
1876 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 5, SEPTEMBER 2024

Data-driven Predictive Voltage Control for
Distributed Energy Storage in Active

Distribution Networks
Yanda Huo, Peng Li, Senior Member, IEEE, Member, CSEE, Haoran Ji, Senior Member, IEEE, Member, CSEE,

Hao Yu, Senior Member, IEEE, Jinli Zhao, Member, IEEE, Wei Xi, Jianzhong Wu, Fellow, IEEE,
Member, CSEE, and Chengshan Wang, Senior Member, IEEE, Member, CSEE

Abstract—Integration of distributed energy storage (DES) is
beneficial for mitigating voltage fluctuations in highly distributed
generator (DG)-penetrated active distribution networks (ADNs).
Based on an accurate physical model of ADN, conventional
model-based methods can realize optimal control of DES. How-
ever, absence of network parameters and complex operational
states of ADN poses challenges to model-based methods. This
paper proposes a data-driven predictive voltage control method
for DES. First, considering time-series constraints, a data-driven
predictive control model is formulated for DES by using measure-
ment data. Then, a data-driven coordination method is proposed
for DES and DGs in each area. Through boundary information
interaction, voltage mitigation effects can be improved by inter-
area coordination control. Finally, control performance is tested
on a modified IEEE 33-node test case. Case studies demonstrate
that by fully utilizing multi-source data, the proposed predictive
control method can effectively regulate DES and DGs to mitigate
voltage violations.

Index Terms—Distribution network, distributed energy
storage (DES), distributed generators (DGs), data-driven,
predictive voltage control.

NOMENCLATURE

A. Sets

M Set of areas in distribution networks.
Rm, Lm Set of controllers of DES/DG in area m.

B. Indices

t Indices of periods.
m Indices of areas.
l, n Indices of DES/DG.
z Indices of data groups.
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C. Variables

Ũ [t],U [t] Estimated /measurement voltage in pe-
riod t.

ŨN [t+ ∆t] Estimated value of nodal voltages from
period t+ ∆t to t+N∆Tc.

U ref
N [t+ ∆t] Reference of nodal voltages from pe-

riod t+ ∆t to t+N∆Tc.
Φ̂pre[t] Pseudo-Jacobian prediction matrix

(PJPM) in period t.
φ̂[t] Pseudo-Jacobi matrix (PJM) in pe-

riod t.
φ̂[t+ n∆Tc] Estimated value of PJM in period t +

n∆Tc.
∆XN [t] Variation of the active power output of

DES from period t to t+N∆Tc.
∆X[t] Change of active power output of DES

in period t.
PDES[t], QDES[t] Active/reactive power of DES in pe-

riod t.
SOC0, SOCT State of charge (SOC) at initial/end of

total control duration.
Ũm[t],Um[t] Estimated /measurement voltage in area

m in period t.
PDES
m,l [t], QDES

m,l [t] Active/reactive power of DES l in area
m in period t.

PDG
m,r [t], QDG

m,r[t] Active/reactive power of DG r in area
m in period t.

Φ̂DG
m,r[t], Φ̂

DES
m,l [t] Estimated value of PJM of DG r/DES

l in area m in period t.
Y ref
N Reference of modified control objective

in area m.
Ỹm Modified control objective in area m.
Ũvn,m Estimated value of virtual voltage in

area m.
P̃vn,m Estimated value of virtual active power

injection in area m.
γ Voltage deviation index.

D. Parameters

U ref Voltage reference of ADN.
∆Tp Prediction horizon.
∆Tc Prediction window.
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∆t Control horizon.
T Total control duration.
N Number of steps of the prediction win-

dow.
Td The time interval between the time of

historical data and period t.
α Number of historical data groups for

constructing the estimation sequence of
φ̂[t+ n∆Tc].

CDES Life-cycle degradation cost of DES.
SDES Capacity of DES.
SB Inverter capacity of DES.
SOCmax, SOCmin Maximum/minimum value of the state

of charge.
Pmax, Pmin Maximum/minimum of active power

outputs of DES.
NDG
m , NDES

m Number of DG/DES in area m.
µDES,p, ηDES,p,
λDES,p, ρDES,p,
δµDES,q, ηDES,q,
λDES,q, ρDES,q,
µDG, ηDG, λDG,
ρDG

Weight factors.

τDES Power loss coefficient of DES.
ε Charge/discharge threshold of DES.

I. INTRODUCTION

W ITH high-share penetration of distributed generators
(DGs) [1], operational mode has changed significantly

in active distribution networks (ADNs) [2]. Rapid fluctuations
in DGs pose significant challenges to secure operation of
ADNs [3]. Conventional control devices for ADN, such as
on-load tap changer and capacitor banks, discretely regulate
voltage of distribution networks [4]. It is difficult for conven-
tional devices to deal with frequent voltage fluctuations owing
to slow response speed [5].

With application of energy storage technology, distributed
energy storage (DES) has been widely used in ADN [6]. DES
can be utilized to supply heavy load feeders, regulate voltage
profile, and improve operational performance of ADNs [7].
Reference [8] proposed a voltage control scheme for DES
in ADNs with large clustered DGs. Reference [9] proposed
a distributed model predictive control strategy for DES to
regulate voltage with high renewable energy penetration. In
Reference [10], DG units, energy storage devices, and OLTC
were regulated to improve voltage profile. To cope with time-
series characteristics of DES, many studies have been carried
out on the predictive voltage control for DES. A model pre-
dictive control-based method was proposed for hybrid energy
storage regulation in Reference [11].

Inter-area coordinated control methods are also widely
utilized for DES to assist areas with insufficient resources
and achieve approximate optimal results. A revised alternating
direction multiplier method was proposed in Reference [12]
to guarantee convergence. Based on the master reactive power
optimization model, distribution networks were coordinated to
achieve global optimality in Reference [13]. In Reference [14],

by decomposing into a set of independent subproblems, the
centralized optimization problem was tractably solved. De-
mand response resources and energy storage were effectively
coordinated in Reference [15].

The aforementioned control methods for DES are dependent
on accurate and detailed physical models of ADNs. However,
obtaining accurate model parameters is difficult for practical
ADNs. In addition, frequent DG fluctuations may lead to
voltage violations [16]. Model-based control approaches may
not adapt well to various uncertainties in ADNs, including
inaccuracy of network parameters and uncertainties caused
by frequent variations in operation states. Therefore, model-
based voltage control approaches for DESs face challenges in
practical ADNs.

Owing to extensive application of measurement equip-
ment [17] and accumulation of a large amount of operation
data [18], data-driven approaches provide a promising ap-
proach for solving voltage control problems in ADNs [19].
There are two main categories of data-driven methods. First is
based on machine learning. Through the centralized training
process of reinforcement learning, data-driven control strate-
gies for ADNs were obtained and executed in Reference [20].
Reference [21] developed a multistage adaptive robust opti-
mization framework with reinforcement learning techniques
to address uncertainties associated with high penetration of
renewable energy. Reference [22] analyzed optimal power flow
of ADNs utilizing a deep reinforcement learning approach.
However, most reinforcement learning-based approaches may
involve retraining when topology of ADNs changes, which
may hinder its application.

The other is the online feedback-based control method [23],
which establishes a data model without relying on training pro-
cess [24], such as model-free adaptive control (MFAC) [25].
Reference [26] designed power system stabilizers based on
MFAC and suppressed system oscillations. Reference [27]
introduced the idea of prediction control in MFAC, achiev-
ing better control performance in time-series scenarios. In a
previous study, an MFAC model for soft open point (SOP)
was established, which realized adaptive control of SOP [28].

However, time-series characteristics of state of charge
(SOC) should be considered in the DES control problem. To
address this issue, this paper proposes a data-driven predictive
control method for DES, as shown in Fig. 1. Considering time-
series characteristics, a data-driven predictive control model is
formulated to regulate DES strategies by using measurement
data. Then, a data-driven coordination method is developed for
DES and DGs in each area. Through boundary information
interaction, data-driven control effects can be improved by
inter-area coordination control. This paper makes two main
contributions:

1) Considering time-series constraints of SOC, a rolling
optimization framework is proposed for predictive voltage con-
trol of the DES. Without accurate network parameters, a data-
driven predictive control model is formulated for DES with
various data, including real-time measurements, prediction and
historical information.

2) Then, a data-driven coordination method is proposed for
DES and DGs in each area. The intra-area control model is
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Fig. 1. Schematic of the data-driven predictive voltage control for DES.

built based on the superposition relationship of voltage control
effect. Through boundary information interaction, data-driven
control effects are improved by inter-area coordination control.

Organization of the rest of this paper is as follows: the adap-
tive control framework for DES is introduced in Section II,
considering time-series constraints of SOC. In Section III,
intra-area coordination of DES and DGs, and coordination
of multiple areas are presented. In Section IV, case studies
are conducted to demonstrate data-driven control effects, and
Section V concludes the paper.

II. DATA-DRIVEN PREDICTIVE CONTROL OF DES

Considering time-series constraints of SOC, a data-driven
predictive control method is proposed for DES. The proposed
method can dynamically optimize nodal voltages in real-time
operations without accurate network parameters.

A. Framework of Data-driven Predictive Voltage Control

The proposed data-driven predictive voltage control frame-
work is illustrated in Fig. 2.
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Fig. 2. Framework of the data-driven predictive control.

To realize time-series optimal control of the DES, three parts
of data are utilized: prediction information, measurements and
historical data. Prediction information of photovoltaics (PVs),
wind turbines (WTs), and loads in total control duration are
predicted based on operation curves [26]. Measurements can

be acquired with measurement devices of ADNs. Historical
data consists of nodal voltage and operational strategies of
DES and DGs, which can be accumulated in previous days. In
the process of data-driven predictive voltage control, strategies
of DES and DGs can be equivalent to inputs of ADNs, whereas
voltage measurements can be treated as outputs of ADNs.

As shown in Fig. 2, prediction horizon ∆Tp is divided into
N segments. N = ∆Tp/∆Tc, which represents number of
prediction steps. Prediction information for PVs, WTs, and
loads is updated in each prediction window ∆Tc. Operation
strategies of the DES in ∆Tp are calculated based on real-time
data in period t and predictive operation data during ∆Tp.
Only the operation strategy in period t is implemented on the
DES. Then, period was updated as t = t+ ∆t, and the above
control process in period t was repeated until period t reached
t = t+ ∆Tc. Prediction horizon is updated to ∆Tp = ∆Tp −
∆Tc, and prediction information is also updated. The entire
process is repeated until total control duration T is reached.
By applying rolling optimization, operation strategies of the
DES are dynamically adjusted for rapid response to DG and
load fluctuations.

In the data-driven control process, decision variables to be
solved include active power of DES, reactive power of DES
and DGs. As for active power of DES, considering frequent
charging/discharging will lower service life of DES, prediction
window ∆Tc is set as 5 minutes. Active power strategies of
DES considering time-series constraints are solved by com-
mercial mathematical solver. However, as for reactive power
of DES and DGs, control horizon ∆t is set as 0.5 minutes.
Solution of reactive power strategies is based on converter
capacity constraints of DES and DGs, which can be solved
by the gradient descent method to rapidly adapt to rapid
fluctuations in DGs.

B. Modeling of Data-driven Predictive Voltage Control

To meet periodic energy balance requirement of DES in
the regulation process of PDES

N [t], MPC is utilized with the
data-driven method. In the 24-hour duration of ∆Tp, duration
of ∆Tc is set as 5 minutes. Then PDES

N [t] can be solved
by mathematical solvers. Specifically, the data-driven control
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model of active power of DES is formulated as the following
function:
1) Control Objective of DES

Minimum voltage violation and charging/discharging ex-
pense of DES by adjusting active power PDES[t] are adopted
as objectives.

J(PDES
N [t]) = J1 + J2 + J3

J1 =

(
U ref
N [t+ ∆t]

−ŨN [t+ ∆t]

)T(
U ref
N [t+ ∆t]

−ŨN [t+ ∆t]

)
J2 = CDES

N∑
i=1

|PDES
i [t]|

J3 = λDES,p(∆PDES
N [t])

T
∆PDES

N [t] (1)

where U ref
N [t + ∆t] represents voltage reference from period

t+∆t to t+N∆Tc. CDES denotes life-cycle degradation cost
of the DES. ∆PDES

N [t] = (∆PDES[t]T, · · · ,∆PDES[t+(N−
1)∆Tc]

T)T denotes variation in charging/discharging power
from period t to t+N∆Tc. PDES[t] represents active power of
DES in period t. ŨN [t+∆t] denotes nodal voltages of ADNs
from t+ ∆t to t+N∆Tc, which can be described as a time-
series sequence: ŨN [t+∆t] = (Ũ [t+∆t+∆Tc]

T, · · · , Ũ [t+
∆t+N∆Tc]

T)T.
2) Relationship between Voltage and Active Power of DES

To realize the control objective of DES, the time-series
relationship between nodal voltages ŨN [t + ∆t] and active
power of the DES need to be established. Based on dynamic
linearization [30], ŨN [t+ ∆t] can be estimated for each dis-
crete period. The dynamic estimation model of nodal voltages
is as follows:

ŨN [t+ ∆t] = E[t]U [t] + Φ̂DES,p
pre [t]∆PDES

N [t] (2)

where E[t] denotes unit vector. Φ̂DES,p
pre [t] is PJPM in period

t, which denotes the functional relationship between nodal
voltages and charging/discharging power of DES.
3) Estimation of Pseudo-Jacobian Prediction Matrix

Calculated based on measurement data, PJPM characterizes
the sensitivity relationship between voltage measurements and
operational strategies of DES. The PJPM Φ̂DES,p

pre [t] is defined
as follows:

Φ̂DES,p
pre =φ̂

DES,p[t] · · · 0
... φ̂DES,p[t+ n∆Tc]

...
φ̂DES,p[t] · · · φ̂DES,p[t+ (N − 1)∆T c]


(3)

Φ̂DES,p
pre [t] consists of two types of pseudo-Jacobian matrices,

φ̂DES,p[t] and φ̂DES,p[t+ n∆Tc]. To estimate Φ̂DES,p
pre [t], the

φ̂DES,p[t] and φ̂DES,p[t+ n∆Tc] must be calculated.
Located in the first column of Φ̂DES,p

pre [t], φ̂DES,p[t] is the
pseudo-Jacobian matrix in period t, which can be calculated
based on voltage measurement in period t. Calculation of
Φ̂DES,p

pre [t] is formulated as shown in (4) and (5).

φ̂DES,p[t] = φ̂DES,p[t−∆t] +
η∆X[t−∆t]

µDES,p + ∆X[t−∆t]2

(∆U [t]− φ̂DES,p[t−∆t]∆X[t−∆t]) (4)

φ̂DES,p[t] = φ̂DES,p[1],

if φ̂DES,p[t] ≤ η or ∆X[t−∆t] ≤ η
or sign(φ̂DES,p[t]) 6= sign(φ̂DES,p[1]) (5)

where ∆X[t−∆t] = PDES[t−∆t]−PDES[t−2∆t], ∆U [t] =
U [t]−U [t−∆t]. The purpose of introducing (4) is to increase
tracking ability of (3) [21].

The other element of Φ̂DES,p
pre [t] can be expressed by the

general formula φ̂DES,p[t + n∆Tc]. It denotes the pseudo-
Jacobian matrix in period t + n∆Tc. φ̂DES,p[t + n∆Tc] can
be estimated by a regression of a sequence of historical data
groups, which are mainly accumulated in previous operational
days. φ̂DES,p[t+ n∆Tc] can be formulated as follows:

φ̂DES,p[t+ n∆Tc] =
α∑
z=1

θz[t]φ̂
DES,p[t+ n∆Tc − zTd] (6)

where z = 1, 2, · · · , α, denotes the number of historical data
groups for constructing the estimation sequence. φ̂DES,p[t +
n∆Tc − zTd] is the historical pseudo-Jacobian matrix calcu-
lated from historical data at t + n∆Tc − zTd. θz[t] is the
regression coefficient in period t.

To determine value of θz[t], a regression vector is defined
as θ[t] = (θ1[t], · · · θz[t], · · · , θα[t])

T. θ[t] can be calculated
as follows:

θ[t] = θ[t−∆t] +
ϕ̂[t−∆t]

δ+ ‖ ϕ̂[t−∆t] ‖2
(φ̂[t]

− ϕ̂T[t−∆t]θ[t−∆t]) (7)

where ϕ̂[t − ∆t] = (φ̂[t + n∆Tc − Td], · · · , φ̂[t + n∆Tc −
αTd])T, denotes a matrix consisting of pseudo-Jacobian ma-
trices calculated from the historical data set.
4) Operational Constraints of DES

SOC constraint of DES within a prediction window ∆Tc is
described as follows.

SDES

∆Tc
(SOC0 − SOCmin)−NPDES[t]

≤


∆PDES[t−∆t+ ∆Tc]

...
N∆PDES[t−∆t+ ∆Tc]+

(N − 1)∆PDES[t−∆t+ 2∆T c]+
· · ·+ ∆PDES[t−∆t+N∆Tc]


≤ S

DES

∆Tc
(SOCmax − SOC0)−NPDES[t] (8)

SOC0 = SOCT (9)

where ∆PDES[t−∆t+N∆Tc] = PDES[t−∆t+N∆Tc]−
PDES[t − 2∆t + N∆Tc] denotes variation in the charging/
discharging power in period t − ∆t + N∆Tc. Limits of
charging/discharging power of DES are constrained as shown
in the following equations.

(PDES[t+ n∆Tc])
2 + (QDES[t+ n∆Tc])

2 ≤ S2
B (10)
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Pmin ≤ PDES[t+ n∆Tc] ≤ Pmax (11)

As frequent charging/discharging will lower service life of
the DES, the following constraints should be added.

PDES[t] =


0, if sign(PDES[t−∆t])

6= sign(PDES[t−∆t] + ∆X[t]),

0, if |∆X[t]| < ε

PDES[t−∆t] + τDES∆PDES[t], otherwise
(12)

Constraint (12) limits fluctuation of DES charging and
discharging power, which can decrease number of charge/
discharge cycles.

Through this data-driven modeling, a predictive voltage
control model is summarized as follows.

min f = J(PDES
N [t])

s.t. (2), (8)–(12) (13)

The data-driven predictive voltage control model of DES
active power is established by objective function (1) and SOC
constraint of DES (8)–(11). Mathematical essence of the model
is a quadratic programming model with constraints that can be
solved by mathematical solver CVX.

III. DATA-DRIVEN COORDINATED CONTROL

To efficiently realize decentralized voltage control, distri-
bution networks can be divided into multiple areas according
to regulation range [31]. To avoid operational conflicts caused
by uncoordinated regulation among devices such as DGs and
DES, a data-driven coordination method is proposed in each
area. In addition, to realize approximate optimal control, inter-
area coordination is also considered in this section.

A. Intra-area Control of Multiple Devices

With the data-driven predictive voltage control method in
Section II, active power of DES can be calculated. Reactive
power of DES can be coordinated with reactive power pro-
vided by residual capacity of DG inverter. As the voltage
control model is dynamically linearized at each control pe-
riod [21], a superposition relationship of voltage control effect
exists between reactive power of DES and DGs. The control
relationship between reactive power of DES and DGs is shown
in Fig. 3.

Measurements

DGs 

DES

Um

Um

+

Q
DG

Q
DES

EmUm
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information

Fig. 3. Relationship between reactive power of DES and DGs.

As shown in Fig. 3, DES and DGs interact with intra-
area information at each control period, including the pseudo-
Jacobian matrices and reactive power of each other. The

objective functions of the voltage control of the DES and DG
are formulated as (14) and (15).

J(QDG
m,r[t]) = min(‖U ref − Ũm[t+ ∆t]‖22)

+ λDG‖QDG
m,r[t]−QDG

m,r[t−∆t]‖22 (14)

J(QDES
m,l [t]) = min(‖U ref − Ũm[t+ ∆t]‖22

+ λDES,q‖QDES
m,l [t]−QDES

m,l [t−∆t]‖22) (15)

Considering the superposition relationship of voltage control
effects between reactive power of DES and DGs, estimated
value of Ũm[t+ ∆t] is modified as follows:

Ũm[t+ ∆t] = Um[t] +

NDG
m∑
r=1

Φ̂DG,q
m,r [t] ∗∆QDG,q

m,r [t]

+

NDES
m∑
l=1

Φ̂DES,q
m,l [t] ∗∆QDES,q

m,l [t]

+

NDES
m∑
l=1

φ̂DES,p
m,l [t] ∗∆PDES

m,l [t] (16)

where ∆QDG
m,r[t] = QDG

m,r[t] − QDG
m,r[t − ∆t]. ∆QDES

m,l [t] =

QDES
m,l [t]−QDES

m,l [t−∆t]. Φ̂DG,q
m,r [t] and Φ̂DES,q

m,l [t] denote the
pseudo-Jacobian matrix of the DG and DES, respectively. The
iterative calculations of Φ̂DG,q

m,r [t] and Φ̂DES,q
m,l [t] are:

Φ̂DG
m,r[t] = Φ̂DG

m,r[t−∆t] + (∆Um[t]

−
NDG

m∑
n=1

Φ̂DG
m,r[t]∆Q

DG
m,r[t−∆t]−

NDES
m∑
l=1

φ̂DES,p
m,l [t]∆PDES

m,l [t]

−
NDES

m∑
l=1

Φ̂DES
m,l [t]∆QDES

m,l [t−∆t])
ηDG∆QDG

m,r[t−∆t]

µDG + ‖∆QDG
m,r[t−∆t]‖22

(17)

Φ̂DES
m,l [t] = Φ̂DES

m,l [t−∆t] + (∆Um[t]

−
NDG

m∑
n=1

Φ̂DG
m,r[t]∆Q

DG
m,r[t−∆t]−

NDES
m∑
l=1

φ̂DES,p
m,l [t]∆PDES

m,l [t]

−
NDES

m∑
l=1

Φ̂DES
m,l [t]∆QDES

m,l [t−∆t]))

·
ηDES,q∆QDES

m,l [t−∆t]

µDES,q + ‖∆QDES
m,l [t−∆t]‖22

(18)

Introducing (16) into (14)–(15), solution of reactive power
of DGs and DES can be formulated as (19)–(20) based on
gradient descent methods [23].

QDG
m,r[t] = QDG

m,r[t−∆t] + (U ref − Ũm[t]

−
NDG

m∑
a=1,a 6=r

Φ̂DG
m,a[t]∆QDG

m,a[t]−
NDES

m∑
l=1

φ̂DES,p
m,l [t]∆PDES

m,l [t]

−
NDES

m∑
l=1

Φ̂DES
m,l [t]∆QDES

m,l [t−∆t]
ρDGΦ̂DG

m,n[t]

λDG + ‖Φ̂DG
m,n[t]‖22

(19)

QDES
m,l [t] = QDES

m,l [t−∆t] + (U ref − Ũm[t]
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−
NDG

m∑
r=1

Φ̂DG
m,r[t]∆Q

DG
m,r[t]−

NDES
m∑
l=1

φ̂DES,p
m,l [t] ∗∆PDES

m,l [t]

−
NDES

m∑
b=1,b 6=l

Φ̂DES
m,b [t]∆QDES

m,b [t−∆t])
ρDES,qΦ̂DES

m,l [t]

λDES,q + ‖Φ̂DES
m,l [t]‖22

(20)

Considering limits of inverter capacities, reactive power
outputs are constrained by (21) and (22).

(QDG
m,r[t])

2 ≤ (SDG
m,r)

2 − (PDG
m,r [t])2,m ∈M, r ∈ Rm (21)

(QDES
m,l [t])2 ≤ (SDES

m,l )2 − (PDES
m,l [t])2,m ∈M, l ∈ Lm (22)

Maximum and minimum limits of reactive power outputs
are constrained by (23) and (24).

QDG,min
m,r ≤ QDG

m,r[t] ≤ QDG,max
m,r (23)

QDES,min
m,l ≤ QDES

m,l [t] ≤ QDES,max
m,l (24)

B. Inter-area Coordinated Control

To assist areas with insufficient resources and achieve
approximate optimal results, the inter-area coordinated control
method is conducted as follows: 1) Boundary information
of maximum/minimum voltage value and active power trans-
mission value are interacted between each area as boundary
information. 2) Virtual nodes are set up in each area based
on boundary information. 3) To obtain approximate optimal
voltage control results, voltages of virtual nodes are taken into
account in the data-driven control objective function to realize
intra-area coordinated control.

Taking area m as an example, Uvn,m and Pvn,m are in-
formation transferred to area m. Then, voltage of the virtual
node is merged with objective function of area m. The
objective function of DES charging/discharging power control
is modified as follows:

J(∆PDES
m,N [t]) = Jm,1 + Jm,2 + Jm,3

Jm,1 =

(
Y ref
N [t+ ∆t]

−Ỹm,N [t+ ∆t]

)T(
Y ref
N [t+ ∆t]

−Ỹm,N [t+ ∆t]

)
Jm,2 = CDES

N∑
i=1

|PDES
m,i [t]| (25)

Jm,3 = λDES,p(∆PDES
m,N [t])

T
∆PDES

m,N [t]

Ỹm,N [t+ ∆t] = E[t]Um[t] + Φ̂pre[t]∆P
DES
m,N [t] (26)

Similarly, objective functions of reactive power control of
DES and DGs are modified as (27)–(29).

J(QDG
m,r[t]) = min(‖Y ref − Ỹm[t+ ∆t]‖22

+ λDG‖QDG
m,r[t]−QDG

m,r[t−∆t]‖22) (27)

J(QDES
m,l [t]) = min(‖Y ref − Ỹm[t+ ∆t]‖22

+ λDES,q‖QDES
m,l [t]−QDES

m,l [t−∆t]‖22) (28)

Ỹm[t+ ∆t] = Ym[t] +

NDG
m∑
r=1

Φ̂DG
m,r[t]∆Q

DG
m,r[t]

+

NDES
m∑
l=1

Φ̂DES
m,l [t]∆QDES

m,l [t]

+

NDES
m∑
l=1

φ̂DES,p
m,l [t]∆PDES

m,l [t] (29)

Equation (25) can be calculated by the method described
in Section II. (27)–(28) can be calculated using the method in
Section III-A.

C. Implementation

The flowchart of the proposed data-driven predictive voltage
control is shown in Fig. 4.

Start

Set the total control duration T , predic-
tion horizon ∆Tp prediction window

∆Tc = 1 h, control horizon ∆t = 5 min

Set k = 1, t = 0

Obtain the voltage measurement

Voltage violation?

Build predictive control model
of DESS with measurement data

Build data-driven coordination model
of DESS and DGs in each area

Interact boundary information and
conduct inter-area coordination

Obtain and implement the operational strategies
of DESS and DGs at instant t in each area

t = t = ∆t

t− t0 ≥ k∆Tc?

∆Tp = ∆Tp − ∆Tc,
k = k + 1

t > T ?

End

Yes

No

Yes

No

Yes

No

Fig. 4. Flowchart of the data-driven predictive voltage control.

First, the data-driven predictive voltage control model of
the DES is formulated and solved based on multi-source data,
including real-time measurements, prediction and historical
information. Time-series operation constraints of DES are
considered when calculating active power strategies of DES.

Then, considering the coupled voltage control effect of
DES and DGs, an intra-area coordinated control model is
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established. Reactive power of DES and DGs are coordinated
to improve control performance.

In addition, virtual nodes are set up in each area to co-
ordinate with adjacent areas, through interacting boundary
information such as maximum/minimum voltage and active
power transmission. To obtain approximate optimal voltage
control results, inter-area coordinated control is conducted.

Note, to alleviate impact of control process on flexible oper-
ation of ADNs, change rates of DES and DGs are considered
in the objective function. In addition, impact can be further
reduced by introducing a penalty of voltage deviation into the
objective function.

By utilizing the proposed coordinated control method, volt-
age deviation can be effectively suppressed, and approximated
optimal results can be obtained.

IV. CASE STUDIES

Case studies are conducted on the modified IEEE 33-node
test system [29] in Fig. 5. The proposed data-driven predictive
voltage control method is implemented in MATLAB R2016a,
using an Intel Xeon CPU E5-1620 processor with 3.70 GHz
and 32 GB of RAM.

A. Modified IEEE 33-node Test System
Three PVs are integrated to Nodes 4, 12, and 21 with

capacities of 500.0 kWp. Four WTs are integrated to Nodes
9, 15, 24, and 29 with capacities of 500.0 kVA. Active power
of the DGs reached almost 100% of peak demand. Fig. 6
shows daily operation curves of DG and load. In addition,
three DESs are integrated into Nodes 18, 25, and 33, with a
4.0 MWh capacity each and a 500.0 kVA inverter capacity.
Loss coefficient τDES of DES is set to 0.1.

B. Data-driven Control Results of DES
To ensure data-driven control convergence [27], weighting

factor λDES,p is set as 10, and µDES,p is set to 0.5. Other
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Fig. 5. Topology of the tested IEEE 33-node system.
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Fig. 6. Operational curves of DGs and loads.

weighting factors, ηESS,p, ρESS,p, δ, µESS,q, ηDES,q, λDES,q,
ρDES,q, µDG, ηDG, λDG, ρDG are all set to 1.0. Optimization
horizon ∆Tc is set to one hour and control horizon ∆t is set
to five minutes. Three scenarios are set to verify data-driven
control effects.

Scenario I: Obtain initial state of ADN with no control
strategy for DG.

Scenario II: The data-driven predictive voltage control of
DES is adopted with intra-area coordination of DES and DGs.

Scenario III: The inter-area coordinated control proposed in
Section III is further conducted.

Taking the DES integrated into Node 33 as an example,
operational strategies and the SOC of DES are shown in Fig. 7.
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Fig. 7. Operational strategies of DES integrated to Node 33. (a) Operation
strategy in Scenario II. (b) Operation strategies in Scenario III. (c) SOC of
DES in Scenarios II and III.

In Fig. 7(a) and (b), red lines denote active power strategies
of the DES. Negative value of active power indicates the
DES is charging during this period. Blue lines represent
reactive power strategies of DES. Similarly, negative value
of reactive power denotes DES absorbs reactive power from
ADN. Fig. 7(a)–(c) shows the data-driven predictive control
method in Scenarios II and III can realize adaptive control of
DES while satisfying the time-series constraint of the SOC.
Fig. 8 illustrates daily voltage profiles of Node 33. Fig. 9
shows reactive power strategies of the WT integrated with
Node 29.

During 0:00–4:00 am, active power generation of DGs is
higher than load demand, which causes a voltage violation.
DES charges and absorbs the reactive power. Conversely,
during 2:00–6:00 pm, DGs fail to satisfy power demand. DES
discharges and provides reactive power support. In addition,
reactive power strategies of the DGs and DES are coordinated
for a better voltage profile.
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Fig. 9. Reactive power strategies of WT integrated to Node 29.

C. Analysis of Control Performance

Figure 10 shows a comparison of extreme voltages for
the three scenarios. Power losses in the three scenarios are
shown in Fig. 11. It shows the data-driven predictive control
method in Scenario III has better effects in reducing voltage
fluctuations and power losses.

The index of voltage deviation is defined to quantify control
effects.
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Fig. 10. Comparison of voltage profiles in Scenarios I, II and III. (a) Voltage
profiles in Scenarios I and II. (b) Voltage profiles in Scenarios II and III.
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Fig. 11. Comparison of daily power losses.

γ =

∑T
t=1

∑N
i=1 |Ut,i − 1|
T ·N

(30)

where Ut,i represents voltage of Node i in period t.
For example, at 4:00 p.m., control performance is illustrated

in Fig. 12.
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Fig. 12. Control performance at 4:00 pm.

It can be seen nodal voltage profiles of Scenario III are
improved, and voltage deviation is regulated within 0.03.
Scenario IV is further added for comparison as follows.

Scenario IV: The centralized control method based on the
physical model is adopted [32].

Figure 13 shows comparison of voltage profiles from Sce-
narios III and IV. It shows control effects of Scenario III is
approximate to Scenario IV. Table I lists operational results of
the four scenarios.
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Fig. 13. Comparison of voltage profiles in Scenarios III and IV.

TABLE I
OPERATIONAL RESULTS OF THE TESTED SCENARIOS

Scenario Minimum
voltage (p.u.)

Maximum
voltage (p.u.)

Index of voltage
deviation (p.u.)

Power loss
(kW·h)

I 0.9291 1.0547 0.0182 986.83
II 0.9431 1.0340 0.0121 888.92
III 0.9608 1.0341 0.0102 800.88
IV 0.9619 1.0140 0.0101 734.30

Compared to Scenario I, voltage deviation and network
losses decrease by 33.52% and 9.92%, respectively, in Sce-
nario II. In Scenario III, reductions are 43.96% and 18.84%,
respectively. Voltage deviations are reduced in both Scenario
II and Scenario III. With inter-area coordination in Scenario
III, voltage control performance approximates the model-
based centralized optimization in Scenario IV. To supplement
second-level analysis, control horizon ∆t is set as 0.5 minutes
for quick response to frequent changes of DGs.

Scenario V: control horizon ∆t is set as 0.5 minutes, the
proposed control method is adopted.

As shown in Fig. 14 and Table II, with smaller control
horizon ∆t, the data-driven predictive voltage control method
exhibits a faster response to voltage fluctuations, and control
robustness is improved. However, due to frequent changes in
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Fig. 14. Control performance comparison of 0.5-minutes control step. (a)
Active power loss. (b) Voltage profiles of Scenarios I and V. (c) Voltage
profiles Scenarios III and V.

operational strategies, power loss in Scenario V is increased
by 5.98% compared with Scenario III. In addition, reduction
of control horizon ∆t will lead to heavier communication and
computational burden. Thus, parameters of control horizon ∆t
should be chosen flexibly based on the practical operation sit-
uation.

D. Scalability Analysis

The modified IEEE 123-node test system is used to demen-
strate scalability of the data-driven predictive control method,
as shown in Fig. 15. Table III gives installation parameters of
DG. Four DESs are integrated into Nodes 55, 95, 117 and 123
with the same parameters in Section IV-A.

With the same scenarios set in Section IV-B, Table IV shows
operational results and Fig. 16 shows extreme system voltages.
It can be seen the data-driven predictive control method is also
applicable in large-scale ADNs.

In summary, the data-driven predictive voltage control
method for DES effectively alleviates voltage violations and
reduces power loss of ADNs. Through intra-area and inter-
area coordination, approximate optimal results can also be
achieved.

TABLE II
OPERATIONAL RESULTS OF THE THREE SCENARIOS

Scenario Minimum
voltage (p.u.)

Maximum
voltage (p.u.)

Index of voltage
deviation (p.u.)

Power loss
(kW·h)

I 0.9291 1.0547 0.0182 986.83
III 0.9608 1.0341 0.0102 800.88
V 0.9640 1.0283 0.0093 848.81

TABLE III
INSTALLATION PARAMETERS OF DGS

Type Node Capacity/kVA (kWp)
WT 28, 92, 108 1000
PV 33, 42, 86, 97, 111, 116 500

TABLE IV
OPERATIONAL RESULTS OF TWO SCENARIOS

Scenario Minimum
voltage (p.u.)

Maximum
voltage (p.u.)

Index of voltage
deviation (p.u.)

Power loss
(kW·h)

I 0.9114 1.0291 0.0308 1952.3
III 0.9764 1.0207 0.0047 1407.8
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Fig. 16. Operational results of Scenarios I and III. (a) Active power loss.
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V. CONCLUSION

A data-driven predictive control method is proposed for
DES, which is applicable without accurate network parame-
ters. Based on measurement data, a rolling optimization frame-
work can be utilized to dynamically determine operational
strategies of DES with time-series constraints of SOC. In ad-
dition, to avoid operational conflicts caused by uncoordinated
regulation among devices, a data-driven coordinated method
is developed for DES and DGs in each area. The intra-area
control model is formulated with the superposition relationship
of voltage control effect. Through boundary information inter-
action, data-driven control performance is improved by inter-
area coordination control. Case studies illustrate that by fully
utilizing multi-source data, the proposed predictive control
method can effectively regulate DES and DGs to mitigate
voltage violations.

In future research, fusion of physical and data models can
be considered. With precise modeling, physical models have
accurate solutions. Inaccurate or absent parameters may affect
performance of a physical model. Relying on a large amount
of operational data, data-driven models can respond to state
changes rapidly. Fusion of physical and data models can merge
the advantages of both physical and data models, which is
promising for further study.
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