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 
Abstract—In order to understand energy consumption and 

assist precise load prediction, it is essential to identify the 
variation of gas consumption in response to temperature change. 
In this paper, the relationship is identified by using Empirical 
Mode Decomposition (EMD) and linear regression analysis 
together with outlier detection. EMD is a data processing tool that 
could divide original data into several Intrinsic Mode Functions 
(IMFs) with a lower frequency residue. By applying data mining 
technique-Mahalanobis distance measurement, some outliers 
from real-time gas consumption and temperature data points are 
detected, which are excluded from data sets to ensure accuracy. 
Correlation coefficients between gas load and temperature are 
calculated and denoted as an important index to quantify their 
relationship through regression analysis. By comparing such 
index on real-time data and EMD processed data, the 
weather-sensitive part of gas demand is identified. The methods 
are implemented on a local energy system and results reveal that 
the results after EMD present a higher level of correlation 
between gas load and temperature, compared to the results from 
directly using real-time gas load and temperature data. 
 

Index Terms— Correlation coefficient, load consumption, 
weather effect, Empirical Mode Decomposition, linear regression, 
outlier detection.  
 

I. INTRODUCTION 

N the modern energy industry, the operational decisions 
such as power generation, power distribution, tariff design, 

and load dispatch always change in response to end-use load 
consumption [1]. Most traditional demand response schemes 
only focus on electricity consumption but ignore gas 
consumption [2]. However, natural gas also plays an important 
role our in energy landscape, for example in 2014, natural gas 
takes account for 63% of UK domestic energy consumption 
while electricity is only proportionating 25% [3]. Multi-carrier 
energy systems concept has become popular in recent years [4, 
5]. Into the future, customers would be willing to interact with 
both natural gas and electricity networks, enabled by new 
technologies, such as Combined Heat and Power (CHP). For 
example, a UK University has utilised two gas-powered CHPs 
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since 2011, which could generate roughly 2000MWh 
electricity, equivalent to 8% of the university’s total annual 
electricity consumption. Additionally, extra heating is also 
provided by the CHPs for several academic buildings and a 
swimming pool. By optimal managing the CHP, it can help 
save £70k and 350 tonnes of CO2 emission annually. In reality, 
the consumption of natural gas for heating or powering CHP is 
mainly affected by temperature.  

Figure 1 visually shows the relationship between daily 
average temperature against the daily total gas consumption of 
a local system in 2011. Obviously, gas consumption changes 
dramatically with temperature: when the temperature drops 
continuously, gas consumption rises accordingly. This figure 
implies that temperature has huge impact on gas consumption. 

 

 
 

Fig. 1.  Daily average temperature against daily total gas load of local system  
 

By identifying the correlation between energy consumption 
and temperature, a forecasted changing trend represented by 
linear regression function of gas load might be drawn according 
to available weather data [6-9]. Therefore, more accurate load 
analysis and forecasting could be achieved, which enable 
optimal combined demand response opportunities.  

Conventional gas consumption analysis does not take 
weather condition into account which could cause a high degree 
of inaccuracy, particularly considering that it has a great impact 
on gas consumption. In recent years, research starts to explore 
the relationship between weather and gas load [10-12], but 
there are some drawbacks:  
 Firstly, most literature uses typical load data or maximum 

load with typical temperature or maximum temperature as 
input for mathematical modelling [13], resulting in a peak 
load demand estimation. Though it could help peak 
demand forecasting, it cannot reflect the load 
consumption apart from peak demand [14-16].  
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 Secondly, some papers focus on hourly analysis to 
identify load demand sensitive with temperature [17-20]. 
However, load demand is more volatile where human 
activity is inevitable such as special events. Such events 
may alter the way that people use energy, which is 
especially obvious in a short period. Consequently, lower 
accuracy degree of correlation is obtained [21].  

 Thirdly, a few previous literature takes many types of 
customers including industrial and commercial users into 
consideration and conclude a general and comprehensive 
analysis of weather sensitivity. Nevertheless, no 
mathematical model is given as energy usage of the 
different type of customers varies dramatically [22].  

In order to overcome the disadvantages of previous research, 
in this paper, regression is applied for data processing and 
quantifying the correlation between temperature and gas 
consumption in a mathematical way. Here, the temperature is 
the only considered weather element as it directly reflects gas 
consumption for heating. This work is achieved based on daily 
analysis on gas consumption and temperature. As daily analysis 
reflects smoother changes of gas consumption, it can eliminate 
the uncertainty in the hourly-scale analysis. Gas load in 
different time period, for example during weekday and 
weekend and during day and night in change with temperature 
are also explored to reflect influences from human activities. 
An outlier detection technique calculating the Mahalanobis 
distance (M-distance) is utilised to ensure the accuracy of used 
data, where some gas and temperature data points diverging 
greatly from the normal data set is defined as outliers. 
M-distance is widely used in cluster analysis and classification 
for detecting outliers, especially in the development of linear 
regression models. The real-time annual gas consumption of a 
real local energy system is used to demonstrate the analysis 
technique to directly identify the correlations. 

Compared with previous work in [13-22], this paper has the 
following merits. Firstly, all gas load and temperature data are 
real data recorded, thus the results by using the proposed 
method can truly reflect gas and temperature correlations in the 
local energy system. By using the proposed method of EMD 
and linear regression considering various conditions under 
different time resolutions, a comprehensive correlation study 
between gas load and temperature is carried out. Secondly, the 
accuracy of the results is validated by using a whole-year data 
and compared with other studiesss by conducting the study with 
data collected from only a single day or specific days. 
Therefore the results in this paper are more representative. 
Many scenarios also consider different seasons and different 
human activities in weekdays and weekends. It could be 
concluded that this paper conducts a range of scenarios and 
cases to explore the the correlation between gas load and 
temperature. This paper provides strong evidence to prove 
temperature weight significantly in gas load consumption and 
potential prediction.   

The remainder of the paper is organized as follows: In 
Section II, outlier detection, EMD process, and linear 
regression are introduced. Results and analysis of case studies 
are in Section III. A brief conclusion is given in Section IV.  

II. METHODOLOGY 

This section introduces the method to quantify the 
correlation between gas demand and temperature, including 
outlier analysis, Empirical Mode Decomposition (EMD), and 
regression. Outlier analysis is used to detect faulty or error data 
due to measurement mistakes or data absence. Mahalanobis 
distance is applied for outlier identification. Empirical Mode 
Decomposition is a process to decompose both gas and 
temperature data into several intrinsic mode functions. Results 
from this process will be used to study the correlation between 
gas and temperature, and determine the correlation by using 
linear regression analysis.   

A. Outlier detection 

In statistics, an outlier of a set of data is defined as data points 
that diverge greatly from the other data points [23]. This 
concept is introduced in this study as there might be some 
temperature and load data that diverges greatly from other 
general patterns. Such outliers will be detected and excluded in 
linear regression analysis.  By using statistical methods [24] for 
outlier detection, those data points that locate relatively far 
from the whole data set distribution could be identified.  

The Mahalanobis distance [25] is a very popular criterion in 
outlier identification, which defines the distance from 
observation point to the major data set distribution [26]. For  
given n  observation points from a p -dimensional data set, 

by denoting the sample covariance matrix by nV  and the mean 

of the sample data by nx ,  nV could be calculated as [27]: 
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where iM  is the Mahalanobis distance for each multivariate 

data i=1,2,…,n, and 
1

nV
 is the inverse matrix of nV . 

 The Mahalanobis distance for each data point changes 
according to the size of the whole data set. Usually, there are no 
specific thresholds to define an outlier. Outliers are quantified 
as those observation points with relatively large Mahalanobis 
distance compared with other data points [28]. The 
implementation of this outlier detection is demonstrated in 
Case B in the case study section. It is primarily suitable for 
low-dimensional data [29]. In this paper, the original gas and 
temperature data pairs of half-hour temporal resolution are used. 
Sometimes there are data outliers due to mismeasurement or 
data absence of either gas load or temperature. Thus, it is 
necessary to discover and exclude data outliers before EMD 
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and linear regression applied. Without identifying and 
removing bad data, the analysis of the following steps and the 
accuracy of results can be jeopardized. 

B. Empirical Mode Decomposition (EMD) 

EMD is used for nonlinear and non-stable signal processing. 
EMD process is adaptive and highly efficient. In this study, by 
using EMD, gas consumption and temperature data pairs can be 
decomposed into several Intrinsic Mode Functions (IMFs) and 
a residue with lower frequency. All IMFs must satisfy two 
conditions:: i) during the whole data set, the number of the 
extrema and the number of the zero crossing point differ no 
more than one; ii) the average value of the upper envelope and 
the lower envelope must equal zero. IMFs are usually generated 
by the following three steps: 
 By applying cubic spline to calculate the mean value of 

the upper and lower envelopes of the original signal s(t), 
represented by m(t). 

 To obtain the difference between s(t) and m(t), h(t): 
h(t) = s(t) – m(t)              (3) 

 To treat h(t) as new s(t) and rerun previous two steps until 
the new function meets stopping criteria that the mean 
value of the upper and lower envelopes of h(t) is nearly 
zero. Otherwise rerun the first two steps. When EMD 
process is finished, the last function is regarded as residue. 

C. Linear Regression 

In this case, after using EMD, a set of IMFs for both gas load 
and temperature will be obtained respectively. Each of IMF 
from gas load will be in pair with the corresponding IMF from 
temperature to calculate the correlation coefficient introduced 
in Section In this study, linear regression technique is applied as 
it could directly present the correlation between gas 
consumption and temperature with a numerical index. Such 
index can simply reflect the level of how load corresponds to 
the temperature change. Linear regression is widely used to 
analyse the relationship between two quantitative variables by 
measuring two discriminative coefficients: correlation 
coefficient rxy and coefficient of determination R2.  

The correlation coefficient rxy is introduced to show the 
degree and direction of the linear relationship between two 
variables, in this paper, which are gas consumption and 
temperature. It is generally defined as the covariance of two 
variables divided by the product of separate standard deviations 
[30], represented by: 
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where, cov (X,Y) is the covariance and σX σY are the standard 
deviations of X  and Y  respectively. 

In general, the population mean μX and μY are unknown. In 
order to calculate the sample correlation coefficient rxy, the 
unbiased estimation of covariance is used: 
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Where, xi and yi are samples from the population X and Y, and 

x  and y  are the sample means. 

Typically, rxy ranges between +1 and -1. Table I shows the 
level of correlation values of rxy. 

 
TABLE I 

LEVEL OF CORRELATIONS OF RXY 

| xyr | range Demonstration 

1 Perfectly positive or negative linear correlation 
0 No correlation 

(0,0.3] Barely linear correlation 
(0.3,0.5] Weakly linear correlation 
(0.5,0.7] Moderately linear correlation 
(0.7,0.1) Strongly linear correlation 

 
Another discriminative coefficient is the coefficient of 

determination denoted as R2. It indicates the degree of scatter 
points related to the regression line [31] 

tot

res

SS

SS
R  12          (6) 

where, SSres is the sum of squares of residual and SStot  is the 
total sum of squares. 

In this case, R2 can be calculated as square of correlation 
coefficient rxy 

22
xyrR                (7) 

In general, the closer of R2 to 1, the higher degree of sample 
scatter point is close to the trend line, indicating better data 
fitting from the statistical regression functions. In this study, as 
there are several IMFs pairs from gas load and temperature 
after using EMD, several correlation coefficients will also be 
obtained. The final correlation coefficient is defined as the 
average value of correlation coefficient from each IMF pair. 

D. Implementation 

The major steps are as follows and the flowchart 
methodology is shown in Fig.2. 

 

 
Fig.2. Methodology flowchart 
 

 Half-hourly temperature data is extracted along with 
corresponding gas load used as original inputs and then to 
calculate daily average temperature and daily total gas 
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load to form gas load- temperature data pairs. 
 By calculating the Mahalanobis distance of each pair of 

gas load-temperature data point, the outliers that diverge 
far from the main data set are detected and excluded. 

 Linear regression is then used to calculate the correlation 
coefficient and EMD is applied to improve the correlation 
identification. In this way, the relationship between gas 
consumption and temperature could be obtained. 

III. CASE STUDY 

Different case studies on a local UK energy system are 
presented to demonstrate the results. Results are shown 
according to daily time intervals and with respect to various 
temperature intervals. This section is organised as follows: 

 Section A shows the utilisation of outlier detection by 
measuring Mahalanobis distance of each 
gas-temperature data pair and those pairs with 
relatively high Mahalanobis distance are removed.  

 Section B discusses how EMD improves the 
correlation between gas and temperature compared 
with the case without EMD processed data. 

 Sections C, D present the correlation identification 
between gas consumption and temperature from 
yearly and monthly perspectives. 

 Section E and F discuss different gas-temperature 
scenarios during weekday/weekend and day/night to 
explore how such correlation changes in regards to 
different customer activities. 

 Section G is an additional section that uses the 
proposed method on gas load and temperature data 
from a different country to exam its performance. 

Each of the section focuses on the results of different 
methods proposed in section II. Section A mainly shows how 
outlier detection works before applying EMD and linear 
regression. Section B compares the correlation between gas 
load and temperature without and with EMD process. Sections 
C to G discuss different gas load-temperature relationship 
during different time intervals, from half-hour to year.  

As the UK locates at the very west of Europe and east of 
Atlantic Ocean, the weather conditions in spring and autumn 
are relatively mild. Additionally, the high latitude of UK makes 
the summer moderate for human activity and a great amount of 
heating demand appears in winter. Therefore, winter is a perfect 
season to explore the relationship between gas load and 
temperature. Nevertheless, other seasons and annual 
performance will also be analysed to comprehensively 
understand how consumption changes with weather conditions. 

In this study, the temperature data are collected from Paul 
Wilman Bath Weather [32] and Weather Underground [33]. 
The gas load is collected from 7 meters around Bath University 
campus. All gas load data is provided by the Department of 
Estates of the university [34]. 

A. Outlier Detection 

By measuring Mahalanobis distance for each 
gas-temperature data pair, the outliers that are far from the main 

data set distribution could be identified. Take the sample data of 
November 2011 as an example and the results are shown in 
Figure.3. The colour bar on the right indicates the value of 
Mahalanobis distance. From blue to green to red and then to 
dark brown, the Mahalanobis distance increases continuously. 
There is one gas-temperature data point that diverges greatly 
from others coloured in dark brown. Its Mahalanobis distance is 
M=5.9810. Such point is therefore identified as an outlier. 
Physically, it indicates at a relatively low temperature (8.6 °C), 
there is a low gas consumption of 87,152kWh. This is abnormal 
compared with the general gas-temperature pattern, which 
should be excluded from further analysis. 

 

 
Fig. 3.  Mahalanobis distance of gas-temperature data of November 2011 

 
By excluding the outlier from the data set, the accuracy of 

data is achieved. The wrong data recorded, misreading by both 
meter and human-made could be eliminated. It provides a tool 
to handle the complexity and errors of the gas-temperature data. 
The data in the following case studies are all processed with this 
outlier detection technique to ensure the accuracy of the data. 

B. EMD data processing 

Table II lists some correlation results between gas load and 
temperature in different time scales. The first two measure 
daily total gas load and daily average temperature for a month 
and last two measure 1-month-average value of every half hour 
gas load and temperature data pairs. The correlation of both real 
time data before and after using EMD is relatively high 
between gas load and temperature in different time scales. After 
EMD, their absolute values increase, indicating the IMFs of gas 
load and temperature are more correlated than before EMD. 
 

 TABLE II 
COEFFICIENT OF DIFFERENT CASES 

Temperature (X) Gas Load (Y) 
Correlation 

coefficient  rxy 
Real Daily Average Real Daily Total -0.6049 
EMD Daily Average EMD Daily Total -0.8143

Real Half Hour Average Real Half Hour Total 0.4525 
EMD Half Hour Average EMD Half Hour Total 0.9385 

 
In the first two rows of Table II, the correlation between gas 

and temperature changes from -0.6049 using real-time data to 
-0.8143 by using EMD technique. It means that on daily basis, 
gas demand is negatively related with temperature. The last two 
rows of Table II shows that gas demand is positively correlated 
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with temperature when the time is scaled down to half hour 
basis. After applying EMD on the real-time data, such 
correlation increased greatly from 0.4526 to 0.9385. It is 
prominent that EMD has good performance for improving the 
identification of the correlation between gas and temperature 
while applying linear regression 

C. Annual Gas and Temperature Correlation 

In this case, every gas consumption data point is the total 
daily consumption and temperature point is the average 
temperature of the same day. Figure.4 illustrates the total daily 
gas consumption with an average temperature of the days from 
August 2011 to July 2012. Figure.4a is the real-time daily gas 
consumption against the temperature in 2011-2012 and 
Figure.4b is their scatter point graph with the trendline (linear 
regression equation) and correlation of determination R2.  

 

 
a. Gas consumption and temperature of 2011-2012 

 

 
b. Gas-temperature scatters 2011-2012 

Fig. 4.  Gas-temperature change in 2011-2012 

 
Figure.4a clearly shows that daily gas consumption always 

changes conversely against temperature annually. While it is 
hot summer at the beginning of the academic year 2011-2012, 
gas demand remains at a relatively low level. With climate 
becoming colder, the gas consumption begins to rise 
continuously and reached its peak in February 2012. Then the 
weather becomes warmer, and the gas demand reduces again.  

Figure.4b presents the scatter points of the gas-temperature 
dataset and results from linear regression with temperature as 
input and gas demand as output. The annual correlation of 
determination R2 is 0.7782 and the correlation coefficient rxy is 
-0.8822, indicating that a strong correlation is between daily 
gas consumption and temperature. The regression coefficients 
obtained by using coefficients in Figure.4b is helpful for 
understanding the impact of temperature on gas consumption.  

However, such index obtained from annual data is not 
accurate enough for short-time understanding of the correlation 

as it presents a general pattern of the correlation over a 
long-term. A more appropriate equation according to different 
seasons and daily time periods can achieve better accuracy of 
correlation and will be demonstrated next. 

D. Monthly Correlation in Four Seasons 

This subsection identifies correlation in seasons based on 
daily total gas consumption against daily average temperature. 
In Aug and Nov 2011 the average monthly temperature were 
16.2  and 10.8  respectively, while that of Feb and May 
2012 were only 4.5  and 12 . Climates of each month are 
typical climates to represent every season.  

 

 
Fig. 5 Monthly gas consumption and temperature in 2011-2012. 

 
In Figure.5, the curve labelled on the left represents the total 

daily gas consumption and the curve with unit labelled on the 
right represents the trend of average daily temperature. It is 
very clear that while the average daily temperature changes, the 
total daily gas load changes in the other way around. This is 
especially obvious in Figure.6c (February 2012), which is the 
coldest month of each year. For the first one-third of February 
2012, the weather was relatively cold and fluctuated and the 
daily gas demand corresponded to it conversely. Then, 
temperature continuously climbed and the gas load decreased 
accordingly. During the last period of that month, temperature 
fluctuated again and gas consumption went up and down 
accordingly in an opposite direction. 

 
TABLE III 

COEFFICIENT OF FOUR SEASONS 

Time 
Correlation coefficient 

rxy  before EMD 
Correlation coefficient 

rxy after EMD 
Spring (2012.05) -0.7646 -0.9375 

Summer (2011.08) -0.6836 -0.9195
Autumn (2011.11) -0.7209 -0.9365 
Winter (2012.02) -0.8309 -0.9406 

 
According to the methodology in Section II, the coefficient 

R2 and rxy could be calculated, where x represents daily average 
temperature and y represents the total daily gas consumption. 
The results are shown in Table III. 

Compared to other seasons, summer time (Aug 2011) has the 
lowest correlation level of -0.6836. According to the 
correlation coefficient margins in Table I, it indicates that the 
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daily gas consumption has a moderately linear correlation with 
daily average temperature. This is reasonable as during 
summertime, as there is a small amount of heating demand 
consuming gas. Therefore, no obvious correlation could be 
revealed. 

On the other hand, the correlation from the data in winter 
(Feb 2012) illustrates more obvious correlation between gas 
load and temperature with rxy of -0.8309. The negative 
coefficients are very close to -1, indicating a strong negative 
linear regression. The regression results of Feb and May 2012 
are more obvious than those of Aug and Nov 2011, mainly due 
to their different temperature levels. When the temperature is 
lower, more gas is consumed for heating and thus, the 
regression sensitivity between load and temperature is 
significantly affected. 

By using EMD on the data and calculating the correlation 
coefficient of each month, it could be seen that the correlation 
between gas load and temperature have been improved 
significantly. Even the least correlation level in summer time 
(August 2011) has been increased to -0.9195.  

E. Correlation Change during Weekday and Weekend 

In this section, correlation change during weekday and 
weekend is analysed to explore how the temperature-sensitive 
gas load is affected by different customer behaviours. Figure.6 
shows the scatter point of gas-temperature data pairs of 
weekday (Figure.6a) and weekend (Figure.6b) using the data of 
February 2012 and Table IV lists correlation results. 

 

 
a. Gas-temperature scatter on weekday of February 2012 

 

 
b. Gas-temperature scatter on weekend of February 2012 

Fig. 6. Absolute value of xyr  of every half hour in February 2012 

Figure.6 divides the data into weekday and weekend. While 
calculating the correlation coefficient without clustering them, 
the result is -0.8309 before using EMD. In Figure.6a, the 
correlation coefficient during the weekday is -0.9694 and in 
Figure.6b, that coefficient during the weekend is -0.9267. Both 

correlation levels are improved. This indicates that gas load 
during weekdays and weekends is sensitive to temperature and 
shares different pattern according to different customer 
activities. Through both correlations are very high, the one 
during the weekday is slightly higher than that during the 
weekend. This implies that gas load during working days are 
more related to temperature than that during weekends. 

Table IV shows the correlation change before and after using 
EMD. For both weekdays and weekends, the correlation levels 
are increased by using EMD. 

 
TABLE IV 

COEFFICIENT OF WEEKDAY AND WEEKEND 

Time 
Correlation coefficient 

before EMD 
Correlation coefficient after 

EMD 

Weekday -0.9694 -0.9993 
Weekend -0.9267 -0.9960 

 
From Figure.6 and Table IV, it could be concluded that the 

gas-temperature correlation experiences much higher values 
when the data is spilt into weekdays and weekends than without 
considering date type. This indicates that human activities can 
significantly affect gas consumption and another case will be 
analysed in the next section. 

F. Correlation Change during Day and Night 

This section studies the correlation change between day 
(08:00 20:00) and night and Figure.7 depict the points of gas 
consumption and temperature.  

 

 
a. Gas-temperature scatter during day-time 

 
b. Gas-temperature scatter during night 

Fig. 7. Correlation during day and night (February 2012) 
 

As seen, during day-time, the correlation coefficient is 
-0.6994 and at night, it is -0.8491. This reveals a signal that gas 
load at nights are generally more closely correlated to 
temperature than that during day time. After applying EMD on 
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the data, the correlation coefficient for both day time and night 
time are increased greatly, shown in Table V. 

 
TABLE V 

COEFFICIENT OF DAY AND NIGHT 

Time 
Correlation coefficient 

before EMD 
Correlation coefficient 

after EMD 

Day (08:00 – 20:00) -0.6994 -0.8464 
Night (other time) -0.8491 -0.9634 

 
In Table V, the correlations of day and night are negatively 

increased from -0.6994 and -0.8491 to -0.8464 to -0.9634, 
respectively. On one hand, this result indicates that during day 
and night, the temperature has different impacts on gas load and 
this could have positive influence to identify the weighting of 
temperature in future load forecasting for different time period. 
On the other hand, EMD is proven to be a promising tool to 
increase the correlation level between gas load and 
temperature. 

G. Correlation Analysis and Comparisons in Australia 

In this section, another data set from Australia is used to 
validate the proposed method. The daily total gas load data is 
collected form [35] and the daily average temperature data is 
from[36]. Results are shown in Table VI. 

 
TABLE VI 

COEFFICIENT OF DATA IN AUSTRALIA 

Time 
Coefficient before 

EMD 
Coefficient after 

EMD 

2016.09.28 to 
2016.10.27 

-0.7310 -0.9582 

 

 
Fig. 7. Correlation during day and night (February 2012)[14] 
 

TABLE VII 
COEFFICIENT OF TWO PAPERS 

Data 
Correlation coefficient 

using method from [14] 
Correlation 

coefficient using 
proposed method 

May 2000 from [14] -0.51 -0.8466 

 
As seen, the correlation coefficient between gas load and 

temperature is -0.7310 before using EMD. After applying EMD, 
the correlation increases to -0.9582. This result is similar to the 
results in Section D, indicating that the proposed method using 
outlier detection by calculating M-distance and using EMD to 

identify the correlation level between gas load and the 
temperature is not only valid for local energy system in the UK, 
but also valid in other places. 

Figure. 7 is a peak load and temperature from [14] and the 
correlation coefficient between peak load and the temperature 
is only -0. 51 (Shown in Table VII), indicating that peak load is 
less sensitive to temperature. By using the proposed method 
and decomposing this same set of data in Figure.7 and 
calculating the average correlation coefficient of each IMF 
between gas load and temperature, the final correlation 
coefficient increases to -0.8466. This result indicates that after 
EMD process, each IMF component of gas demand and 
temperature respectively is more related to each other by 
revealing a much higher level of the correlation coefficient.  

IV. CONCLUSION 

In this paper, a novel method is proposed to analysis the 
correlation between gas consumption and temperature. 
Mahalanobis distance is a promising mean for outlier detection 
and EMD substantially improves the correlation level between 
gas load and temperature. By finding correlation coefficient 
between real-time gas consumption and temperature, it is seen 
that gas load is negatively related to temperature. In addition, 
such correlation changes with the overall temperature level. In 
winter, gas and temperature are in highest genitivally correlated 
and this correlation drops when the temperature is higher in 
spring and autumn. By dividing the data into weekday/weekend 
and day/night, it is found that during different time periods, the 
correlation is stronger during weekday and night than that 
during weekend and day time, respectively. After applying 
EMD technique, correlation levels are significantly increased in 
all different case studies. To summarise, the novel method 
proposed in this paper identifies the temperature sensitive part 
of the gas load and measures the correlation between gas load 
and temperature as most of the research focus the relationship 
between electricity load and temperature and very few focus on 
the gas load and temperature. It provides the reference for 
weight temperature as a variable in gas load forecasting. 

In future work, polynomial regression techniques will be 
applied to analysis with weather factors such as humidity, wind 
speed considered. The new concept ‘feel like [37]’ temperature 
might replace actual temperature as it directly reveals real 
feelings against temperature change and would have a direct 
influence on gas consumption.  
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