0.0000324
DNN 263.84 0.000319

MTL

Bottom-shared 107.98 0.0000929
OMOE 132.36 0.000119
MMOE 149.55 0.000123
PLE 188.29 0.000156

As shown in Table III, offline simulation requires repeated
use of CPF, so its prediction time cannot meet the requirements
of real-time evaluation. For STL, DT and SVM as individual
learners have a good time advantage. Training time of GBDT
and DNN is relatively high due to accumulation mode and
complex structure of the models. Once scale of RESs continues
to expand, training time of both will continue to increase. It
is obvious that MTL model is superior to STL model and off-
line simulation in terms of prediction accuracy and time cost.
In particular, PLE has the advantages of prediction accuracy
and time, so it has stronger engineering application value.

C. Effect Analysis of Intelligent Enhancement

In order to show the effect of intelligence enhancement,
this experiment analyzes errors before and after enhancement
and adverse consequences caused by errors. First, taking
connection point W1 power plant as an example, the training
set and testing set are arranged in ascending order according
to real value of the sample, and corresponding predicted value
and empirical value are drawn in Fig. 8.

Figure 8 shows the predicted value of PLE is close to
real value, while empirical value is far from real value of
most samples. Obviously, empirical value is the main factor
leading to evaluation error, so it is reasonable to apply DL
technology to enhance calculation link of CSCR. In order to
further quantify the promotion degree of predicted value to
SSE, the following indicators are defined:{

Ec = 1
Nc

∑Nc

i=1 ŷi − yi, ŷi > yi

Er = 1
Nr

∑Nr

i=1 yi − ŷi, ŷi < yi
(12)

where Nc is number of samples with predicted or empirical
value greater than true value in the dataset, and Nr is number
of samples with predicted or empirical value less than true
value in the dataset. If predicted or empirical value is greater
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Fig. 8. Visual comparison of predicted and empirical value. (a) Training set.
(b) Testing set.

than true value, it will be difficult for the RESs connection
point to reach maximum transmission capacity, so Ec is a
conservative error. On the contrary, the RESs access scale
may exceed the MAP of the connection point, which leads
to difficulty of maintaining the system voltage within normal
range and the phenomenon of static voltage instability, so Er

is radical error. Four scenarios are defined based on Ec and
Er, as shown in Table IV.

TABLE IV
ERROR INDICATORS OF DIFFERENT SCENARIOS

Scenario Dataset Error indicator
C1 Testing set Ec

C2 Training set Ec

C3 Testing set Er

C4 Training set Er

According to Table IV, errors of predicted and empirical
values in different scenarios are quantified, as shown in Fig. 9.

Both Ec and Er of empirical values in Fig. 9 are at a high
level, which indicates the SSE method based on MRSCR can-
not accurately evaluate system strength. More importantly, Er

is much larger than Ec, and empirical value is not conducive
to stable operation of the system. In order to comprehen-
sively quantify the enhancement effect, average error of 12
connection points in testing set is calculated. Compared with
empirical value, mean values of Er and Ec after enhancement
decreased by 85.41% and 56.77%, respectively. This proves
accuracy of SSE method can be effectively improved through
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Fig. 9. Error comparison between predicted value and empirical value.

intelligent enhancement, especially significant reduction of Er

is helpful to ensure stable operation of power system.

D. Validity Analysis of PLE

In order to reveal the working principle of PLE, this exper-
iment analyzes utilization of expert network, that is, weight
assigned by gated network to each expert sub-network. The
difference of this weight represents the freedom of choosing
shared feature in tower network. MMOE with 4 expert sub-
networks is compared with PLE with 2 expert sub-networks
and 2 shared sub-networks. Output vector of the gated network
was extracted and weight distribution is obtained using the
Softmax function as shown in Fig. 10, where the sum of the
weights of sub-networks is 1, and column height and error
bar represent mean and standard deviation of the weights,
respectively.

Results in Fig. 10 show PLE groups expert sub-networks
with significantly different weights, while MMOE groups
expert sub-networks with similar weights. This shows that
PLE can provide strongly correlated shared features for tower
networks by showing that separating shared and expert net-
works. Structure of PLE implements a more effective adaptive
weighting method, which is helpful for mining the coupling
relationship between union points, and is more suitable for
synchronization prediction task of CSCR.

E. Anti-noise Performance Test of PLE

In order to verify anti-noise performance of PLE, this
experiment sets up two kinds of noise for testing. First is to add
3% to 5% of measured value to test set as standard deviation
of uniform noise, which is called type I noise. Second type of
noise is burst noise, called type I noise. At any given sampling
instant, there is a 20% probability the measured value will be
noisy. This noise reflects random mutations in measurements
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and is more realistic than uniform noise [24]. Type II noise is
to add 3% to 5% of measured value as standard deviation of
uniform noise to test set with a certain probability. 2 types of
noise are added as follows:

Xnoise =

{
Xori × (1 +K × θ), Type I
Xori × (1 +K × P × θ), Type II

(13)

where Xori is the original dataset, Xnoise is the dataset
containing noise, K is noise level, θ is Gaussian white noise
whose mean value is 1 and variance is 0. A random number
where P is 0 or 1, there is an 80% chance P is 0 and a 20%
chance P is 1.

Considering randomness of the generated noise, the experi-
ment was repeated 10 times and mean value was taken as final
result. Test results of type I noise and type II noise are shown
in Table V.

TABLE V
EVALUATION RESULTS OF THE MODEL UNDER NOISE

Noise type Noise level MAE RMSE MAPE R2
– – 0.0577 0.0743 0.0331 0.7662

Type I
±3% 0.0622 0.0829 0.0350 0.7140
±4% 0.0644 0.0858 0.0362 0.6935
±5% 0.0667 0.0887 0.0376 0.6717

Type II
±3% 0.0571 0.0812 0.0321 0.7273
±4% 0.0591 0.0839 0.0333 0.7095
±5% 0.0602 0.0855 0.0339 0.6988

As can be seen from Table V, MAE, RMSE, MAPE and R2
only decrease by 0.009, 0.0144, 0.0045 and 0.0945 even if K
of type I noise is ±5%. Under type II noise, performance of

the model is relatively robust due to its randomness and small
probability of addition. Under two types of noise, PLE shows
good anti-noise performance and has high practical application
value. This is due to the fact that the parameters of the model
are shared by multiple tasks, which reduces over-fitting of the
model to a specific task, thus enhancing anti-noise ability of
the model.

V. CONCLUSION

This paper proposes an SSE method based on MTL and
MRSCR, and tests it on the CEPRI-FS-102 bus system.
Conclusions are as follows:

1) Analyze evaluation process of SSE method based on
MRSCR, and determine the process to be enhanced is the
calculation of CSCR. On this basis, the simulation process
of CSCR dataset is proposed, and a corresponding simulation
program is developed.

2) According to characteristics of the prediction task, MTL
mode is used to complete synchronous prediction of CSCR of
multiple RESs connection points, and training cost and evalua-
tion time are greatly reduced. The used PLE can extract shared
information and difference information between tasks, and has
good predictive performance and anti-noise performance.

3) Compared with empirical value, the proposed method
can accurately characterize critical state of the system and
control evaluation error within a minimal range. Compared
with theoretical values and off-line simulation, this method
takes real-time measurement as the input characteristic and
reduces evaluation time to millisecond level. Different from
traditional research paradigms, this approach uses DL model
to improve accuracy and practicability of the mechanism
approach, and achieves a deep integration of data-driven and
knowledge-driven.

This paper preliminarily explores the possibility of applying
DL technology to SSE field in a way of intelligent enhance-
ment, and provides new ideas for related research in this
field. Future work will further analyze other weaknesses of
the mechanism approach and verify applicability of hybrid
intelligence enhancement approach.
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