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Abstract—This paper presents an Expanding Annular Domain
(EAD) algorithm combined with Sum of Squares (SOS) program-
ming to estimate and maximize the domain of attraction (DA)
of power systems. The proposed algorithm can systematically
construct polynomial Lyapunov functions for power systems with
transfer conductance and reliably determine a less conservative
approximated DA, which are quite difficult to achieve with
traditional methods. With linear SOS programming, we begin
from an initial estimated DA, then enlarge it by iteratively
determining a series of so-called annular domains of attraction,
each of which is characterized by level sets of two successively
obtained Lyapunov functions. Moreover, the EAD algorithm is
theoretically analyzed in detail and its validity and convergence
are shown under certain conditions. In the end, our method is
tested on two classical power system cases and is demonstrated to
be superior to existing methods in terms of computational speed
and conservativeness of results.

Index Terms—Domain of attraction, Lyapunov functions,
power system transient stability, sum of squares programming.

I. INTRODUCTION

WE consider the problem of estimating the domain of
attraction (DA) of power systems to assess transient

stability [1]. Domain of attraction, a key quantitative measure
of transient stability, is defined as an invariant set such
that all trajectories starting from points in this set converge
to a corresponding asymptotically stable equilibrium point
(ASEP) [2]. If the initial state of a post-fault system is located
in the DA, the power system will be deemed transient stable.
It no longer needs to track subsequent state trajectory, which
will facilitate rapid evaluations of post-fault system security
and designs of effective stabilization controllers [3], [4].

Due to difficulty of calculating the exact DA, research has
focused on determining Lyapunov functions whose level sets
characterize estimates of the DA. However, when applied to
power systems, traditional methods [5]–[8] based on Lyapunov
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functions have encountered two difficulties, i.e, the difficulty
of systematically constructing Lyapunov functions considering
transfer conductance and the difficulty of reliably determining
a sufficiently large approximated DA. For instance, the energy
functions method, which has been extensively investigated,
fails to obtain an analytical energy function for power systems
with transfer conductance because of the path-dependent inte-
gral terms involved [5]. Although a numerical energy function
can be computed by using the ray (or trapezoidal) approxima-
tion schemes to numerically approximate the path-dependent
terms, it is not a well-defined function and has inevitable
calculation errors [6], [9]. Moreover, the energy functions
method requires reliable computation of the critical energy
value to guarantee accuracy of the estimated boundary of the
DA, which is a challenging task. There are many approaches to
calculate the critical energy value such as the Closest Unstable
Equilibrium Point (UEP) approach [10], controlling UEP
approach [11], PEBS approach [12] and BCU approach [13].
But most of them can only estimate the local relevant boundary
of the DA except the Closest UEP approach. In addition
to the energy function method, another method based on
Popov stability criterion can systematically construct a Lur’e-
Postnikov type Lyapunov function to obtain an estimated DA,
but it requires satisfaction of sector conditions and will fail
if the transfer conductance is not negligible [7]. Besides, [8]
proposes a method using the extended LaSalle’s invariance
principle to construct an extended Lyapunov function, whose
derivative is allowed to be positive in some bounded regions
included in the DA, for power systems with small transfer
conductance. However, it is rather difficult for this method to
determine the special regions involved and to analyze practical
cases with relatively large transfer conductance.

The Sum of Squares (SOS) technique, first introduced by
Parrilo in 2000 [14], provides a novel approach to estimate the
DA of power systems by solving semidefinite programs with
matrix inequality constraints [15]–[17]. This technology is
able to overcome the aforementioned two difficulties faced by
traditional methods. As shown in [18], the authors transformed
the non-negative conditions related to the DA, which are based
on the Lyapunov’s direct method, into an SOS optimization
problem to systematically construct local Lyapunov functions
and maximize the estimate of the DA. To solve the SOS
optimization problem with bilinear constraints, an algorithm
containing two iterative loops and four linear SOS optimiza-
tion problems, called expanding interior algorithm, has been
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proposed [18]. Since this algorithm is too complicated for
practice application, it is improved by reducing the number of
the linear SOS problems solved at each iteration to half [19].
The algorithm has been successfully applied to the reduced-
order model of a two-machine-infinite-bus system [18], [19].
It was further applied to the detailed model of a single-
machine-infinite-bus system, considering voltage dynamics
and both voltage and frequency regulators [20]. Overall, such
an SOS-based method is promising, but the existing improved
algorithm is still too complex for power systems and may lead
to conservative results.

The main contribution of this paper is twofold. First, we
propose an Expanding Annular Domain (EAD) algorithm
combined with Sum of Squares programming to enlarge a
provable DA of power systems. The algorithm is developed
from the modified Lyapunov stability theory introduced in
Section II and is totally different from the existing expanding
interior algorithm based on the conventional Lyapunov sta-
bility theory. Compared with the latter algorithm, the EAD
algorithm achieves faster calculation and less conservative
results by simplifying iteration steps and relaxing the stabil-
ity criteria. Meanwhile, it is capable of addressing the two
difficulties encountered by traditional methods. Second, we
theoretically analyze the details of the proposed algorithm,
including proving the necessity of some constraints, showing
the feasibility of some iterative steps and confirming the
convergence of the algorithm.

To the best of our knowledge, the concepts of the EAD
algorithm have never been applied to transient stability analy-
sis of power systems. Finally, the effectiveness of our method
is demonstrated on a two-machine-infinite-bus system and the
IEEE 4-machine-11-bus system.

Notation: Let R, R+ and Z+ be the set of real numbers,
positive real numbers and positive integers, respectively. The
set of n×m real matrices is represented by Rn×m. The set of
polynomials and SOS polynomials in x ∈ Rn are denoted by
Pn[x] and Sn[x], respectively. Moreover, we use PM×Nn [x] and
SM×Nn [x] to represent the set of M×N polynomials matrices
and SOS polynomials matrices in x ∈ Rn, respectively.
Additionally, the boundary of a set D is represented by ∂D.
Finally, deg(p1, p2, . . . , pk) denotes the maximum degree of
all polynomials in the set {p1, p2, . . . , pk}.

II. PRELIMINARIES AND FORMULATIONS

A. Modified Lyapunov Stability Theory

Consider an autonomous nonlinear dynamic system gov-
erned by

ẋ(t) = f(x(t)) (1)

where x ∈ Rn is the state vector, f : Rn → Rn is the
polynomial vector field. We suppose the origin x = 0 is
an equilibrium point, i.e., f(0) = 0. If the origin is an
asymptotically stable equilibrium point (ASEP), the corre-
sponding domain of attraction (DA) is defined as D = {x(0) ∈
Rn| lim

t→∞
x(t;x(0)) = 0}.

According to the conventional Lyapunov stability theory [2],
if there exist an open set Ω ⊆ Rn and a continuously

differentiable function V (x) : Ω → R, called Lyapunov
function, such that V (0) = 0, V (x) > 0, ∀x ∈ Ω\{0} and
V̇ (0) = 0, V̇ (x) < 0, ∀x ∈ Ω\{0}, then a set D = {x|V (x)
≤ c, c > 0} ⊂ Ω is guaranteed to be an invariant subset of
the DA with respect to the origin. To relax the aforementioned
conditions, we will introduce the modified Lyapunov stability
theory.

Definition 1: For a given system (1) with an open set D1

and a bounded set D2 satisfying that 0 ∈ D1 ⊂ D2 ⊆ Rn, set
A = D2\D1 is regarded as an annular domain of attraction
if every solution x(t;x(0)) of system (1) starting in A will
remain in D2 and enter into D1 as t→ t1, t1 ∈ R+.

Theorem 1: For a given system (1), let V (x) : Rn → R be
a continuously differentiable function. Consider an open set
D1 and a bounded set D2 = {x ∈ Rn|V (x) ≤ 1} satisfying
0 ∈ D1 ⊂ D2 ⊆ Rn. Then set A = D2\D1 is an annular
domain of attraction if the following condition holds:

V (0) = 0, V (x) > 0, ∀x 6= 0

V̇ (x) =
dV
dx

f(x) < 0, ∀x ∈ A. (2)

Proof : It is clear that D2 = {x ∈ Rn|V (x) ≤ 1} is a
compact set. Then, any trajectory starting in D2 at t = 0 stays
in D2 for all t ≥ 0 since

V̇ < 0, ∀x ∈ A ⊂ D2 ⇒ V (x(t)) ≤ 1, ∀t > 0, ∀x(0) ∈ A

To show that every trajectory starting in A will enter into
D1 in finite time, we use a contradiction argument. Suppose
that ∃x(0) ∈ A such that for all t ≥ 0, x(t;x(0)) /∈ D1.
Let −γ = max

x∈A
V̇ (x), which exists because the continuous

function V̇ (x) has a maximum over the compact set A. By (2),
−γ < 0. It follows that V (x(t)) = V (x(0))+

∫ t

0
V̇ (x(τ))dτ ≤

V (x(0))−γt. Since the right-hand side will eventually become
negative, the inequality contradicts the fact that for all x 6= 0,
V (x) > 0. Thus, there exists a t1 > 0 such that x(t1;x(0)) ∈
D1. From what has been discussed above, based on Definition
1, we can regard A as an annular domain of attraction.

Remark 1: Theorem 1 implies that if A = D2\D1 is an
annular domain of attraction for a given system (1), then D2 is
a positively invariant set because x(t) ∈ D2 for all x(0) ∈ D2

and t ≥ 0.
Theorem 2: Let x = 0 be an ASEP for system (1) and let

a set D1 containing the origin be an open invariant subset of
the DA. Consider a bounded set D2 = {x ∈ Rn|V (x) ≤ 1}
satisfying D1 ⊂ D2, where V (x) : Rn → R is a continuously
differentiable function. If the set A = D2\D1 is an annular
domain of attraction, then the set D2 is an invariant subset of
the DA with respect to the origin.

Proof : If A = D2\D1 is an annular domain of attraction,
then every trajectory starting in A will remain in D2 and enter
into D1 eventually. Since D1 is the subset of the DA with
respect to the origin, the trajectory will approach to the origin
as t → ∞. From remark 1, we know that D2 is positively
invariant. Thus, D2 is an invariant subset of the DA.

Remark 2: An invariant subset of the DA can be regarded
as an estimate of the DA. Theorem 2 is a relaxation of the
conventional Lyapunov stability theory since the derivative of
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the Lyapunov function V (x) in Theorem 2 only needs to be
negative in A = D2\D1, rather than in D2. Therefore, when
expanding estimated DAs, Theorem 2 requires less stringent
stability criteria and thus produces less conservative results
compared with conventional Lyapunov stability theory.

B. Sum of Squares Programming

Definition 2 [16]: A multivariate polynomial p(x) in x ∈
Rn is a sum of squares (SOS), if there exist polynomials f1(x),
. . . , fm(x) such that p(x) =

∑m
i=1 f

2
i (x).

Clearly, p(x) being an SOS naturally implies p(x) ≥ 0 for
all x ∈ Rn. However, the converse is not always true [21]. The
SOS programming problem is a convex optimization problem
with one or more SOS constraints (that is, some polynomials
are required to be SOS polynomials). When establishing an
SOS programming problem, we often use the Positivstellensatz
theorem to determine positive semi-definiteness of a polyno-
mial over semi-algebraic sets, as shown below.

Theorem 3 (Positivstellensatz Theorem) [17], [22]: Con-
sider three sets of polynomials M(l1, . . . , lt) = {lk11 l

k2
2 · · ·

lktt |l1, . . . , lt ∈ Pn[x], k1, . . . , kt ∈ {0, 1, 2, . . .}}, C(p1, . . . ,
ps) =

{
s0 +

∑
sibi|si ∈ Sn[x], bi ∈ M(p1, . . . , ps), p1, . . . ,

ps ∈ Pn[x]
}

and I(g1, . . . , gu) =
{∑

λkgk|λk ∈ Pn[x], g1,
. . . , gu ∈ Pn[x]

}
. Then the setx ∈ Rn
∣∣∣∣∣∣
p1(x) ≥ 0, . . . , ps(x) ≥ 0
g1(x) = 0, . . . , gu(x) = 0
l1(x) 6= 0, . . . , lt(x) 6= 0

 (3)

is empty, if and only if there exist polynomials p ∈ C(p1, . . . ,
ps), g ∈ I(g1, . . . , gu) and l ∈M(l1, . . . , lt) such that

p+ g + l2 = 0 (4)

To illustrate the application of Theorem 3, we consider a
brief example. Given a semi-algebraic set condition S = {x ∈
Rn | p1(x) ≥ 0, p2(x) ≥ 0, g1(x) = 0, l1(x) 6= 0} = ∅, we
can choose relatively simple polynomials p = s0+s1p1+s2p2,
g = λ1g1 and l = l1 such that p + g + l2 = s0 + s1p1 +
s2p2 + λ1g1 + l21 = 0, where s0,1,2 ∈ Sn[x] and λ1 ∈ Pn[x],
according to Theorem 3. Then −(s1p1 + s2p2 +λ1g1 + l21) =
s0 ∈ Sn holds, which completes the transformation from a
semi-algebraic set condition S = ∅ to an SOS constraint.

Furthermore, an SOS programming problem can be trans-
formed into a semidefinite program (SDP) [14] and can be
efficiently solved by SDP techniques. However, SDP tech-
niques have worse-case polynomial time complexity. As the
degree of a polynomial or its number of variables is increased,
the corresponding SOS programming will have increasing
computational complexity.

All SOS programs formulated in this paper were efficiently
solved by the MATLAB toolboxes YALMIP [23] and a
semidefinite programming solver MOSEK [24].

C. Power Systems Description and Coordinate Transforma-
tion

We consider the internal node model [4] of an n-machine
power system expressed as:



δ̇1n
δ̇2n

...
δ̇n−1,n
ω̇1

...
ω̇n


=



ω1 − ωn
ω2 − ωn

...
ωn−1 − ωn

1/M1(Pm1 − Pe1 −D1ω1)
...

1/Mn(Pmn − Pen −Dnωn)


(5)

where the electrical power is denoted by Pei =
∑n
j=1EiEj

[Bij sin(δin − δjn) +Gij cos(δin − δjn)], i = 1, 2, . . . , n− 1;
δin represents the relative rotor angle with respect to the nth
generator and ωi is the rotor angular velocity; Mi, Di, Pmi

are the inertia coefficient, damping coefficient and mechanical
input, respectively; Ei represents the internal voltage; Bij , Gij
are the susceptance and conductance between generators i and
j, respectively. For simplicity, we need to shift the equilibrium
point of the system (5) to the origin. Hence, assuming that
(δ∗1n, δ

∗
2n, . . . , δ

∗
n−1,n, 0, . . . , 0) is the stable equilibrium point,

let the new state variable vector x ∈ R2n−1 be x = [∆δ1n,
. . . ,∆δn−1,n, ω1, . . . , ωn] = [δ1n− δ∗1n, . . . , δn−1,n− δ∗n−1,n,
ω1, . . . , ωn].

However, SOS programming cannot be directly applied
to the power system (5) because it is not expressed as a
polynomial system. Thus, [18] has proposed a coordinate
transformation z = h(x), where h : R2n−1 → R3n−2 is the
function such that

z2i−1 = sinxi

z2i = 1− cosxi, i = 1, 2, . . . , n− 1

z2(n−1)+j = xn−1+j , j = 1, 2, . . . , n

(6)

From (5) and (6), the transformed system is described by{
ż = F (z)

G(z) = 0
(7)

where z ∈ RM (M = 3n − 2) is the state vector, F : RM →
RM and G : RM → RN (N = n−1) are polynomial functions.
System (7) can be rewritten as:



ż1

ż2

ż3

ż4
...

ż2n−3

ż2n−2

ż2n−1
...

ż3n−2



=



(1− z2)(z2n−1 − z3n−2)

z1(z2n−1 − z3n−2)

(1− z4)(z2n − z3n−2)

z3(z2n − z3n−2)
...

(1− z2n−2)(z3n−3 − z3n−2)

z2n−3(z3n−3 − z3n−2)

1/M1(Pm1 − Pe1,z −D1z2n−1)
...

1/Mn(Pmn − Pen,z −Dnz3n−2)




z21 + z22 − 2z2

z23 + z24 − 2z4
...

z22n−3 + z22n−2 − 2z2n−2

 = 0

(8)
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where

Pei,z =

n−1∑
j=1

EiEj [Bij(αijpij + βijqij)

+Gij(αijqij − βijpij)]
+ EiEn[Bin(z2i−1 cos δ∗in + (1− z2i) sin δ∗in)

+Gin((1− z2i) cos δ∗in − z2i−1 sin δ∗in)]

pij = z2i−1(1− z2j)− (1− z2i)z2j−1
qij = (1− z2i)(1− z2j) + z2i−1z2j−1

αij = cos(δ∗in − δ∗jn), βij = sin(δ∗in − δ∗jn)

i = 1, 2, . . . , n− 1. (9)

Note that, by the coordinate transformation, the power sys-
tem (5) can be described by polynomial overdetermined Dif-
ferential Algebraic equations (7), whose equality constraints
restrict the states z ∈ R3n−2 to the original state manifold
x ∈ R2n−1.

III. ESTIMATING THE DA OF POWER SYSTEMS

In this section, an EAD algorithm combined with SOS
programming will be proposed to estimate the DA of power
systems (7). First, we compute an initial polynomial Lyapunov
function and obtain a rough estimate of the DA. Then, the
expanding annular domain algorithm is introduced to enlarge
the initial estimated DA.

A. Initialize the Estimation of the DA

For power systems, the DA of the ASEP at origin can be
estimated by a level set of a Lyapunov function V (z), i.e.

Lc(V (z)) = {z ∈ RM |V (z) ≤ c,G(z) = 0, c > 0}. (10)

Meanwhile, we define an open level set of V (z) as:

Lc(V (z)) = {z ∈ RM |V (z) < c,G(z) = 0, c > 0}. (11)

Based on SOS programming and Theorem 3, an initial poly-
nomial Lyapunov function V0(z) can be obtained as following.
Given a semi-algebraic domain P = {z ∈ RM |p(z) ≤ γ, γ >
0} containing the origin, where p(z) is a positive definite
polynomial, we search for a function V0(z) with V0(0) = 0
such that

V0(z) > 0 ∀z ∈ {z ∈ RM |G(z) = 0}\{0} (12a)

V̇0(z) < 0 ∀z ∈ {z ∈ RM |γ − p(z) ≥ 0, G(z) = 0}\{0}
(12b)

then V0(z) is a polynomial Lyapunov function of (7). Further,
we replace z 6= 0 with q1,2(z) 6= 0, where q1,2 are given
SOS polynomials with small coefficients, such as q1,2 =

1× 10−6
∑M
i=1 z

d
i . Different choices of q1,2 have little effect

on the result because q1,2 are sufficiently small. Then we
formulate the conditions (12) as the set emptiness conditions:

{z ∈ RM | G(z) = 0, q1(z) 6= 0, V0(z) ≤ 0} = ∅ (13a)

{z ∈ RM | γ − p(z) ≥ 0, G(z) = 0, q2(z) 6= 0, V̇0(z) ≥ 0}
= ∅ (13b)

According to Theorem 3, we obtain the following SOS
programming problem:

(SOSP0) search
V0∈PM [z],V0(0)=0,

s1∈SM [z],λ1,λ2∈PN
M [z]

V0

s.t.

V0 − λT1G− q1 ∈ SM [z] (14a)

− s1(γ − p)− V̇0 − λT2G− q2 ∈ SM [z] (14b)

Note that different choices of p(z) and γ will lead to
different results of V0. Generally, it is necessary to ensure that
domain P = {z|p(z) ≤ γ} is small enough to be contained
within the DA. If the subsequent EAD algorithm can not get
satisfactory results, p(z) and γ can be re-selected to initialize
the V0.

After finding a feasible solution V0(z), we try to get a
maximum level set Lc(V0(z)) such that V̇0(z) < 0 for all
z ∈ Lc(V0(z))\{0}. Lc(V0(z)) can be regarded as a rough
estimate of the DA. Similarly, this can be formulated as an
SOS programming problem:

(SOSP0’) max
s1,s2∈SM [z],λ∈PN

M [z]
c

s.t.

− s1(c− V0)− s2V̇0 − λTG− q1 ∈ SM [z] (15)

where V0 is obtained from SOSP0. We can efficiently solve
SOSP0’ using a bisection search on c. Given an arithmetic
sequence {c(1), c(2), . . . , c(i), c(j), . . .}, where 0 < c(1) <
c(2) < · · · , we assume c(i) makes the constraint in SOSP0’
feasible and c(j) does the opposite, which are denoted by
S(c(i)) < 0 and S(c(j)) > 0, respectively. Then in the interval
[c(i), c(j)], the zero of the function S(·) can be approached
by the Bisection method and can be regarded as the optimal
solution of SOSP0’, denoted by c0. Then V (1) = V0(z)/c0 and
D(1) = L1(V (1)(z)) can be regarded as an initial Lyapunov
function and the rough estimate of the DA, respectively.

B. Expanding the Estimated DA by the EAD Algorithm

Figure 1 shows the idea of the EAD algorithm, which is in-
troduced as follows. With linear SOS programming, an initial
estimated DA is expanded by iteratively determining a series
of annular domains of attraction A(k) = D(k+1)\Lβ(V (k)(z)),
where k ∈ {1, 2, . . .}, β ∈ (0, 1], D(k) = L1(V (k)(z)) ⊇
Lβ(V (k)(z)) is a previously estimated DA and D(k+1) =
L1(V (k+1)(z)) is a candidate for the larger estimated DA. The
following proposition provides theoretical guarantees for it.

Proposition 1: For a given system (7), suppose that D(k) =
L1(V (k)(z)) is a known estimate of the DA. If there exist
a continuously differentiable polynomial function V k+1(z), a
bounded set D(k+1) = L1(V (k+1)(z)) and a positive number
β ∈ (0, 1] such that

D(k) ⊂ D(k+1) (16a)

V (k+1)(0) = 0, V (k+1)(z) > 0

∀z ∈ {z ∈ RM |G(z) = 0}\{0} (16b)

V̇ (k+1)(z) < 0 ∀z ∈
{
z ∈ RM |V (k+1)(z) ≤ 1,
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D(1) D(1)

A(1) A(1) A(k)

D(2)

D(1)

D(2)

D(k)D(k) = L1 (V
(k)(z))

A(k) = D(k+1) \ Lβ (V
(k)(z))

D(k+1)

···
··· ···

··
·

··
·

k = 1,2,...

β ∈ (0, 1]

Fig. 1. Idea of the EAD algorithm.

V (k)(z) ≥ β,G(z) = 0
}

(16c)

then D(k+1) is also an estimate of the DA for system (7).
Proof : According to Theorem 1, constraints (16) imply

that domain A = D(k+1)\Lβ(V (k)(z)) is an annular domain
of attraction. Since D(k) is a known estimated DA and
Lβ(V (k)(z)) ⊆ D(k) ⊂ D(k+1), we can conclude that D(k+1)

is also an estimate of the DA from Theorem 2.
Based on Proposition 1, D(k) can be enlarged by iteratively

calculating the Lyapunov function V (k+1)(z). With applying
Theorem 3 and SOS programming, constraints (16) can be
transformed as the following SOS conditions:

(SOSP1) search
V (k+1)∈PM [z],V (k+1)(0)=0,

s1,s2,s3,s4∈SM [z],λ1,λ2,λ3∈PN
M [z]

V (k+1)

s.t.

− s1(1 + ε1 − V (k)) + (1− V (k+1))− λT1G ∈ SM [z]
(17a)

V (k+1) − λT2G− q ∈ SM [z] (17b)

− s2(1− V (k+1))− s3(V (k) − β)− s4V̇ (k+1)

− λT3G− ε2 ∈ SM [z] (17c)

where 0 < β ≤ 1, V (k) is given, ε1,2 > 0 are sufficiently small
parameters, q is a given positive definite polynomial radially
unbounded and can be expressed as q = 1 × 10−6

∑M
i=1 z

d
i

with even degree d, for example. Obviously, if the SOSP1
has a feasible solution V (k+1), then D(k) ⊂ D(k+1) and
D(k+1) is an estimate of the DA. However, since the problem
SOSP1 has bilinear terms of the variables such as s2V (k+1)

and s4V̇ (k+1), it cannot be efficiently solved. To address this
problem, a coordinate-wise iterative method mentioned in [25]
is applied here to transform the above constraints into a linear
semidefinite program at each iteration, which helps to get a
feasible solution for the problem SOSP1. First, we propose
the following assumption.

Assumption 1: Assume that {z ∈ RM |V (k)(z) ≤ β} ⊂
{z ∈ RM |V (k+1)(z) ≤ β}, where β > 0.

If Assumption 1 is satisfied, we have {z|V (k)(z) ≥ β} ⊃
{z|V (k+1)(z) ≥ β}. Then, the constraint (16c) implies that
V̇ (k+1)(z) < 0 holds ∀z ∈ {z ∈ RM | V (k+1)(z) ≤
1, V (k+1)(z) ≥ β,G(z) = 0, 0 < β ≤ 1}. Substituting V (k)

for V (k+1) yields the following new SOS condition:

(SOSP2) search
s2,s3,s4∈SM [z],λ3∈PN

M [z]
s2, s4

s.t.

− s2(1− V (k))− s3(V (k) − β)− s4V̇ (k)

− λT3G− ε2 ∈ SM [z] (18)

where V (k) is known. Obviously, (18) is a linear SOS con-
straint and can be efficiently solved by using linear semidefi-
nite programming. We save the feasible solutions of s2, s4 as
s̄2, s̄4, respectively.

Secondly, replacing s2, s4 by s̄2, s̄4 in constraint (17c),
we obtain a new SOS condition. Combining it with SOS
conditions (17a), (17b) and considering Assumption 1, we
formulate the following SOS problem:

(SOSP3) search
V (k+1)∈PM [z],V (k+1)(0)=0,

s1,s3,s5∈SM [z],λ1,λ2,λ3,λ4∈PN
M [z]

V (k+1)

s.t.

− s1(1 + ε1 − V (k)) + (1− V (k+1))− λT1G ∈ SM [z]
(19a)

V (k+1) − λT2G− q ∈ SM [z] (19b)

− s̄2(1− V (k+1))− s3(V (k) − β)− s̄4V̇ (k+1)

− λT3G− ε2 ∈ SM [z] (19c)

− s5(β − V (k)) + (β − V (k+1))− λT4G ∈ SM [z] (19d)

where V (k) is given. Clearly, SOSP3 can also be efficiently
solved by linear semidefinite programming. The feasible so-
lution V (k+1) is also a feasible solution of SOSP1, which
gives a larger estimate of the DA described as D(k+1) =
L1(V (k+1)(z)).

Based on the above analysis, we propose a six-step algo-
rithm, called expanding annular domain algorithm, to compute
an estimated DA of power systems as shown in Algorithm 1.

The EAD algorithm can estimate the entire DA rather
than the local relevant boundary of the DA for lossy power
systems(considering transfer conductance). Among traditional
methods, the Closest UEP method combined with numerical
energy functions is the only one that can estimate the entire
DA for lossy power systems [5], [10]. Hence, we will compare
the effectiveness of these two methods in Section V.

Remark 3: In Algorithm 1, a higher deg(V ) will bring a
less conservative estimate of the DA, but will increase compu-
tational complexity of the corresponding SOS problems [16].
Empirically, to implement the algorithm in Algorithm 1, the
degree of the polynomials must satisfy

SOSP0 : deg(V0) ≥ deg(λ1G, q1)

deg(V̇0, s1p) ≥ deg(λ2G, q2)

SOSP0’ : deg(s2V̇0) ≥ deg(s1V0, λG, q1)

SOSP2 : deg(s4V̇
(k)) ≥ deg(s2V

(k), s3V
(k), λT3G)

SOSP3 : deg(s1V
(k)) ≥ deg(V (k+1), λT1G)

deg(V (k+1)) ≥ deg(λT2G, q)

deg(s̄4V̇
(k+1)) ≥ deg(s̄2V

(k+1), s3V
(k), λT3G)

deg(s5V
(k)) ≥ deg(V (k+1), λT4G)

Remark 4: Our algorithm is totally different from the
existing expanding interior algorithm [18] whose idea is
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Algorithm 1: Expanding Annular Domain (EAD) al-
gorithm
Input: The degree of all assumed Lyapunov function

deg(V ), a positive definite polynomial p0(z), a
positive number γ0, small positive parameters
ε1,2, an empirical parameter β ∈ (0, 1].

Step 0 (a) Set p = p0(z), γ = γ0 and solve problem
SOSP0. If the problem is feasible, then save the
result V0 as v0 and go to (b). Otherwise, reset
deg(V ), p0(z), γ0 and try (a) again.

(b) Set V0 = v0 and perform a bisection search on c to
solve problem SOSP0’. Save the resulting c as c0. Set
k = 1, V (1) = V0/c0 and regard the set
D(1) := L1(V (1)(z)) as an initial estimated DA.
Then go to Step 1.

Step 1 Update V (k) and solve problem SOSP2. If the
problem is feasible, save the resulting s2, s4 as s̄2, s̄4,
respectively, and go to Step 2.

Step 2 Update V (k), s̄2 and s̄4, then solve problem
SOSP3. If the problem is feasible, save the resulting
V (k+1) and go to Step 3. Otherwise, go to Step 4.

Step 3 Set k = k+ 1, and we obtain a larger estimated
DA D(k) := L1(V (k)(z))(k > 1). Then go to Step 1.

Step 4 If k = 1, reset deg(V ), p0(z), γ0, ε1,2 and β,
then go to Step 0. If k > 1, save V (k)(z) as Vd(z)
and go to Step 5.

Step 5 Output Vd(h(x)) by the coordinate
transformation (6). And regard the set
Dd := {x|Vd(h(x)) ≤ 1} as the desired largest
estimate of the DA.

explained as follows. Let two level sets satisfy Lγ(p(z)) ⊆
Lc(V (z)), then Lc(V (z)), an estimate of the DA, can be
expanded by expanding Lγ(p(z)). Even though the algorithm
has been improved [19], it is still too complex and contains
two iteration loops and two SOS optimization problems (not
including initialization). In comparison, our algorithm shown
in Algorithm 1 contains one iteration loop and two SOS
feasibility problems which are easier to solve. Additionally,
the expanding interior algorithm is based on conventional Lya-
punov stability theory, which might lead to more conservative
results according to Remark 2.

IV. ANALYSIS OF THE PROPOSED ALGORITHM

For the proposed algorithm, we discuss the following de-
tails.

1) Constraint (17b) also implies that the D(k+1) = L1

(V (k+1)(z)) is bounded and, more precisely, compact. This
result, which is necessary according to proposition 1, is proven
as follows. From (17b), we have V (k+1)(z) ≥ q(z), ∀z ∈
{z|G(z) = 0}. Since q(z) is a given positive definite polyno-
mial that is radially unbounded, there exist two K∞ functions
α1 and α2 such that α1(‖z‖) ≤ q(z) ≤ α2(‖z‖). Therefore,
the inclusion relation {z|V (k+1)(z) ≤ 1} ⊆ {z|q(z) ≤ 1} ⊆
{z|α1(‖z‖) ≤ 1} holds for all z ∈ {z|G(z) = 0}. Since
{z|α1(‖z‖) ≤ 1} is a bounded set, we can conclude that set
D(k+1) = L1(V (k+1)(z)) = {z|V (k+1)(z) ≤ 1, G(z) = 0}

is bounded. Moreover, set D(k+1) is also closed because
V (k+1)(z) and G(z) are continuously differentiable functions.
These two facts prove that set D(k+1) is compact.

2) For the proposed algorithm, if the initialization is
successful, there exist solutions to the SOSP2 (Step 1) at
every k ∈ {1, 2, . . .}. The proof is given as follows. If the
initialization is successful, we have an initial estimated DA
D(1) = L1(V (1)(z)). Then V̇ (1)(z) < 0 holds for all z ∈
{z|V (1)(z) ≤ 1} ⊇ {z|β ≤ V (1)(z) ≤ 1}, which means the
SOSP2 must be solvable at k = 1. When k > 1, the feasible
solution to the SOSP3 at iteration k−1 yields that V̇ (k)(z) < 0
holds for all z ∈ {z|V (k)(z) ≤ 1, V (k−1)(z) ≥ β}. From As-
sumption 1, we have {z|V (k−1)(z) ≥ β} ⊃ {z|V (k)(z) ≥ β}.
Hence, V̇ (k)(z) < 0 holds for all z ∈ {z|β ≤ V (k)(z) ≤ 1}.
That is, there exist solutions to the SOSP2 at each iteration
k ∈ {1, 2, . . .}, which completes the proof.

3) Our algorithm converges if the boundary of the DA is
not empty. The proof is provided as follows. In the iteration
loop, the estimate of the DA does not become worse since
the small parameter ε1 > 0 in the constraint (17a) guarantees
that D(k+1) is always larger than D(k) when k is updated.
Meanwhile, ε1 also affects the rate of expanding the estimate
of the DA. Therefore, if ∂De 6= ∅ holds, there exists an
iteration k∗ ∈ Z+ such that ∂D(k∗) ∩ ∂De 6= ∅, where
De denotes the exact DA. This result implies that D(k)

is asymptotically close to De as k → k∗, which proves
the convergence of our algorithm. For power systems, the
boundary of De is always reachable and thus the proposed
algorithm is feasible.

4) The input parameters in Algorithm 1 can be set according
to the following rules. Firstly, for power system models,
deg(V ) = 2 or deg(V ) = 4 are proper since searching for
higher-order polynomial Lyapunov functions requires greater
computational burden. In addition, the set P =

{
z
∣∣p0(z) ≤

γ0, γ0 > 0
}

needs to be contained in the DA to guarantee that
the initialization will be successful. Under such a condition,
there must be an invariant subset of the DA containing the
set P such that V0 can be found. For example, in our cases,
we often choose p0(z) =

∑M
i=1 z

2
i and γ0 = 0.1. As for

small parameter ε1,2, they play an important role in the rate
of expanding estimated DAs and can be set to 10−6 ∼ 10−4.
Finally, parameter β is usually chosen between 0.5 and 0.8,
because a large β may limit the search space of V (k+1)(z),
while a small β may increase the number of iterations of the
algorithm.

V. EXAMPLES

A. Estimating the DA for a Two-machine Versus Infinite Bus
System

For the purpose of illustration, we first consider a two-
machine versus infinite bus system introduced in [8]. Its
internal node model can be described by equations (5), where
the infinite bus is regarded as the 3rd machine and the last
equation in (5) is removed. Parameters of the internal node
model are shown as follows:

Y = G+ iB
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=

0.61− 4.12i 0.09 + 0.79i 0.26 + 2.94i
0.09 + 0.79i 0.34− 8.45i 0.24 + 7.43i
0.26 + 2.94i 0.24 + 7.43i 12.64− 13.15i


M = [0.053, 0.079], D = [0.2, 0.2], Pm = [2.49, 4.21]

E = [1.074, 1.057, 1]

In this case, the state vector is defined as [δ1, δ2, ω1, ω2]
and the ASEP is [0.466, 0.462, 0, 0]. We shift the ASEP to the
origin and obtain a new state vector x = [∆δ1,∆δ2, ω1, ω2] =
[δ1 − 0.466, δ2 − 0.462, ω1, ω2]. Then by coordinate transfor-
mation (6), the system is described as (7) and the transformed
state vector is z = [z1, z2, z3, z4, z5, z6]. Setting deg(V ) = 2,
p0(z) =

∑6
i=1 z

2
i , γ0 = 0.1, ε1 = 10−4, ε2 = 10−6 and β =

0.7, we obtain an estimate of the DA by the EAD algorithm
(Algorithm 1), taking 50 s, and depict its boundary by yellow
curve in Fig. 2. Resetting deg(V ) = 4, p0(z) =

∑6
i=1 z

4
i ,

we obtain another approximated DA boundary by the EAD
algorithm (red curve, taking 152 s). Moreover, we compare our
results with those provided by the expanding interior algorithm
with deg(V ) = 2 (blue curve, taking 255 s) [18] and the
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Fig. 2. The estimates of the DA for a two-machine power system projected
in the angle space (ω1 = ω2 = 0). (a) Overview. (b) Enlarged area from (a).

Closest UEP method with numerical energy functions (the
left branch of green curve) [10]. More details are shown in
Appendix A.

From Fig. 2(a), we notice the estimate by the EAD algo-
rithm significantly improves that obtained by the expanding
interior algorithm and the traditional Closest UEP method.
Additionally, the EAD algorithm gives a better estimate but
takes more computation time with deg(V ) = 4 than with
deg(V ) = 2, which confirms the statement in Remark 3. How-
ever, the expanding interior algorithm produces a more con-
servative result and consumes more computation time, which,
according to Remark 4, may be caused by excessive iterative
steps and excessively strict stability theory. Furthermore, we
notice the Closest UEP method gives the most conservative
estimated boundary of the DA. It is shown in Fig. 2(b) the
result of the Closest UEP method is inaccurate since the
Closest UEP (purple point) is not the only intersection of the
approximated stability boundary (green curve) and the exact
DA boundary, which is not allowed theoretically [5], probably
due to the inevitable numerical error of the numerical energy
function used. In summary, the proposed EAD algorithm has
advantages over existing methods in reducing conservativeness
of results and improving calculation speed.

B. Estimating the DA for the Modified IEEE 4-machine-11-
bus Power System

We further consider the IEEE 4-machine-11-bus power
system [1], where the serial number of generators and the
capacity of loads are modified. The parameters of its internal
node model (5) are shown as follows:

Y = G+ iB

=


2.97− 10.81i 0.78 + 0.94i 1.19 + 1.40i 1.10 + 6.17i
0.78 + 0.94i 1.20− 9.25i 0.42 + 6.11i 0.51 + 0.63i
1.19 + 1.40i 0.42 + 6.12i 1.95− 10.87i 0.78 + 0.94i
1.10 + 6.17i 0.51 + 0.63i 0.78 + 0.94i 1.65− 9.21i


M = [0.310, 0.295, 0.295, 0.310]

D = [0.18, 0.171, 0.171, 0.18]

Pm = [5.062, 5.259, 5.293, 5.115]

E = [1.088, 1.104, 1.167, 1.072]

In this case, we estimate the DAs by the EAD algorithm
and the Closet UEP method utilizing numerical energy func-
tions [4]. To facilitate finding the UEP and constructing the
energy function, we have to consider the relative rotor angular
velocity ωin = ωi−ωn and simply rewrite equations (5), where
i = 1, 2, . . . , n− 1. Hence, the state vector is defined as [δ14,
δ24, δ34, ω14, ω24, ω34] and the ASEP is [−0.1272, 0.3417,
0.2022, 0, 0, 0]. By shifting the ASEP to the origin, we
obtain a new state vector x = [∆δ14,∆δ24,∆δ34, ω14, ω24,
ω34] = [δ14+0.1272, δ24−0.3417, δ34−0.2022, ω14, ω24, ω34].
Then by coordinate transformation (6), the system is described
as (7) and the transformed state vector is z = [z1, z2, . . . , z9].
Setting deg(V ) = 2, p0(z) =

∑9
i=1 z

2
i , γ0 = 1.5, ε1 = 10−4,

ε2 = 10−6 and β = 0.7, we obtain an estimate of the DA by
the EAD algorithm and its boundary is shown in Fig. 3. More
details are shown in Appendix B.
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In Fig. 3, we notice the EAD algorithm gives a very
satisfactory approximation of the DA (outer surface), while the
Closest UEP method provides an inaccurate and conservative
result (inner surface), similar to Example A. Since it is hard
to determine the exact DA in this case, we choose two points
A (−0.1765, 2.132, 2.294) and B (−0.1765, 2.132, 2.534) to
test accuracy of our estimate. Points A and B are very close,
located inside and outside the approximated DA given by
the EAD algorithm, respectively. It can be seen from Fig. 4
that the time response of the system from initial point A
converges to the equilibrium point x = 0, while that from
initial point B dose not. These results imply that the estimated
DA obtained by our method can produce a fairly accurate
stability assessment.

VI. CONCLUSION

This paper has proposed an EAD algorithm to estimate and

enlarge the domain of attraction of power systems considering
transfer conductance. The algorithm is based on the modified
Lyapunov stability theory, where we first introduce the con-
cept of annular domain of attraction and its related stability
criterion. With sum-of-squares programming, we enlarge an
initial DA by iteratively searching for polynomial Lyapunov
functions and determining a series of annular domains of
attraction, which leads to a bilinear SOS feasibility problem.
For addressing such a problem, the EAD algorithm uses
a coordinate-wise iterative method to produce linear SOS
programs, which is advantageous over existing algorithms in
improving computational speed and reducing conservativeness
of results. Furthermore, we have analyzed the algorithm in
many details and provided theoretical guarantees for its va-
lidity and convergence. Our method has been tested on many
multi-machine power systems and to better illustrate our work,
we introduce its implementation on two classical power system
cases with comparisons to existing methods.

In the future, we would like to refine our work in two
directions. First, the EAD algorithm will be extended to
estimation of robust DAs of power systems with uncertain
parameters and bounded disturbances, addressing the compu-
tationally complex problems in existing related studies [26].
Second, due to the worse-case polynomial time complexity
of SDP techniques for solving SOS problems, it is quite
challenging to directly apply the EAD algorithm to large-
scale power systems. Therefore, we will combine our method
with the vector Lyapunov function theory [27], [28] or the
dissipative system theory [29], [30] to analyze the connective
stability [31] of power systems. These attempts are necessary
and can overcome the computational difficulties that cannot
be settled effectively only by accelerating solutions of SOS
problems numerically [32], [33].

APPENDIX

A. The DAs Estimated by Different Methods in Example A

EAD algorithm: deg(V ) = 2, D(x) = {x|V (x) ≤ 1}, where

V (x) = 0.5324 sin(x1)2 − 0.3179(cos(x1)− 1)(cos(x2)− 1)

− 0.0169 sin(x1) sin(x2) + 0.5288 sin(x2)2

+ 0.0053x3(cos(x1)− 1) + 0.0026x3(cos(x2)− 1)

+ 0.0033x4(cos(x1)− 1) + 0.0005x4(cos(x2)− 1)

+ 0.0010x3x4 + 0.0308 sin(x1)(cos(x1)− 1)

+ 0.0736 sin(x1)(cos(x2)− 1)

+ 0.0381 sin(x2)(cos(x1)− 1)

+ 0.0973 sin(x2)(cos(x2)− 1)

+ 0.0256x3 sin(x1) + 0.0020x3 sin(x2)

+ 0.0030x4 sin(x1) + 0.0164x4 sin(x2)

+ 0.2746(cos(x1)− 1)2 + 0.3261(cos(x3)− 1)2

+ 0.0047x23 + 0.0042x24

Expanding interior algorithm [18]: deg(V ) = 2, D(x) =
{x|V (x) ≤ c}, where

V (x) = 0.3481 sin(x1) sin(x2)− 1.227 cos(x2)
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− 0.8683 cos(x1) + 0.0013(cos(x1)− 1)(cos(x2)− 1)

+ 1.485 sin(x1)2 + 1.35 sin(x2)2 + 0.0144x3(cos(x1)− 1)

+ 0.0090x3(cos(x2)− 1) + 0.0367x4(cos(x1)− 1)

− 0.0003x4(cos(x2)− 1) + 0.0077x3x4

+ 0.2334 sin(x1)(cos(x1)− 1) + 0.3449 sin(x1)(cos(x2)

− 1) + 0.4098 sin(x2)(cos(x1)− 1)

+ 0.4106 sin(x2)(cos(x2)− 1) + 0.1044x3 sin(x1)

− 0.0190x3 sin(x2) + 0.0607x4 sin(x1) + 0.0664x4 sin(x2)

+ 0.6299(cos(x1)− 1)2 + 0.5794(cos(x2)− 1)2

+ 0.0195x23 + 0.0165x24 + 2.0953

c = 3.6344

Closest UEP method: the numerical energy function V (x) [4]
is obtained by the first-integral principle and ray approxi-
mation scheme, an estimated DA is the branch of D(x) ={
x
∣∣V (x) ≤ c

}
that contains the ASEP, where

V (x) = 0.0265x23 + 0.0395x24 + 0.2559 sin(x2 + 0.462)

− 3.829x2 − 0.8990 cos(x1 − x2 + 0.0044)

− 7.8553 cos(x2 + 0.462)− 3.1599 cos(x1 + 0.4664)

− 1.7805x1 + 0.2838 sin(x1 + 0.4664)

+ (0.1024 sin(x1 − x2 + 0.0044)− 0.0004)

(x1 + x2)/(x1 − x2) + 10.5116

c = 3.1992

Note that the V (x) computed by the EAD algorithm with
deg(V ) = 4 is not convenient to show here due to its long
length.

B. The DAs estimated by different methods in Example B

EAD algorithm: deg(V ) = 2, D(x) = {x|V (x) ≤ 1}, where

V (x) = 0.2829 sin(x1)2 − 0.1814 sin(x1) sin(x3)

− 0.3356 sin(x2) sin(x3)− 0.1373(cos(x1)− 1)

(cos(x2)− 1)− 0.1837(cos(x1)− 1)(cos(x3)− 1)

− 0.4085(cos(x2)− 1)(cos(x3)− 1)

− 0.1425 sin(x1) sin(x2) + 0.3219 sin(x2)2

+ 0.3433 sin(x3)2 − 0.0008x4(cos(x1)− 1)

+ 0.0041x4(cos(x2)− 1) + 0.0024x5(cos(x1)− 1)

+ 0.0040x4(cos(x3)− 1)− 0.0075x5(cos(x2)− 1)

+ 0.0050x6(cos(x1)− 1) + 0.0065x5(cos(x3)− 1)

− 0.0004x6(cos(x2)− 1)− 0.0076x6(cos(x3)− 1)

− 0.0094x4x5 − 0.0085x4x6 + 0.0002x5x6

− 0.0219 sin(x1)(cos(x1)− 1)

+ 0.0118 sin(x1)(cos(x2)− 1) + 0.001 sin(x2)(cos(x1)− 1)

− 0.0268 sin(x1)(cos(x3)− 1) + 0.0309 sin(x2)(cos(x2)− 1)

+ 0.0174 sin(x3)(cos(x1)− 1) + 0.0321 sin(x2)(cos(x3)− 1)

− 0.0246 sin(x3)(cos(x2)− 1) + 0.0136 sin(x3)(cos(x3)− 1)

+ 0.0211x4 sin(x1)− 0.0151x4 sin(x2) + 0.0039x5 sin(x1)

− 0.0119x4 sin(x3) + 0.0391x5 sin(x2) + 0.0002x6 sin(x1)

+ 0.0006x5 sin(x3)− 0.0022x6 sin(x2) + 0.034x6 sin(x3)

+ 0.3046(cos(x1)− 1)2 + 0.3479(cos(x2)− 1)2

+ 0.3785(cos(x3)− 1)2 + 0.0077x24 + 0.0085x25 + 0.0076x26.

Closest UEP method: the numerical energy function V (x)
is given in [4] (See section 2.3.1) and is too complicated to
show here. Note that we use the ray approximation scheme
to compute the path-dependent terms and utilize the relative
rotor angular velocity formulation to guarantee that UEPs exist
when ω14 = ω24 = ω34 = 0. An estimated DA is D(x) =
{x|V (x) ≤ c}, where c = 4.9899.
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