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Abstract—Edge data centers (EDCs) have been widely de-
veloped recently to supply delay-sensitive computing services,
which impose prohibitively increasing electricity costs for EDC
operators. This paper presents a new spatiotemporal reallocation
(STR) method for energy management in EDCs. This method
uses spare resources, including servers and energy storage
systems (ESSs) within EDCs to reduce energy costs based on both
spatial and temporal features of spare resources. This solution: 1)
reallocates flexible workload between EDCs within one cluster;
and 2) coordinates the electricity load of data processing, ESSs
and distributed energy resources (DERs) within one EDC cluster
to gain benefits from flexible electricity tariffs. In addition, this
paper for the first time develops a Bit-Watt transformation to
simplify the STR method and represent the relationship between
data workload and electricity consumption of EDCs. Case studies
justifying the developed STR method delivers satisfying cost
reductions with robustness. The STR method fully utilized both
spatial and temporal features of spare resources in EDCs to gain
benefits from 1) varying electricity tariffs, and 2) maximumly
consuming DER generation.

Index Terms—Edge data centers, electricity costs reduction,
power control, power market, workload migration.

I. INTRODUCTION

ACCOMMODATED by 5G technologies, the requirement
for ultra-reliable, low-delay and high-security computing

services is recently growing rapidly on the edge side - edge
computing (EC) [1], [2]. To meet these needs, the extension
of international data centres (IDCs), edge data centres (EDCs)
are being widely deployed for edge users [3]–[7]. At present,
a mesh network of 100 EDCs with 6.3 MW each in the
UK is under construction, targeting 7000 sites over the next
5 years [6]. Power consumption of EC in China is predicted
to reach 39 GW by 2025 [8]. Power demand of EDCs is one
main contributor to total EC power consumption, as each EDC
consumes approximately 18–55 MW per year [9]. It, therefore,
raises a problem for EDC operators in how to efficiently
reallocate resources in EDCs to minimize electricity costs.
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Many studies have addressed the electricity cost problem
for IDCs to support reliable operations of Internet online
services [10]. References [10]–[12] developed workload mi-
gration methods to reduce electricity costs, where the work-
load is distributed between different IDCs. Thus, IDCs in
low-electricity-price locations can take up more workload to
reduce total costs. Reference [13] utilized an energy storage
system (ESS) to reduce peak load and enable data centers
to participate in power markets. Reference [14] studied the
economic value of data centers integrated with distributed en-
ergy resources (DERs) as a virtual power plant. Reference [15]
combined EDC clusters into a power control model of IDCs
to share computing resources with IDCs. However, internal
cooperation between EDC clusters (a group of EDCs in a city
or area) was missing and the workload from IDCs could bring
too much computing pressures to EDCs.

The scale, location, operation and distribution characteristics
of IDCs and EDCs are very different [3].

• The scales of EDCs are much smaller than IDCs. With
fewer customers and smaller coverage ranges, the work-
load for EDCs could be more unstable with signifi-
cant fluctuations. This brings difficulties for workload
prediction for EDCs, thus high robustness of workload
dispatching is required.

• Small scale of EDCs also leads to more significant
differences between workload amounts in different EDCs.
EDCs for commercial customers and residential cus-
tomers could lead to very different workload amounts
over time, which brings more value for workload migra-
tion between them.

• Geographical distance between EDCs in one cluster is
much shorter than between IDCs, leading to an ignorable
communication delay between EDCs.

• The number of EDCs in a city could be large with
different operators. Thus, optimisation could be time-
consuming with a high dimension of decision variables.

These differences imply that existing bespoke approaches
for reducing electricity costs of IDCs are not fully applicable
to EDCs. A customised approach is required to accommodate
EDCs with different characteristics to reduce electricity costs.
Since price differences still exist for EDCs that are 1) op-
erated by different companies, and 2) connected to different
transmission buses or voltage levels of distribution networks,
workload migration still has huge value for EDC clusters.
Furthermore, compared with IDCs, short transmission delay
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between EDCs in the same cluster provide more conveniences
and higher feasibility for workload migration.

To address the above problems, this paper presents a spa-
tiotemporal reallocation (STR) method to reduce electricity
costs in EDCs. It first proposes a power consumption model for
EDCs, which contains a Bit-Watt transformation that reveals
the relationship between workload and power consumption of
EDCs. Then, a STR method is developed for EDC clusters,
which has four steps: 1) scheduling day-ahead workload
migration on a special dimension to reduce electricity costs;
2) optimising ESS operation on the temporal dimension to
gain benefits from flexible electricity time-of-use tariffs; 3)
rescheduling ESS and reallocating workflow between EDCs
to maximally consume local DERs; 4) adjusting workload
migration between EDCs according to real-time data arriving
rate.

Main optimisation on spatial and temporal dimension are
decoupled and performed by stages 1 and 2, only redundant
DER tracking requires spatiotemporal optimisation in stage 3.
This simplifies the optimisation complexity by solving several
sub-optimisations with a small dimension of variables. Stage
4 can effectively avoid errors of workload prediction in EDCs,
which is essential for robustness of workload migration among
EDCs [16]. The proposed method is tested on a 15-EDC
cluster with different electricity tariffs. Results justify the
efficiency and robustness of the proposed method in electricity
cost reduction for EDCs.

It should be noted the energy storage (ES) capacity for the
Uninterrupted Power Supply (UPS) is not included in the STR
method. Since the newly built EDCs tend to be constructed in
a multi-station mode with ES stations [3]–[5], [7], the ESS
resource in EDCs is valuable to reduce electricity costs for
its flexibility of load shifting [17]. Therefore, the EDCs with
or without ESSs are all considered in the STR method to
maximumly utilize resources in EDC clusters. In addition,
EDCs could be operated by different operators, thus a third-
party entity is assumed to be responsible to perform this STR
method. This entity can coordinate different EDCs to minimise
their power cost and charge a service fee.

The innovations of the paper are as follows:

• This paper for the first time considers both the spatial and
temporal features of spare resources (servers and ESSs)
in EDCs to obtain economic benefits from varying local
electricity tariffs. Comparatively, the spatial and temporal
features are separately optimized in the workload migra-
tion and energy management respectively, in traditional
ways for IDCs.

• A rolling adjustment stage is developed in the STR
method to resolve high uncertainty in workload furcating
for EDCs, which can enhance robustness of optimisation

with safety margins by considering real-time changes in
the workload migration optimization.

• To reduce the number of decision variables in the op-
timization of EDC clusters, a novel Bit-Watt transfor-
mation is developed in the STR method, which models
the relationship between EDC power consumption and
computing workload amount. Besides, optimisation is
decoupled into spatial and temporal dimensions in stages
1–3 to reduce the dimension of decision variables.

The rest of this paper is organised as follows: The back-
ground and definition of EDCs are presented in Section II. The
EDC energy consumption model with Bit-Watt transformation
is developed in Section III. Section IV presents the proposed
STR method. A case study of the proposed method and
related analysis are presented in Section V. The conclusion
is summarised in Section VI.

II. BACKGROUND AND DEFINITION OF EDCS

Many EDCs have been constructed or under-construction
[3]–[7], where the largest EDC can consume 250 times the
electricity of the smallest one. To reduce analysis complexity,
we categorise EDCs into 3 groups in Table I according to 1)
the position paper ‘edge data centers’ of Telecommunications
Industry Association claimed the operation power of EDCs
ranges from 50 to 150 KW, so a regular EDC is defined
according to it [9], and 2) the number of EDCs per million
population is based on [18] according to the equipment size of
EDCs. Considering supersized EDCs can be operated as IDCs
and micro-EDCs are deployed with very limited servers, this
paper mainly focuses on regular EDCs, which are centrally
controlled by EDC operators.

By combining the common features and possible devices
of different EDCs [3], [4], [6], [7], the hardware structure of
EDC is shown in Fig. 1. The IT equipment, cooling system
and other devices are the main electricity load in EDCs. There
are two flows within EDCs: power and data.

• For power flows, energy from the distribution network
and DERs are consumed by EDC devices or stored by
ESS.

• For data flows, the workload, which could be from
local users, front portal, and other EDCs, is received by
network devices and processed by servers.

Other multi-station loads like base stations possibly exist in
EDCs, decided by the scale and operators of EDCs. Besides,
for EDCs with a high proportion of DERs, generation could
be larger than EDC power load, which decreases operation
economy of EDCs if residual DERs cannot be sold to the
power grid. Thus, how to reallocate spare servers and ESSs
in EDC clusters to consume residual DERs is important to
investigate in the STR method.

TABLE I
CLASSIFICATION OF EDCS WITH TYPICAL REAL EXAMPLES

Classification of EDC Maximum power Size EDCs/million population Example
Supersize EDC 150+ KW 10+ racks 1 EDC Proximity Data Centres Ltd.
Regular EDC 50–150 KW 2–10 racks 15 EDCs American Tower
Micro-EDC 50 KW max 2 racks max 300 EDCs RISE ICE Datacentres research facility
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Fig. 1. The hardware structure for EDCs.

III. WORKLOAD-BASED POWER CONSUMPTION IN EDCS

This section develops a workload-based power consump-
tion model for EDCs. First, Section A develops a power
consumption model of EDCs based on the number of active
servers. Section B develops a Bit-Watt transformation to obtain
power consumption in any EDC from the server workload.
This transformation reveals the relationship between workload
amount and energy consumption within EDCs. The STR
optimization model only requires workload amount as the
decision variable, thus simplifying the optimization. Section C
formulates the workload-based power consumption of EDCs.

A. Power Consumption Modeling for EDCs

Power consumption of ith EDC at the tth time slot, LEDC
t
i,

can be divided into two parts: real loads related to the number
of active servers and possible loads irrelevant to the number
of active servers, as shown in (1). In this paper, t means the
tth time slot and is written as the superscripts of the variables.
The servers power consumption LSer

t
i(n

t
i) is decided by nti, the

number of active servers of ith EDC at the tth time slot [10],
defined in (2). Power consumption caused by network devices
LNet

t
i(n

t
i) can be presented by a linear function in (3) with

coefficients αNeti and βNeti. This is based on the k-ary fat-tree,
which is a widely used three-layer topology (edge, aggregation
and core) for switches [19], [20]. Power consumption of the
cooling system LCool

t
i(n

t
i) is obtained by (4) based on a joint

cooling strategy [21], [22] that utilizes external-internal air
circulation.

LEDC
t
i = LSer

t
i(n

t
i) + LNet

t
i(n

t
i) + LCool

t
i(n

t
i)

+ µiϕ(LAdt
t
i + LCES

t
i −GDES

t
i −GDER

t
i)

= LRSer
t
i(n

t
i) + µiLNSer

t
i (1)

∀i ∈ I, t ∈ T, nti ∈ Ni, µiϕ ∈


µ1ES µ1DER µ1Adt

µ2ES µ2DER µ2Adt

. . .
µIES µIDER µIAdt


LSer

t
i(n

t
i) = (γif

εi
i + δi)n

t
i (2)

LNet
t
i(n

t
i) = αNetin

t
i + βNeti (3)

LCoo
t
i(n

t
i) = coei(LSer

t
i(n

t
i) + LNet

t

i(n
t
i) +Ht

i ) (4)

where, LAdt
t
i and LCES

t
i are the power consumption of ad-

ditional other multi-station loads (shown in Fig. 1), and ES
charging, respectively, in the ith EDC at the tth time slot,
GDES

t
i and GDER

t
i are the power output from ES discharging

and DERs, LRSer
t
i and LNSer

t
i are the real loads and possible

loads, µi is a matrix to represent the existence of multi-station
resources. Ni is the total number of servers in ith EDC, I
is the number of EDCs in the distribution network, T is the
scheduling period, fi is the average CPU frequency of servers,
εi, γi and δi are constant coefficients, coei is the cooling
efficiency defined as heat removed by the cooling systems and
relative to power consumption, Ht

i is the heat from ES and
other devices in a multi-station mode.

B. Bit-Watt Transformation in EDCs

To reduce electricity costs, the developed STR method
reallocates workload between EDCs. However, in (1)–(4), the
variable for calculating power consumption is the number of
active servers, not the magnitude of workload. In the power
consumption model for EDCs, therefore, the number of active
servers should be replaced by the workload.

This section develops a Bit-Watt transformation. It reveals
the relationship between workload and power consumption
for any EDC. According toM/M/n queueing theory [10], [23],
workload processing time Tpro

t
i is described by the number of

active servers, CPU frequency and workload, as shown in (5)–
(6) with constraints in (7)–(9). The M/M/n queueing theory is
a multi-server queueing model governed by a Poisson process.

Tpro
t
i =

1

ϑifinti − λti
, ∀i ∈ I, t ∈ T, nti ∈ Ni (5)

λti =

J∑
j=1

λtij + λti0 +

I∑
x=1

λtix −
I∑
x=1

λtxi, x 6= i (6)

0 < Tpro
t
i ≤ Delayi (7)

I∑
i=1

J∑
j=1

λtij = λtSer,

I∑
i=1

λti0 = λtEDC (8)

I∑
i=1

λti = λtSer + λtEDC = λtTotal (9)

where, λtij and λtix are the migrated workload from front-end
portal server j and xth EDC to ith EDC at tth time slot,
ϑi is the frequency efficiency to convert CPU frequency into
server service rate, J is the total number of front-end web
portal servers, λti0 is the workload from local users, λtTotal is
the total shiftable workload amount at tth time slot, Delayi is
the maximum processing delay.
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Given that Tpro
t
i > 0, (5) is converted to (10). Considering

the number of active servers is an integer (10) is an approxi-
mate formula. Second, since the derivative of nti with respect
to Tpro

t
i is negative as shown in (11), the number of active

servers decreases with increasing processing time. In addition,
power load related to the number of active servers increases
with the increasing number of active servers, as proved by
(12). Therefore, inequality (13) holds. Thus, with increasing
data processing time, electricity consumption decreases. This
implies that if the processing time equals the allowed maxi-
mum processing delay, electricity consumption is minimal, as
shown in (14).

nti ≈
(
1 + λtiTpro

t
i

) (
ϑifiTpro

t
i

)−1
(10)

∂nti
∂Tpro

t
i

= − 1

ϑfiTpro
t
i

2 ≤ 0 (11)

∂LRSer
t
i(n

t
i)

∂nti
= (coei + 1) (γif

εi
i + δi + αNeti) ≥ 0 (12)

LRSer
t
i(n

t
i) ≥ LRSer

t
i

(
1 + λtiDelayi
ϑfiDelayi

)
(13)

minLRSer
t
i(n

t
i)

Tpro
t
i
=Delayi−−−−−−−→ minLRSer

t
i(λ

t
i) (14)

C. Workload-Based Power Consumption Model

Based on the Bit-Watt transformation, the minimum power
consumption of EDCs is converted as the workload-based
power consumption model by combining (1)–(4), (10) and
(14), as shown in (15). This formula is linear with constant
coefficients ai and bi in (16)–(17), which can be obtained by
other constant coefficients. In this way, EDC power consump-
tion is calculated by the workload amount directly.

minLRSer
t
i = min

(
aiλ

t
i + bi

)
(15)

ai =
(coei + 1) (γif

εi
i + δi + αNeti)

ϑifi
(16)

bi =
(coei + 1) (γif

εi
i + δi + αNeti)

ϑfiDelayi
+ (coei + 1)βNeti + coeiHt

i (17)

IV. FORMULATION OF STR METHOD FOR EDCS

This section develops an STR method to optimally manage
power flows between EDCs to achieve minimal electricity
costs for an EDC cluster. The STR method contains 4 main
stages as shown in Fig. 2.

• Stage 1 schedules the day-ahead workload migration
scheme to allocate workload between EDCs to obtain
minimum electricity costs within one EDC cluster.

• Stage 2 optimises ESS discharging at a high-price period
and charging at a low-price period. Meanwhile, ESS
is discharged at peak periods and charged at off-peak
periods for any EDC.

• Stage 3 reallocates EDCs’ power consumption to fol-
low local DER generation to consume DER genera-
tion locally. The developed spatiotemporal DER tracking
method utilizes available ESSs and free servers in other
EDCs to follow DER output, as much as possible.

No

No

Workload migration scheduling
on spatial dimension at time t 

t = t +1

t =1

Day ahead
electricity prices

of all EDCs 

Day-ahead ESS operation and
workload migration scheme

End

Rolling adjustment
method for real-time
workload migration 

Rolling modified ESS operation
and workload migration scheme

Stage 1

Start

ESS optimisation on time dimension
Day ahead DER

and workload
prediction 

Spatio-temporal DER
tracking method 

t=1, i=1

i = I ?

t = t +1i = i +1
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No

Stage 2
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t = T ?

t = T ?
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Yes

DER output > loads

at time t in EDC i ?

Stage 4

Only spatial dimension

Spaciotemporal dimension
Only temporal dimension 

Fig. 2. The framework of the STR method.

• Stage 4 performs a rolling-based adjustment method to
guarantee all workload is timely processed, although un-
der unexpected extreme scenarios, e.g., EDCs workload
accidentally skyrockets.

Stage 1 and 2 provide the basic solution for operation of
ESS and workload, and Stage 3 and 4 are a crucial supplement
to stages 1 and 2. Specifically, stage 3 enables a developed
method to fully consume possible wasted DER generation in
previous stages, while stage 4 provides real-time adjustment
to avoid the effects of inaccurate workload prediction. For the
4 stages of the STR method, spatial, temporal and both spatial
and temporal (Spatiotemporal) dimensions are considered.
These three dimensions promote efficiency in reducing elec-
tricity costs and maximally consuming residual DER locally.
The detailed benefits of the four stages will be demonstrated
and discussed in the case study in Section V.

A. Optimization of Workload Migration

This section defines the cost function for applying workload
migration. Workload reallocated from one EDC to another
could bring additional costs. Suppose there are two EDCs,
A and B, owned by different operators. When the workload is
migrated from A to B, A should pay B the marginal workload
cost Priλtx and additional server rent fee PriAdx. If the commu-
nication bandwidth between two ECs is occupied, it leads to



LI et al.: SPATIO-TEMPORAL REALLOCATION METHOD FOR ENERGY MANAGEMENT IN EDGE DATA CENTERS 1905

additional bandwidth usage fees for EDC A. Third, workload
migration also brings additional communication delay to EDC
users, which may cause additional costs for EDC operators.

Bandwidth usage and delay-caused costs are decided by
communication distance Distxi between EDCs. Thus, the costs
of workload migration at tth time slot for the ith EDC, CWM

t
i,

is given by (18). Priλtx is the marginal workload cost for the
xth EDC (x 6= i) at the tth time slot. In this paper, the
marginal workload cost is set to the incremental electricity
cost for the EDC that receives migrated workload, as shown
in (19).

CWM
t
i =

I∑
x=1

λtxi
(
Priλtx + PriAdx + DistxiCBD

t
xi

)
−

I∑
x=1

λtix
(
Priλti + PriAdi

)
(18)

Priλx = PriEtx
∂LEDC

t
x

∂λtx
= PriEtxax (19)

where, CBDtxi is the unit cost of bandwidth occupation and
additional delay between the xth and the ith EDC.

By combining (15)–(17) and the workload migration costs
in (18), the optimization objective function of day-ahead
workload migration scheduling on spatial dimension is given
by (20). It is subjected to the constraints of available server
numbers, total workload amount and extremely time-sensitive
or privacy-sensitive workload amounts, given in (22)–(24).
µfix

t
i is the proportion of the extremely delay-sensitive or

privacy-sensitive workloads to the total workload at the ith

EDC at the tth time slot.

fStage1 =

T∑
t=1

f tWM (20)

f tWM = min

I∑
i=1

(
PritiLEDC

t
i + CWM

t
i

)
= min

I∑
i=1

(
PritiLRSer

t
i(λ

t
i) + CWM

t
i(λ

t
i)
)

+

I∑
i=1

PritiµiLNSer
t
i (21)

s.t.
(
1 + λtiDelayi

) (
ϑfiDelayi

)−1 ≤ Ni (22)
I∑
i=1

λti ≥ λtTotal (23)

λti ≥ µfix
t
i

 J∑
j=1

λtij + λti0

 (24)

B. Optimization of ESS

The objective for ESS operation aims to reduce electricity
costs and peak load, as shown in (25). µESS is a coefficient to
ensure that when minimizing the secondary objective fESS2, it
will not affect the results of the main objective fESS1. fESS1

is to utilize the price variations on different time slots to gain
profits, presented in (26). Thus, the secondary optimisation

objective is to locally consume DERs and reduce peak load
for having a lower network price for EDCs, as given by
(27). The optimization of ESS is subjected to the capacity,
emergency margin, power balance and charging/discharging
rate of batteries as in (28)–(32).

fStage2 = fESS1 + µESSfESS2 (25)

fESS1 = min

T∑
t=1

PriEtx(LCES
t
i −GDES

t
i) (26)

fESS2 = min

T∑
t=1

(LEDC
t
i + LCES

t
i −GDES

t
i)

2 (27)

s.t. SoCi ≤
t∑

w=1

LCES
w
i ηCi −

t∑
w=1

GDES
w
i

ηDi
≤ SoCi, w ∈ T

(28)
t∑

w=1

LCES
w
i ηCi −

t∑
w=1

GDES
w
i

ηDi
≥ EM i (29)

T∑
t=1

LCES
t
iηCi =

T∑
t=1

GDES
t
i

ηDi
≤ SoCi (30)

T∑
t=1

∣∣LCES
t
iGDES

t
i

∣∣ = 0 (31)

LCES
t
i ≤ RCESi, GDES

t
i ≤ RDESi (32)

where, fstage2, fESS1 and fESS2 are the total, main, and sec-
ondary objective function of ESS optimization on the temporal
dimension, ηCi and ηDi are the charging and discharging effi-
ciency of ESS in ith EDC, SoCi and SoCi are the maximum
and minimum of the ESS SoC, RCESi and RDESi are the
charging and discharging rate of the ESS, EM i is the energy
margin for the UPS in ith EDC.

C. Spatiotemporal DER Tracking Method

This section develops a DER tracking method for reschedul-
ing ESS operations and mitigating workload on both temporal
and spatial dimensions on a day-ahead basis. There are many
ways to consume residual generation from local DERs for
EDCs, such as increasing EDC workload and rescheduling the
ESS operation scheme. This section defines the cost function
for EDCs. Suppose the ith EDC has residual DER generation
at a given time slot. Reallocating workload and rescheduling
ESS bring the following costs and benefits:

1) If the ith EDC is scheduled to send its workload to other
EDCs, cancelling sending a given amount of the workload
saves overall electricity costs and workload migration cost for
the ith EDC, as given by (33).

2) Allocating more workload from other EDCs to the
ith EDC to consume DER’s residual generation and prevent
purchasing electricity from the grid for other EDCs. However,
workload migration costs increase when transferring the work-
load from other EDCs to the ith EDC. The cost function is
given by (34).

3) Rescheduling the operation scheme of the ith EDC’s ESS
to consume local residual generation, thus gaining benefits
from flexible electricity tariffs, e.g., time of use tariffs (TOU).
The cost function is given by (35) and (36).
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Thus, this section is to find an optimal way to absorb the
residual DERs with maximum profits or minimum costs as
shown in (37) with constraints (39)–(40).

∆C1
t
i = −

I∑
x=1

∆λtxi
(
Priλtx + DistxiCBD

t
xi

)
(33)

∆C4
t
i = −

I∑
x=1

∆λtix
((

Priλtx − DistixCBD
t
ix

))
(34)

∆C2
t
i = −

T∑
t=1

∆LCES
t
i ∗ PriEtx (35)

∆C3
t
i = −

T∑
t=1

∆GDES
t
i ∗ PriEtx (36)

fStage3 =

T∑
t=1

I∑
i=1

4∑
q=1

∆Cq
t
i (37)

s.t. (21)–(24), (29)–(31), and (38)

ai

I∑
x=1

(
∆λtix + ∆λtxi

)
+ bi + ∆LCES

t
i =

∣∣min
(
LEDC

t
i, 0
)∣∣

(39)
∆λtix∆λtxi = 0 (40)

D. Rolling Adjustment for Real-Time Workload Migration

Considering the error in day-ahead workload prediction, this
section develops a rolling method to adjust workload in real-
time. Because prediction errors are normally much less than
the total workload, this method is not to reduce electricity costs
but to ensure all workload is timely processed by the EDC
clusters with a safety margin, i.e., safety margin here refers
to a certain number of free servers in EDCs for emergency
needs, such as unexpected workload explosion.

A flowchart of the proposed method is given in Fig. 3. The
rolling period ∆t is less than one hour, such as 5 minutes or
10 minutes. On a real-time basis, EDCs continuously calculate
their duty ratio every second. The duty ratio of the xth EDC at
time t, ρtx, is the percentage of the utilized servers in EDCs, as
given by (41). If the duty ratio has not achieved its maximum
value (such as 90% in this paper) during the rolling period for
the xth EDC, that EDC will send the number of its available

Cloud node

Start EDC i

Duty ratio meets
the maximum value in

EDC i at time t ?

No Update the number of
free servers in EDCs

Proportionally send the extra
shiftable workload to nearby

EDCs according to their
updated numbers of free servers 

t =Δt ?

t = 0, start the timer

Yes

Yes

Number of free servers in EDC i

Fig. 3. Logic diagram of the rolling adjustment method.

servers mt
x to the control center at the end of the rolling period,

given by (42). Then, the cloud will update the numbers of free
servers for every EDC. Once ρtx meets its maximum value, the
extra workload will be sent to other nearby EDCs according
to the number of available servers sent to the cloud node. The
workload, sent from the overloaded EDC to nearby EDCs,
is given by (43)–(44). Nearby EDCs with larger numbers of
available servers will be proportionally reallocated with more
workload to keep a certain number of available servers in all
EDCs for emergency needs. µdis

t
xi is the distance coefficient

to ensure overloaded EDCs only migrate the extra workloads
to nearby EDCs for decreasing transformation delay.

ρtx =
1 + λtxDelayx
NxϑfxDelayx

× 100% (41)

mt
x = Nx −

1 + λtxDelayx
ϑfxDelayx

(42)

λover
t
xi = λover

t
i

mt
xµdis

t
xi∑I

x=1m
t
xµdis

t
xi

(43)

µdis
t
xi =

{
0, Distxi >

∑I
x=1 Distxi

I

1, Distxi ≤
∑I

x=1 Distxi

I

(44)

where, λover
t
xi and λover

t
i are the overload workload migrated

from the ith EDC to xth EDC and the total overload workload
amount in the ith EDC.

V. CASE DEMONSTRATION

In this section, an EDC cluster at a city level is used to
justify the proposed method. Section V-A presents the input
data. Section V-B, based on the STR model, performs the
optimisation result of the benchmark case without workload
migration costs. Section V-C, D and E perform the efficacy
of the proposed method under different scenarios: high work-
load migration costs, high-proportion DERs and unpredicted
workload growth, respectively.

A. Input Data

This case study adopts regular EDCs, defined in Table I,
in a city of one million population, where there will be 15
regular EDCs with a maximum load power of 50–150 KW.
The details of EDCs are presented in Table II. Considering
space limitation, the DERs are assumed as PV resources in
this case demonstration. Geographical distribution of an EDC
cluster can be found in Fig. 10 in Subsection V-E. EDCs,
located on the lower voltage level of the distribution network,
are supposed to be located closer to the city center.

Parameters of servers, network devices and cooling systems
in EDCs are assumed to be equal to each other to simplify the
calculation. The constant parameters [fi, ε, γi, δi, αNeti, βNeti,
ϑi] (defined in (2)–(3)) are set as [3.4, 3, 3.206, 68, 170, 0, 1]
according to [10], [12], [19], [24]. COEi (defined in (4))
is assumed to be constant with the value of 0.5 [21]. µfix

t
i

(defined in (24)) and LAdt
t
i (defined in (1)) are set as 10%

and 0. By combining data from HTTP requests to the NASA
Kennedy Space Centre WWW server in Florida [25], the
average workload arriving rate of EDCs is presented in Fig. 4.
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TABLE II
DETAILED INFORMATION OF 15 EDCS

EDC
number

Network voltage
(kV) and electricity
pricing method

Multi-station
mode

Maximum
power (kV)

Maximum
Workload

1 10 (FPT) None 80 465
2 10 (FPT) None 85 496
3 10 (FPT) None 90 527
4 10 (FPT) None 95 558
5 10 (FPT) None 100 589
6 10 (TOUT) ESS 105 620
7 10 (TOUT) ESS 110 652
8 35 (FPT) None 115 683
9 35 (FPT) None 120 714
10 35 (TOUT) ESS 125 745
11 35 (TOUT) ESS 130 776
12 35 (TOUT) ESS 135 807
13 35 (TOUT) ESS 140 838
14 110 (TOUT) ESS+DER 145 870
15 110 (TOUT) ESS+DER 150 901

Thetime-of-use tariff (TOUT) and fixed price tariff (FPT) are
set as the real electricity price in Beijing presented in Table III.

This section studies four different cases, presented in Sub-
sections V-B, C, D and E. The inputs setting of each case is
shown as follows:

1) Benchmark case: Energy capacity and maximum charg-
ing/discharging power of the ESS is set as 60 kWh and 10 kW,
respectively. Delayi, SoCi, SoCi and EMi are set as 3 ms,
100%, 0% and 10 kWh. DER output in EDC 14 and 15 is set
as half the DER output in Fig. 9 in Section V-D. Workload
migration cost is set as ¥0.

2) Case with workload migration cost: On top of the
benchmark case, this section considers workload migration
cost. This cost, defined in (18), is positively correlated with the
communication distance between two EDCs. Thus, workload
migration cost for each 1 km is set as proportional to the
average electricity costs of workload, given in (45). µBD is
set between 0 and 10% to reflect the benefits of the STR
method under different workload migration costs.

CBD
t
xi = DistxiµBD

∑I
i=1 Priλti

(∑J
j=1 λ

t
ij + λti0

)
λtTotal

(45)

3) Case considering high-level DERs: Compared to the
scenario in Section V-C, this scenario adds another additional
variable – one DER with the maximum power of 120 KW –
onto the energy consumption model of EDC 15 to demonstrate
the economic benefits of the spatiotemporal DER tracking
method. In this case µBD is set to 1%.

4) Case considering inaccurate workload predictions: The
prediction of workload and DER output normally has errors.
Thus, with the same inputs in the benchmark case, a number of
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Fig. 4. Average workload arriving rate of 15 EDCs.
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Fig. 5. Workload arriving rate of 15 EDCs optimised by the STR method.

random computing tasks, ranging from 0 to 20% of the original
workload, are added into the EDC cluster as the unexpected
workload. In this case µBD is set to 1%.

B. Benchmark Case

Based on rescheduling ESS operation and workload migra-
tion, the developed STR method can save 2.99% and 14.59%
on electricity costs, respectively. Workload migration gains
an average benefit of 2029 ¥/day for EDC operators. Fig. 5
presents an optimised workload arriving rate for 15 EDCs by
the STR method. Compared with the original case in Fig. 4, the
workload allocated in EDCs is more regular, as the workload
is primarily allocated to EDCs with low electricity costs in
each time slot. Reduced electricity consumption by migrating
workload between EDCs throughout 24 hours is presented in
Fig. 6 (µBD = 0%), which also indicates that electricity costs
are significantly reduced with larger electricity price variations.

Since the coefficients of servers in EDCs could be various in
the practical, sensitive analysis of maximum delay, Delay and
CPU frequency efficiency ϑi are presented in Fig. 7. These two
coefficients determine how much workload can be processed
by servers in EDCs. With increase of these two coefficients,
electricity reduction rapidly increases then slowly converges
to a certain value. This value is the ideal optimal reallocation
result where all workload has been allocated to low-electricity-

TABLE III
ELECTRICITY PRICE OF INDUSTRIAL AND COMMERCIAL USERS IN BEIJING

Network voltage
level (kV)

TOUT (¥/kWh)
FPT (¥/kWh)On-Peak

(10:00–15:00; 18:00–21:00)
Medium peak
(7:00–10:00; 15:00–18:00; 21:00–23:00)

Off-peak
(23:00–7:00)

1-10 1.28 0.77 0.27 0.81
35 1.26 0.75 0.25 0.79
110 1.25 0.73 0.24 0.77
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price EDCs.

C. Case with Workload Migration Costs

With increasing workload migration cost, efficacy of the
STR method decreases. The relationship between the per-
centage of electricity cost reduction percentage and workload
migration costs is nearly linear with a slope of −0.75. When
µBD = 5%, the optimised workload arriving rate for each
EDC and overall hourly electricity reduction are presented in
Fig. 8 and 6, respectively. Because of the high migration cost
for the case in Fig. 8, the optimised workload arriving rate does
not achieve that of the benchmark case. Particularly, in Fig. 6
(µBD = 5%), some time slots, e.g., time slots 7th–9th, 15th–
17th and 21st–22nd, do not gain electricity cost reductions.
It is because, throughout those time slots, electricity price
variation is not significant, and thus it is not cost-effective
for EDCs to reallocate their workload to others.

Figure 9 presents the workload migration scheme for EDC 9
with µBD = 0 and 5%. A workload migration scheme with 5%
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Fig. 6. Electricity cost reduction amount in the EDC cluster during 24 hours
with µBD = 0% (no workload migration costs) and 5%.
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Fig. 7. Sensitive analysis of maximum delay Delay and CPU frequency
efficiency ϑi.
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Fig. 8. Workload arriving rate of EDCs with µBD = 5%.

µBD is simpler and more regular, thus simplifying workload
dispatching complexity in reality. At this time, only EDCs
near EDC 9 share their workload and free server resources
with EDC 9, such as EDC 6 and 10. Moreover, on the data
processing side, the simplified workload migration scheme
(shown in Fig. 9) also prevents higher data transmission delay
compared to the benchmark case.

D. Case Considering High-Level DERs

The original load, DER output, ESS operation and DER
tracking results are presented in Fig. 10. The dashed area in
Fig. 10 presents that not all of DER output is utilized through-
out time slots 10th–14th even if the residual DER cannot be
injected into the grid. By using the DER tracking method
in Subsection IV-C, residual DER output in EDC 15 can
be fully absorbed by migrating workloads from other EDCs.
Totally, the EDC clusters save electricity costs of ¥163.97 and
pay additional workload migration costs of ¥6.70 in one day.
This section also justifies the cost of reallocating workload
flow to tracking DER outputs is cheaper than using the ESS
to track DER outputs. If ESS dispatching supplies residual-
workload-induced power consumption, only ¥36.50 profit is
gained because of limited capacity and lower electricity price.
It is much lower than the optimal results by reallocating the
workload flow in EDC 15.

E. Case Considering Inaccurate Workload Predictions

As mentioned in the Section I, prediction of workload and
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DER output could be difficult for EDCs because of their
small scale compared with IDCs, thus having the possibility
to overload EDCs if unexpected real-time workload increases.
The rolling adjustment method in STR, developed in Subsec-
tion IV-D, addresses this problem by proportionally sending
extra workloads to free servers in nearby EDCs.

As mentioned in Subsection V-A, a number of random
computing tasks are added to the EDC cluster as an unexpected
workload. Taking the overload condition of EDC 9 at the 10th

time slot as an example, overload tasks are required to migrate
out from EDC 9 to nearby EDCs, such as EDC 3–7, 10–11
and 13, as shown in Fig. 11. However, at this time EDC 3–5
(connecting by red arrows with EDC 9) are already working
at full capacity. Thus, the available migrating target is EDC
6–7, 10–11, and 13, which are connected by green arrows.
Nearby EDCs with free servers proportionally share the extra
workload in EDC 9 thus all workloads can be successfully
processed with a comparatively small delay. This increases
the robustness of the STR method working in real-time with
further unexpected workload increases.
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Fig. 11. Geographical workload migration scheme of EDC 9.

Because the rolling adjustment method processes all work-
load within a safety margin rather than economic operation,
efficacy of the STR method to reduce electricity costs is
reduced with increasing workload uncertainty. However, even
if the uncertainty is increased to 20% of the original workload,
the proposed DSCP method can still reduce over 12% electri
city costs. Thus, although with a work prediction error of 20%,
the proposed method also brings satisfactory benefits to EDC
operators.

VI. CONCLUSION

This paper develops a 4-stage STR method to reduce elec-
tricity costs in EDC clusters via reallocating workload and ESS
capacity between EDCs. The proposed method is demonstrated
in an EDC cluster and the results testify to the advantages
of the proposed method in reducing electricity costs with
strong robustness. Through extensive demonstration, the key
observations are:

• Limited literature studied workload migration between
EDCs. This work is the first of its kind, it illustrates that,
with a rational optimisation method and coordination with
ESS, workload migration between EDCs is a practical
way to deliver the benefits of energy cost reduction.

• A Bit-Watt transformation, by directly revealing the re-
lationship between power consumption and the amount
of computing, reduces decision variables in the workload
migration optimization. This could build a mathematical
foundation for hybrid modeling of energy systems and
communication systems.

• A comprehensive power control method, the STR
method, is developed to fully utilize existing resources
in EDC clusters to reduce electricity costs. This method
consists of 4 stages to provide efficient services. De-
coupling of spatial and temporal dimensions in stages
1–3 reduces the dimension of decision variables. The
rolling adjustment method in stage 4 enhances robustness
of the STR method under high uncertaintiesin workload
forecasting.

• An interesting point found in the simulation is that
workload migration cost may have a positive impact
on the workload migration operations in EDC clusters.
Workload migration cost will bring additional costs to the
operators, but it also regularizes and simplifies workload
migration schemes in EDC clusters. This can enable
EDC operators to obtain simpler and fewer dispatching
operations.
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