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Abstract—Consensus has been widely used in distributed
control, where distributed individuals need to share their states
with their neighbors through communication links to achieve a
common goal. However, the objectives of existing consensus-based
control strategies for energy systems seldom address battery
degradation cost, which is an important performance indicator
to assess the performance and sustainability of battery energy
storage (BES) systems. In this paper, we propose a consensus-
based optimal control strategy for multi-microgrid systems, aim-
ing at multiple control objectives including minimizing battery
degradation cost. Distributed consensus is used to synchronize
the ratio of BES output power to BES state-of-charge (SoC)
among all microgrids while each microgrid is trying to reach its
individual optimality. In order to reduce the pressure of commu-
nication links and prevent excessive exposure of local information,
this ratio is the only state variable shared between microgrids.
Since our complex nonlinear problem might be difficult to solve
by traditional methods, we design a compressive sensing-based
gradient descent (CSGD) method to solve the control problem.
Numerical simulation results show that our control strategy
results in a 74.24% reduction in battery degradation cost on
average compared to the control method without considering
battery degradation. In addition, the compressive sensing method
causes an 89.12% reduction in computation time cost compared
to the traditional Monte Carlo (MC) method in solving the
control problem.

Index Terms—Battery degradation, compressive sensing,
consensus, distributed control, multi-microgrid.
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NOMENCLATURE

A. Abbreviations

BES Battery energy storage.
CSGD Compressive sensing-based gradient descent.
EI Energy Internet.
MC Monte Carlo.
MT Microturbine.
PV Photovoltaic.
SoC State-of-charge.
WT Wind turbine.

B. Variables, Constants, and Parameters in Microgrids

kMT
i Control gain of MT.
MGi The ith microgrid.
PBES
i (t) Working power of BES.
P in
i (t) Power transmitted to MGi.
PLoad
i (t) Working power of load.
Pmax
i Maximum working power of BES.
PMT
i (t) Working power of MT.
PPV
i (t) Working power of PV.
Qi BES battery capacity.
ri(t) Ratio of BES output power to BES SoC.
SoCi(t) SoC of the BES.
SoCmin

i ,
SoCmax

i

Recommended lower and upper bounds for
SoCi(t).

uMT
i (t) Control signal applied to MT.
WLoad

i (t) Scalar Wiener process that captures the un-
certainty in the change of PLoad

i (t).
WPV

i (t) Scalar Wiener process that captures the un-
certainty in the change of PPV

i (t).
ηi Charging/discharging coefficient of BES.
ηini , η

out
i Charging and discharging coefficients of

BES.
ρLoadi , σLoad

i System coefficients related to load.
ρMT
i Constant related to MT.
ρPV
i , σPV

i System coefficients related to PV.

C. Consensus Related

A = (aij)n×n Adjacent matrix of graph G.
ei(t) Consensus error.
G Undirected graph.
K = (kij)n×n Consensus coefficient matrix.
N (i) Neighbor set of MGi.
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uri (t) Local state feedback function during consensus
update.

V, E Vertex set and edge set of graph G.
κri Constant in consensus update.
(i, j) Communication link (edge) between MGi and

MGj .

D. Control Objectives

Jbes Performance indicator of BES working power
overflow.

Jcons Performance indicator of consensus error.
Jdc Performance indicator of battery degradation

cost.
Jsoc Performance indicator of SoC overflow.
ε1, · · · , ε4 Significant factors of each performance indica-

tor.
φbesi (t) Penalty function for exceeding the maximum

working power of BES.
φsoci (t) Penalty function for exceeding recommended

SoC bounds.

E. CSGD Algorithm

cj(t) Sparse coefficient.
x(t), λ(t) System state and conjugate state.
ξj Independent identically distributed random

variable sampled from the standard normal
distribution.

ϕj Orthonormal basis.
ψj(ξ) Hermite polynomial.

I. INTRODUCTION

NOWADAYS, people are paying more attention to the uti-
lization of renewable energy due to the energy shortage

crisis [1]. With a large number of renewable energy resource
power generation devices, such as photovoltaics (PV) or wind
turbines (WT), it becomes more and more difficult for tradi-
tional centralized energy systems to deal with the challenges
of the uncertainty, nonlinearity, and intermittence of renewable
energy [2]. In order to address this challenge, the concept of
Energy Internet (EI) is proposed, promoting deep integration
of energy technologies and information and communication
technologies. Therefore, new generation energy systems, as
well as their control strategies, are more likely to work in a
distributed manner [3].

In recent years, great progress has been made in the ap-
plication of distributed control methods in energy systems.
Compared with centralized controllers, distributed controllers
cooperate to achieve a common control objective by commu-
nicating locally with their neighbors [4]. This feature plays
an important role in promoting distributed control methods
especially when the distribution networks of different energy
forms are coupled with each other. In [5], a double-Newton
descent algorithm is designed to achieve fully distributed
multi-energy management in the sense that global energy
trading prices are optimized through the exchange of local
decision information within the neighborhood only. Consid-
ering that the restrictions of real-world communication links

might impact the control effect, the authors of [6] propose
a distributed control method, which improves the robustness
of active and reactive heat and electric power sharing against
transmission latency and bandwidth limit. The authors of [7]
carry out a noniterative decoupled scheduling method for the
combined heat and electric power system, and then in [8],
they propose an equivalent model-based noniterative operation
strategy to improve the efficiency of the coordination in a
similar way.

Consensus is a rule that tries to agree on a common value
by sharing local state information in a distributed system [9]
and is a fundamental problem in the study of distributed con-
trol [10]. In consensus-based control, distributed individuals
only need to update the consensus variable, i.e., the state
variable to synchronize via consensus, according to the shared
information received from its neighbors [11]. Consensus-
based control has attracted extensive attention due to its fast
convergence speed, limited information exchange, and strong
operation collaboration [12], [13]. The most prominent ad-
vantage of consensus-based control is that it helps to maintain
stability of the system in case of disturbance or failure [14],
[15].

In energy systems, especially in multi-microgrid systems,
consensus-based control is mainly adopted as a secondary
control scheme for economic dispatch [16], reactive and active
power sharing [17], and battery energy storage (BES) system
management [18]. The collaborative feature of consensus-
based control is also proficient in maintaining system stability
when the plug-and-play feature is enabled [19]. By selecting
different variables to reach consensus and state informa-
tion to share between microgrids, consensus-based control
can achieve many different control objectives such as social
welfare maximization, frequency/voltage regulation, and SoC
balance. Table I provides a detailed summary of the related
works on consensus-based control in energy systems.

In addition, when performing control on BES devices,
battery degradation is an important performance indicator to
consider in order to prevent overcontrol and extend battery
lifetime [29], [30]. Recently, battery degradation cost has
become an economic factor that is frequently included in many
related problems [29], [31]–[33]. In spite of this, there is no
consensus on how battery degradation cost is calculated. Some
works model degradation cost as a function of the depth of
discharge of the battery [34], [35], while others might believe
that the charging and discharging rates of the BES can also
affect the degradation degree in the battery [36], [37].

A. Motivations

Consensus algorithms adopted by most existing works re-
quire that each distributed individual updates the consensus
variable by a linear combination of that of its neighbors. These
algorithms are distinguished by their consensus coefficients,
i.e., the choice of the coefficients for the linear combination
during state update. Local adjacency [10] is the most used
consensus algorithm. The problem of adopting the consensus
coefficients of well-known algorithms is nevertheless that once
the update rules are known, the exact values of some local
states could be computable by others [38]. In order to prevent
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TABLE I
RELATED WORKS ON CONSENSUS-BASED CONTROL IN ENERGY SYSTEMS

Scenario Control Objective Consensus Variable Shared State Information Reference

Economic dispatch

Social welfare
maximization

Incremental cost Estimated power mismatch [16]

Minimizing generation
cost

Incremental cost Power mismatch [20]

Social welfare
maximization

Cost of consumed energy, cost
of produced energy

Cost of consumed energy, cost of produced energy [21]

Reactive and active
power sharing

Voltage regulation Critical bus voltage,
cumulative time after
triggering on load tap charger

Critical bus voltage, cumulative time interval after
triggering on load tap charger, measured reactive
power, predicted reactive power

[22]

Voltage regulation Reative power, voltage
amplitude

Reative power, voltage amplitude [23]

Frequency regulation Reative power, active power Reative power, active power, control parameters of
droop controllers

[24]

Energy consumption
reduction

Heat/electric power sharing
error

Proportional change of heat/electric power and its first
deviation, auxiliary control signal, heat/electric power
sharing error

[25]

BES management

SoC balancing Relative SoC variation Estimated average of lumped consensus parameter [26]
power control SoC, output power SoC, output power, voltage, current [27]
Voltage regulation Estimation of average SoC Utilization ratio [19]
PV voltage control Average bus voltage Ratio of BES output power to SoC, estimated average

voltage
[28]

unexpected information exposure, it would be reasonable to
find a new set of consensus coefficients for each control
problem.

Privacy is a practical concern in distributed control when
microgrids are owned and operated by different agents in the
absence of mutual trust. However, related works tend to share
too many local state variables during the process of consensus
(e.g., [22], [24], [25]). According to the authors of [16],
any local state variable can be seen as private information.
Similarly, [39] recommends that nothing about the distributed
individual should be revealed, and state variables and their
initial values need to be protected. Since local control data
might contain sensitive information, such as local energy
utilization of distributed users, oversharing of local informa-
tion could not only increase the risk of privacy exposure,
but also impose great burden on communication links. This
problem can be effectively mitigated by sharing as few state
variables as possible. Intermediate variables, on the contrary,
are considered noncritical and are safe for sharing among
distributed microgrids [16]. In addition, adding a noise to
each variable before it is shared is another way to enhance
privacy [38].

There have been many works synchronizing each BES SoC
by consensus because batteries will have higher efficiency and
longer life if their SoCs are kept in a certain range [40],
[41]. However, simple SoC synchronization could instead
cause overcharging/overdischarging and shorten the lifetime
of batteries when considering the impact of uncertain line
resistance [27]. Moreover, different initial SoC conditions of
batteries might produce circulating currents, and the perfor-
mance degradation caused by the circulating currents could be
alleviated by agreeing on a common value of this ratio [28].
As a result, taking this ratio as the consensus variable will lead
to nonlinearity in the control problem, which may be difficult
to solve.

In light of this, works such as [27] and [28] have proposed
different strategies to simplify the nonlinear control problem

mentioned above. In [28], the SoCs of all BESs are assumed
to be constant so the complicated nonlinear control problem
can be approximated by a linear problem, which oversimplifies
the problem and does not conform to reality. On the contrary,
the control method in [27] independently updates both output
power and SoC of a BES by their individual consensus update
equations. The problem is that since SoC is usually regarded
as a function of the BES output power, this method may
not work as it has been assumed. In fact, there are some
works that do not try to simplify the nonlinearity of their
problems. For example, the state update equation for the
consensus-based control for reactive power sharing in [42] has
a nonlinear form. Although its equilibrium and convergence
can be theoretically proved, the form of its consensus update
equation is so specialized that it can hardly be extended to
other problems. It is recommended that the complexity of
the problem should be maintained so as to make the control
strategy conform to practical scenarios.

In microgrids, BES devices are mainly used to absorb volt-
age and frequency fluctuations [43]. Inappropriate operation
of the BES that ignores battery degradation could shorten the
battery lifespan and even damage the system stability [44]. Un-
fortunately, existing works on consensus-based control seldom
consider battery degradation cost. Although different models
have been applied to evaluate battery degradation, they are
usually nonlinear functions of the factors considered [45],
which can greatly increase the difficulty of finding the optimal
control strategy. It would be more appropriate if the control
objective addresses the nonlinearity of minimizing of battery
degradation cost.

The dynamic programming method and the Monte Carlo
(MC) method are widely used in solving engineering control
problems [46], [47]. However, when solving high dimen-
sional problems, the dynamic programming method suffers
the curse of dimensionality, i.e., the significant computational
workload makes the problem almost impossible to solve as
the dimension of the problem increases. Moreover, the MC
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method usually has low efficiency in order to meet a practical
computation accuracy. The compressive sensing method, on
the other hand, emerged from the study of sparse signal
recovery [48]. It takes advantage of the sparsity of signals
to restore the original signals from fewer sampling points.
Compressive sensing has been applied to solve various high-
dimensional problems, such as image reconstruction [49],
network topology identification [50], and routing for sensor
networks [51]. Therefore, the compressive sensing method can
be used to overcome the difficulty of solving high-dimensional
control problems, which is hardly seen in existing works.

B. Contributions

The contributions of this paper are summarized as follows:
1) This paper proposes a consensus-based optimal con-

trol strategy for the distributed control of a regional multi-
microgrid network consisting of loads, PVs, and BESs. The
optimization objective includes minimization of battery degra-
dation cost caused by BES control, which is seldom considered
by existing consensus-based control methods. Distributed con-
sensus is used to synchronize the ratio of BES output power
to BES SoC among microgrids. Compared with most works
summarized in Table I, our control strategy chooses this ratio
as the only shared information between microgrids, which can
not only reduce the pressure on communication links, but also
avoid excessive exposure of local information. Our control
strategy reduces battery degradation cost by 74.24% compared
to the control method without considering battery degradation.

2) Our method of solving the control problem is deep in
theory as it integrates the knowledge and means of math-
ematics, control theory, and computer science. In more de-
tail, we first model the multi-microgrid system by stochastic
differential equations and formulate the control problem as
an optimization problem. Then, we solve the optimization
problem for consensus coefficients instead of adopting the
most popular consensus coefficients in case of unexpected
information exposure. Instead of simplifying the nonlinear
problem for solvability like [27], [28] that might cause dis-
crepancy from actual situations, we use a compressive sensing
method to solve the control problem while the nonlinearity
of the problem is preserved. Note that although compressive
sensing has become a popular strategy to deal with high-
dimensional problems, it has barely been applied in solving
practical control problems. This paper designs a compressive
sensing-based gradient descent (CSGD) method to solve our
nonlinear control problem. The computation efficiency is im-
proved by 89.12% compared with the traditional MC method,
and the number of sample points required is greatly reduced.

The remainder of this paper is organized as follows: Sec-
tion II models the dynamics of the multi-microgrid system we
study and explain in detail the proposed consensus-based con-
trol strategy; Section III describes the control objectives and
formulates the control strategy into an optimization problem;
Section IV proposes CSGD that solves the optimization prob-
lem based on compressive sensing; Section V evaluates the
performance of our control strategy by simulation; Section VI
concludes this paper.

II. SYSTEM DESCRIPTION

In this paper, we consider a system composed by n micro-
grids, each consisting of a load, a PV, a microturbine (MT),
and a BES device (as shown by Fig. 1). In addition to physical
links, communication links can also be established between
microgrids to enable state information sharing. Denote the ith

microgrid by MGi.

MGi

MGj

ri(t) rj(t)Communication link

Consensus

controller

Consensus

controller

Local

controller

ui(t)
r

ui   (t)Load

Microturbine

(MT)

Photovoltaic

(PV)
Battery energy

Storage (BES)Bus

MT

SoCi(t) , Pi    (t)
BES

Fig. 1. A typical microgrid.

In this section, we describe the dynamics of the multi-
microgrid system by stochastic differential equations and
provide details of the novel consensus-based control strategy
based on this system.

A. Dynamics of a Single Microgrid

Now we provide the description of the system dynamics of
MGi.
1) Dynamics of Load and Photovoltaic

Note the power of the load and the PV could be affected by
environmental disturbances (e.g., unexpected access of a high-
power device or sudden change of light intensity). This kind
of randomness and uncertainty can be modeled by stochastic
differential equations.

Specifically, define a probability space (Ω,F ,P), with Ω
being the sample space, F being the σ-algebra of the subsets
of Ω, and P being a probability measure. We can define two
independent scalar Wiener processes WLoad

i (t) and WPV
i (t)

in the probability space, which describe the short-term power
deviation in load and PV. Then the dynamics of the load and
the PV of MGi can be modeled as follows [52]–[54]:

dPLoad
i (t) = −ρLoadi PLoad

i (t)dt+ σLoad
i dWLoad

i (t) (1)

dPPV
i (t) = −ρPV

i PPV
i (t)dt+ σPV

i dWPV
i (t) (2)

where PLoad
i (t), PPV

i (t) are the working power of load and
PV, and ρLoadi , ρPV

i , σLoad
i , σPV

i are system coefficients.
The dynamics of stochastic power systems has been studied

for decades [55], [56]. When the energy system encounters
uncertainties (such as the unpredictable changes of solar
radiation, wind speed, or load power), some of the system pa-
rameters cannot be accurately measured by traditional methods
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due to modeling errors [53], [57]. For such dynamic systems,
the stochastic deviations cannot be simply described by the
ordinary differential equations. It is notable that stochastic
differential equations have been used to describe random
power deviations; see, e.g., [52], [53], [58].
2) Dynamics of Battery Energy Storage

SoC is an important indicator that evaluates the remaining
capacity of a BES device. The SoC of the ith BES is defined
as [59]:

dSoCi(t) = − ηi
3600Qi

PBES
i (t)dt (3)

where Qi is the battery capacity, PBES
i (t) is the output power

of the BES, and ηi is the charging/discharging coefficieint
defined by:

ηi =

{
ηini PBES

i (t) < 0

1/ηouti PBES
i (t) ≥ 0

The parameters ηini , η
out
i are related to the charging and

discharging efficiency of the BES. Note that the factor 3600
on the denominator of (3) arises due to unit conversion when
PBES
i (t) is in kW, t is in s, and Qi is in kW·h.
The output power of the BES should be limited within a

proper range:

0 ≤ |PBES
i (t)| ≤ Pmax

i (4)

where Pmax
i is the maximum working power of the BES. In

addition, the constraints for the BES SoC is given by:

0 < SoCi(t) < 1 (5)

In order to prevent overcharging and overdischarging, we
recommend that SoCi(t) is limited within the following
bounds:

SoCmin
i ≤ SoCi(t) ≤ SoCmax

i (6)

where SoCmin
i and SoCmax

i are the recommended lower and
upper bounds for SoCi(t), respectively. Note that the bounds
defined by (6) are soft in the sense that the value of SoCi(t)
might run out of the recommended range during actual opera-
tion, but it will be subjected to penalties (as will be described
in Section III-A3). On the contrary, SoCi(t) needs to strictly
follow the requirement given by (5).
3) Dynamics of Microturbine

The uncertainty of renewable energy leads to the imbalance
of power supply and demand in microgrids, thus seriously
affecting normal operation of the whole system. Therefore,
we add an MT that consumes traditional fossil energy in
each microgrid as a controllable power generation device. By
controlling the power generation of the MT, the shortage of
PV power generation can be made up.

Based on [54], the dynamics of the MT can be modeled as:

dPMT
i (t) = −ρMT

i [PMT
i (t)− kMT

i uMT
i (t)]dt (7)

where PMT
i (t) is the output power of the MT, uMT

i (t) ∈ [0, 1]
is the control input signal applied to the MT, ρMT

i is a constant,
and kMT

i is the control gain.

4) Power Balance
When power supply does not match power demand within

a microgrid, power transmission will take place between con-
nected microgrids. If power supply exceeds demand in MGi,
the oversupply can be used to power other microgrids. Other-
wise, the shortage in supply is mitigated by power transmission
from other microgrids. Suppose P in

i (t) is power transmitted to
MGi. When P in

i (t) > 0, energy flows from other microgrids
into MGi, and it is the other way if P in

i (t) < 0. As a result,
power in MGi should reach a balance:

PPV
i (t) + PMT

i (t) + PBES
i (t) + P in

i (t) = PLoad
i (t) (8)

B. Consensus-Based Control

We now describe a novel consensus-based control strategy
for management of the BES system.

The communication network of the system can be modeled
as an undirected graph G = (V, E), where vertex set V = {1,
2, · · · , n} corresponds to the collection of microgrids {MG1,
MG2, · · · ,MGn}. Edge set E ⊆ V × V contains all the
connection between microgrids. In more detail, edge (i, j) ∈ E
if and only if there is a communication connection between
MGi and MGj . Let N (i) ⊆ V be the neighbor set of MGi:

N (i) = {j ∈ V : (i, j) ∈ E}

It contains all the microgrids connected to MGi.
Then, we can define the adjacent matrix A = (aij)n×n as

follows:

aij =

{
1 if (i, j) ∈ E
0 otherwise

Usually, aii = 0 for all i ∈ V , meaning the microgrid
does not need a communication link to itself. In addition, the
undirected graph require that edge (i, j) and (j, i) stand for
the same communication link between MGi and MGj . As a
result, aij = aji for all i, j ∈ V . This adjacent matrix is used
to algebraically depict the topological structure of the multi-
microgrid network and plays an important role in consensus.

In distributed consensus, microgrids will reach an agreement
on some common state variable via communication links.
Consensus is achieved when the state variables of all micro-
grids are equal [16]. This consensus value can be seen as an
equilibrium point where microgrids reach a balance between
local control and global collaboration [60], [61].

SoC synchronization is classical application of consensus
in energy Internet with BES systems [40], [41]. However, as
we have mentioned in Section I, simple SoC synchronization
could cause degradation in system performance by causing
unexpected overcharging/overdischarging and circulating cur-
rents (readers can refer to [27], [28] for detailed arguments).
Therefore, the goal of the consensus in our control strategy
is to synchronize the ratio of BES output power to BES SoC
like [27], [28].

Formally, the ratio of BES output power PBES
i (t) to BES

SoC SoCi(t), denoted by ri(t), is defined as follows:

ri(t) =
PBES
i (t)

SoCi(t)
(9)
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which captures the relative variation rate of SoCi(t). A
consensus algorithm requires that MGi updates consensus
variable ri(t) based on the linear combination of the corre-
sponding states of its neighbors as the following (continuous
form) consensus update equation [62]:

ṙi(t) = κriu
r
i (t) (10)

where κri is a constant, and uri (·) is a local state feedback
function defined as:

uri (t) =

n∑
i=1

kij(rj(t)− ri(t)) (11)

where {kij}ni,j=1 is a set of consensus coefficients to be
determined. Since state information is only shared locally
between adjacent microgrids, we have kij = 0 if j /∈ N (i).
Moreover, the ratio ri(t) is the only state variable to be shared
with neighbor microgrids through communication links.

We say that consensus is achieved if all ri(t) eventually
become stable at a fixed value (or equilibrium point) r∗ [20]:

lim
t→∞

r1(t) = lim
t→∞

r2(t) = · · · = lim
t→∞

rn(t) = r∗ (12)

In other words, the goal of consensus is to synchronize the
relative change speed in the SoCs of all BESs. We can define
the consensus error ei(t) of MGi as follows [63]:

ei(t) =

n∑
i=1

aij(rj(t)− ri(t)) (13)

It captures the difference of ri of MGi with that of its
neighbors.

In the presence of the Wiener processes WLoad
i (t) and

WPV
i (t), the strict consensus requirement described by (12)

may not be achievable. In this case, the consensus requirement
is relaxed as [64]:

lim
t→∞

E[|ri(t)− r∗|] = 0, i = 1, 2, · · · , n (14)

where E[·] stands for mathematical expectation. In other
words, we say that consensus is reached as long as all ri(t)
have the same expectation r∗ even if they are not stabilized.

By combining (3), (9) and (10), we have:

dPBES
i (t) =

[
SoCi(t)u

r
i (t)− ηi(P

BES
i (t))2

3600QiSoC(t)

]
dt (15)

In other words, the update of the ratio ri(t) in (11) is
achieved by changing the BES output power PBES

i (t). How-
ever, the BES is not a controllable device. Its power can only
be changed when the multi-microgrid network is trying to keep
power balance according to (8). Therefore, we can force the
change in the BES power by controlling the MT to break the
power balance.

C. Dynamics of the Multi-Microgrid System

Now we describe the comprehensive system model of the
multi-microgrid EI system.

Let

xi(t) = [PLoad
i (t), PPV

i (t),SoCi(t), ri(t), P
MT
i (t)]T

ui(t) = [uri (t), uMT
i (t)]T, Wi(t) = [WLoad

i (t),WPV
i (t)]T

where the superscript “T” means matrix (vector) transpose.
Combining (1), (2), (3), (10), (7), the system dynamics of
MGi can be rewritten as:

dxi(t) = [Aixi(t) + fi(xi(t)) +Biui(t)]dt+ SidWi(t)
(16)

where

Ai =


−ρLoadi 0 0 0 0

0 −ρPV
i 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −ρMT

i



Bi =


0 0
0 0
0 0
κri 0
0 ρMT

i kMT
i

 , Si =


σLoad
i 0
0 σPV

i

0 0
0 0
0 0


are constant matrices, and

fi(xi(t)) =

[
0, 0, 0,− ηi

3600Qi
ri(t)SoCi(t), 0

]T
is a nonlinear function of xi(t).

Further, let

x(t) = [x1(t)T, x2(t)T, · · · , xn(t)T]T

u(t) = [u1(t)T, u2(t)T, · · · , un(t)T]T

W (t) = [W1(t)T,W2(t)T, · · · ,Wn(t)T]T

Then the dynamics of the multi-microgrid EI system can be
rewritten as:

dx(t) = [Ax(t) + f(x(t)) +Bu(t)]dt+ Sx(t)dW (t) (17)

where

A = diag[A1, A2, · · · , An], B = diag[B1, B2, · · · , Bn]

S = diag[S1, S2, · · · , Sn]

are constant quasi-diagonal matrices with the diagonal blocks
being the matrices in diag[· · · ], and

f(x(t)) = [f1(x1(t))T, f2(x2(t))T, · · · , fn(xn(t))T]T

is a nonlinear function of x(t).

III. CONTROL OPTIMIZATION OBJECTIVE

In this section, we formulate the control problem as an
optimization problem.

A. Optimization Objectives

The goals of the proposed control strategy include reaching
consensus, reducing battery degradation cost, and restricting
BES SoC and BES output power within their respective
boundaries. This can be achieved by minimizing the following
objective function:

J = ε1Jcons + ε2Jdc + ε3Jsoc + ε4Jbes (18)

where ε1, ε2, ε3, and ε4 are significance factors, and Jcons, Jdc,
Jsoc, and Jbes are different performance indicators correspond-
ing to the goals mentioned above. Note that the influence of a
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performance indicator (or optimization goal) can be adjusted
by changing the corresponding significance factor according
to demand.

We now explain each of the performance indicators in (18)
one by one.
1) Consensus

The first goal of our proposed control strategy is to reach
consensus on ri, the ratio of BES output power to BES SoC
among microgrids. It is not hard to see that the consensus
requirement (14) is satisfied if

lim
t→∞

E[e1(t)] = lim
t→∞

E[e2(t)] = · · · = lim
t→∞

E[en(t)] = 0

In this case, reaching consensus is converted to minimizing
the consensus errors of all microgrids. The corresponding
performance indicator can be calculated by

Jcons = E

[∫ T

0

n∑
i=1

(ei(t))
2dt

]
(19)

where T is the termination time. We will provide more details
about T in Section V.
2) Battery Degradation Cost

Frequent charging and discharging of the BES could cause
battery degradation. In order to prevent overcontrol and pro-
long the lifetime of the BES, battery degradation cost is an
important indicator to be minimized. Based on the works
of [36], [37], battery degradation cost can be simply calculated
as follows:

Jdc = E

[∫ T

0

n∑
i=1

(ηiP
BES
i (t))2dt

]
(20)

3) Overflow Penalty
The control may cause damage to BES devices if it results

in an SoC out of the recommended range defined by (6).
This overflow can be evaluated by the following penalty
function [59]:

φsoci (t) = I(SoCi(t) ≤ SoCmin
i )

+ I(SoCi(t) ≥ SoCmax
i ) (21)

where I(·) is the characteristic function defined by:

I(X) =

{
1 if event X is true
0 otherwise

The corresponding performance indicator for SoC overflow
penalty would be:

Jsoc = E

[∫ T

0

n∑
i=1

φsoci (t)dt

]
(22)

The BES can also be damaged if the BES output power
PBES
i (t) exceeds the boundary in (4). A similar penalty

function for BES power overflow can be defined as [59]:

φbesi (t) = I(|PBES
i (t)| ≥ Pmax

i ) (23)

The corresponding performance indicator for BES power
overflow is calculated by:

Jbes = E

[∫ T

0

n∑
i=1

φbesi (t)dt

]
(24)

B. Problem Formulation

After describing the system dynamics and defining the
objective function, our consensus-based control problem can
be formulated as the following optimization problem:

minu J
Subject to: (1), (2), (3), (10), (7),

(8), (11)
0 < SoCi(t) < 1,

0 ≤ |PBES
i (t)| ≤ Pmax

i

(25)

The above problem is solved when a u(t) = u∗(t) that
minimizes J is discovered. As we have stated in Section II-B,
the update of ri(t) described by (11) is achieved by the change
in the BES power PBES

i (t), which can be indirectly controlled
by the control signal uMT

i (t) to the MT. That is to say,
the control problem of (25) is solved a consensus coefficient
matrix K = K∗ that minimizes J is acquired and then uMT

i (t)
is accordingly decided.

Note that the consensus variables in many existing works
are linear to system state xi(t). In our case, however, the con-
sensus variable ri(t) is not linear to xi(t) since it has SoCi(t)
on its denominator (see (9)). Thus, existing solutions like local
adjacent [10] may not be suitable for our problem. Moreover,
the nonlinearity of system (17) increases the difficulty of not
only adopting existing solutions but also solving the control
problem with some traditional methods.

IV. SOLVING VIA COMPRESSIVE SENSING

In this section, we design an algorithm to find a u(t) =
u∗(t) that optimizes the nonlinear stochastic control problem
of (25) by combining compressive sensing with an iterative
method. Note that the system described by (17) is stochastic
due to the Wiener process term W (t). According to [65],
the Hermite polynomial expansion coefficients of random
variables are usually sparse, which satisfies the premise of
solving by compressed sensing. It has been shown by [66],
[67] the compressive sensing method has a significant advan-
tage in improving the efficiency of tackling high dimensional
stochastic systems against traditional methods, e.g, the MC
method [47].

A. State Variable Recovery via Compressive Sensing

First of all, we describe the process of solving the state
equation (17) for x(t) using the compressive sensing method in
Algorithm 1, which is the most important step in our proposed
method. Since the uncertainty and randomness in the power
of load and PV are captured by Wiener process W (t), we can
use Hermite polynomials to expand W (t) [68]. For feasibility
of the numerical calculation of Step a and b in Algorithm 1,
the expansion expressions are usually truncated with limited
number of terms. In Step c, the expansion coefficient c of
state variable x(t) is recovered by solving the `1-minimization
problem [66] described by (26).

Note that the most significant advantage of compressive
sensing is that variables can be accurately recovered using only
a small group of sample points, thus reducing the calculation
cost to a great extent. Suppose d is the number of stochastic
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Algorithm 1: Compressive Sensing for State Equation (17)
a. Rewrite the Wiener process W (t):

W (t) =

∞∑
j=1

ξj

∫ t

0

ϕj(τ)dτ,

where {ξj}∞j=1 are independent identically distributed
random variables selected from the standard normal
distribution, and {ϕj}∞j=1 is a set of orthonormal
bases.

b. Perform polynomial chaos expansion for x(t):

x(t, ξ) =

∞∑
j=1

cj(t)ψj(ξ)

where {ψj(ξ)}∞j=1 are Hermite polynomials, ξ = [ξ1,
ξ2, · · · , ξj , · · · ]T, and {cj(t)}∞j=1 are the sparse
coefficients to be determined.

c. Find sparse coefficients {cj}∞j=1 by solving the
following problem:

ĉ = arg min ‖c‖1, s.t. ‖X −Ψc‖ ≤ ε (26)

where X is the sample simulation results of x(t) at
each point of time t, Ψ is an information matrix
formed by inserting the stochastic sample points of
X into Hermite polynomials, and
c = [c1, c2, · · · , cj , · · · ]T is the coefficient vector to
be determined.

polynomial bases used for the (truncated) expansion in Step
a and b. Then the total number of sample points required by
the accurate recovery via compressive sensing, denoted by N ,
is approximately c log4 d, where c is a constant (please refer
to [69], [70] for a more detailed proof). We can see that N
is asymptotically smaller than d. Once the number of samples
grows beyond N , adding more samples will no longer improve
accuracy, and the compressive sensing algorithm is said to
converge. In contrast, the traditional MC method is semi-order
convergence, which is much slower.

The error of the variable recovery by Algorithm 1 mainly
comes from two parts: the truncation error caused by the
expansion of stochastic terms (Step a) and solving the `1-
minimization problem (26) (Step c). According to the anal-
ysis of [69], the truncation error is fixed based on the
choice of polynomial bases, while the error from solving `1-
minimization can be reduced when the coefficient vector c
is sparser. Therefore, the sparser the stochastic terms are, the
more accurate the compressive sensing method is. Readers can
refer to [67], [71] for more details of the convergence analysis
of Algorithm 1.

B. Solving Stochastic Optimal Control via Compressive
Sensing-Based Gradient Descent

After x(t) is acquired, we then use CSGD to solve the
stochastic optimal control problem (25), i.e., find a consensus
coefficient matrix K = K∗ that minimizes the optimization
objective function J . Details of the algorithm are given in
Algorithm 2. Note that CSGD is an iterative algorithm (e.g.,

Algorithm 2: Compressive Sensing-Based Gradient
Descent (CSGD) for Problem (25)

a. Initialize parameters for optimization:
including the number of Hermite polynomial basis to
truncate the expansion in Algorithm 1, step size
z > 0, tolerance parameter γ, time step ∆t, initial
consensus coefficient matrix K0.

b. Deduce the Hamiltonian system for problem (25):

dx =
∂H

∂λ
, dλ = −∂H

∂x
, 0 =

∂H

∂K
(27)

where H is the following Hamiltonian function [72]:

H = J + λ̇(t){(Ax(t) + f(x(t)) +Bu(t))dt+ SdW (t)}

and λ(t) is the conjugate state corresponding to x(t).
c. Use Algorithm 1 to derive the state solution x0(t)
for system (17).

d. Loop for ` = 1, 2, · · · :
1) From x`−1(t) and K`−1, use Algorithm 1 to determine

the solution λ`−1 of the co-state equation (27);
2) From λ`−1, K`−1 and x`−1, determine the set of steps

∂H
∂K`−1 from ∂H

∂K ;
3) From K`−1 and ∂H

∂K`−1 , determine the new value K`

K` = K`−1 − z`−1 ∂H

∂K`−1 ;

4) From K`, use Algorithm 1 to calculate x`(t);
5) From K` and x`(t), determine the value of the

objective function J`. If the relative error reach the
requirement, stop and output K∗ = K`. Otherwise,
continue with the next loop.

gradient descent) combined with Algorithm 1
In Algorithm 2, the Hamiltonian system (27) in Step b is the

equivalent system of problem (25). We can derive the solution
of this optimal control problem by finding the solution of its
corresponding Hamiltonian equation. The compressive sensing
method in Algorithm 1 is used to calculate the system state
x(t) and the corresponding conjugate state λ(t) in Step c
and d. This dramatically reduces the computational cost of
solving high-dimensional problems compared with traditional
methods. Other steps in Algorithm 2 are typical steps of
gradient descent method.

As we mentioned in Section III-B, we can derive the
optimal control signal u(t) = u∗(t) once K∗ is determined
by combining (3), (11), and (8).

V. SIMULATION RESULTS

In this section, we provide a detailed analysis on the
simulation results of the numerical solution to (25) acquired
by the algorithms in the previous section. All the results are
obtained in MATLAB R2020b run on a computer with Intel
Core i7-7700 CPU and a single GPU card with 2 GB of
graphic memory. In particular, the recovery process in Step c
of Algorithm 1 is accomplished by MATLAB toolbox SPGL1.

Our simulation considers the network of n = 5 microgrids
connected as Fig. 2. The corresponding adjacent matrix A is:
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MG1

MG2

MG3

MG4

MG5

Fig. 2. Topology of the microgrid network for simulation.

A =


0 1 1 0 1
1 0 1 0 0
1 1 0 1 1
0 0 1 0 0
1 0 1 0 0


Although there is no substantial difficulty in extending our

results to large-scale systems, we simply choose n = 5
for illustrative purpose. Note that the topology in Fig. 2 is
representative as the number of connections of a microgrid
ranges from 1 to n − 1. Table II shows the selection of
constants and parameters for the simulation. The selection is
based on [53], [73], [74]. Moreover, we choose ε1 = ε2 = 2,
ε3 = ε4 = 1.

TABLE II
SELECTION OF CONSTANTS AND PARAMETERS

i 1 2 3 4 5
ρLoad
i 28.4 27.1 26.5 28.8 27
ρPV
i 16.9 17.1 18.7 17 16.2
σLoad
i 0.4 0.26 0.35 0.28 0.3
σPV
i 0.29 0.31 0.27 0.3 0.25
ηini 0.95 0.98 0.97 0.92 0.95
ηouti 0.96 0.90 0.92 0.90 0.97
Qi (kW·h) 110 140 95 160 72
SoCmin

i 0.17 0.25 0.2 0.15 0.3
SoCmax

i 0.72 0.86 0.75 0.85 0.9
Pmax
i (kW) 175 210 200 273 300
ρTM
i (s) 15 18 12.7 18.3 21
kTM
i 7.9 9.2 10 8.5 8.6

Let the termination time T = 15 s. Note the observation
time of practical projects often lasts for hours or days. In
contrast, the modeling of this paper is based on differential
equations that capture system dynamics in a relatively shorter
time frame. Although there should be no essential difficulty to
extend our work to a longer period by continuously repeating
the simulation in a row, we choose not to do so. The main
reason is, this repetition could cause the parameters and
constants in Table II to vary, and they need to be remeasured
accordingly. This is the work for researchers specialized in
parameter measurement, which is beyond the scope of this
paper.

Figure 3 shows an example of the power change simulation
in the load and the PV of MG3 obtained by (1) and (2) with
the parameters in Table II. It can be seen that both curves

0

2

4

6

8

0 5 10 15

P
o
w

er
 c

h
an

g
e 

(k
W

)

ΔP3
Load

ΔP3
PV

t (s)

Fig. 3. Load and PV power changes in MG3.

present significant zigzags. This is caused by diffusion terms
WLoad

i (t) and WPV
i (t), which can accurately describe the

instantaneous drastic changes caused by random disturbances
or unexpected operation.

A. Convergence and Consensus

The convergence of the algorithm can be seen from Fig. 4
that shows the decrease of the objective function J with the
number of iterations of Algorithm 2. It can be seen that J falls
dramatically in the first 10 iterations and then asymptotically
goes to 0. Under the given error accuracy γ = 0.00001, the
algorithm converges after about 35 iterations.

Figure 5 shows the convergence of the consensus variable
ri among different microgrids. It indicates that consensus is
reached very fast (within 8 seconds). Note that the strict
consensus in (12) cannot be achieved because of diffusion
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Fig. 4. Convergence of the objective function.
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Fig. 5. Consensus on ri among microgrids.
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terms WLoad
i (t) and WPV

i (t). As a result, the curves fluctuate
slightly around the consensus value (r∗ ≈ 0.02).

The data in Table III shows an 89.12% reduction in the com-
putation time cost of our compressive sensing-based method
provided in Section IV compared with that of the tradition MC
method [47].

TABLE III
COMPARISON OF COMPUTATION TIME COST BETWEEN CSGD AND THE

MC METHOD

Method CSGD MC
Time Cost (s) 312.87 2892.16

In addition, we also compare our CSGD method to the
traditional MC method for analysis of stability. When the scale
of sample points reaches a certain level, our CSGD method and
MC method yield the same results. The data in Table IV show
that the error of CSGD gradually converges as the number
of sample points increases. It can be seen that our CSGD
algorithm with 100 samples can achieve the same accuracy as
the traditional MC method with 2000 samples, which is also
the reason we choose compressive sensing against MC.

TABLE IV
COMPARISON OF THE ACCURACY BETWEEN CSGD AND THE MC

METHOD WITH DIFFERENT NUMBERS OF SAMPLE POINTS

Sample Number Error of MC (×10−2) Error of CSGD (×10−2)
20 3.43 8.91
40 2.95 1.23
60 2.43 0.46
80 1.56 0.04
100 1.21 0.03
1000 0.32 0.03
2000 0.03 0.03

Note that the control of the BES power is indirectly achieved
by applying control to MTs. Fig. 6 compares the control
signals of MT with and without consensus. It can be seen
that the control signals with consensus are limited within a
smaller range. This can mitigate the damage to MTs caused
by overcontrol [54].

B. Management of Battery Energy Storage Devices

The comparison of the output powers and SoCs of the BESs
with and without control is demonstrated by Fig. 7. We can see
from Fig. 7(a) that the output powers of all BESs are reduced
to a much lower level when under control compared with
Fig. 7(b). This remarkable contrast results from Jdegradation,
the performance indicator for battery degradation cost, in our
control optimization objective. The data in Table V shows a
significant 74.24% reduction on average in battery degradation
cost in each microgrid when applying our control strategy
compared to the case without controlling degradation cost.

Since the output powers of BESs are greatly reduced after
control, the fluctuation of the SoCs in Fig. 7(c) is relatively
gentle. In contrast, when there is no control, the SoCs are not
stabilized and will continue to change after 15 seconds (as
shown by Fig. 7(d)).
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Fig. 6. Comparison of control signals (with consensus vs. without consensus).
(a) Control signal of MT with consensus. (b) Control signal of MT without
consensus.

TABLE V
COMPARISON OF BATTERY DEGRADATION COSTS Jdc (WITH
DEGRADATION COST CONTROL VS. WITHOUT DEGRADATION

COST CONTROL)

Case MG1 MG2 MG3 MG4 MG5

With degradation cost
control

0.0729 0.2025 0.5658 5.2239 1.7842

No degradation cost
control

1.0305 1.9256 3.8677 7.6654 6.2784

Reduction (%) 92.93 89.48 85.37 31.85 71.58

VI. CONCLUSION

Consensus-based control helps to achieve global optimiza-
tion in a cooperative way and is widely used in distributed con-
trol in energy systems. Our proposed optimal control strategy
chooses to synchronize the ratio of BES output power to BES
SoC among multiple microgrids. It also considers minimizing
battery degradation cost, which is seldom addressed in existing
consensus-based control methods. We use compressive sensing
method to solve the nonlinear control problem, which is more
efficient than the traditional MC method.

Although consensus-based control has the advantage of fast
and strong convergence to global optimality, it has a series of
drawbacks caused by its state sharing through communication
links. On one hand, sharing too many state variables will
lead to the surge of information transmission workload. This
problem can be alleviated by reducing the number of shared
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Fig. 7. Comparison of output power and SoC of BES (with control vs. without control). (a) Output power of BES with control. (b) Output power of BES
without control. (c) SoC of BES with control. (d) SoC of BES without control.

variables. On the other hand, the real-time state detection on
neighbor microgrids also brings a high volume of commu-
nication. In practice, discrete state sampling [75] could be
a potential solution to this problem and will be considered
in our future work. Our future work will also consider the
more complex system that combines renewable energy power
generation devices with traditional power generation devices
(e.g., microturbines or diesel engine generators).

As the concept of EI also emphasizes complementation of
multiple energy sources, our future work will try to extend
the results of this paper to the dispatch, coordination, and
regulation of multi-energy systems [76], [77]. Moreover, as
interaction with energy consumers becomes more and more
pervasive in EI systems [78], there are many scenarios that
need to include economic concerns, e.g., economic dispatch,
demand response, energy trading. In this case, the control
objectives might need to consider competition between energy
supply and energy consumption [79], [80]. This is also a
possible direction for our future work.
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