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Abstract—A rational partition is the key prerequisite for the
application of distributed algorithms in distribution networks.
This paper proposes community-detection-based approaches to
a distribution network partition, including a non-overlapping
partition and a border-node partitioning method. First, a novel
electrical distance is defined to quantify the coupling relationships
between buses and it is further used as the edge weight in
a transformed equivalent graph. Then, a vertex/link partition
community detection approach is applied to over-partition the
network into high intra-cohesive and low inter-coupled subre-
gions. Following this, a greedy algorithm and a tabu search
method are combined to merge these subregions into target
numbers according to the scale similarity principle. The proposed
approaches take the influence of three-phase imbalance into con-
sideration and they are decoupled from the power flow. Finally,
the approaches are tested on an IEEE 123-bus distribution system
and the results verify the effectiveness and the credibility of our
proposed methods.

Index Terms—Community detection, distribution network
partition, three-phase imbalance.

I. INTRODUCTION

W ITH the increasing penetration of distributed energy
resources (DERs), as well as a growing number of

measurement and control devices deployed, largescale distri-
bution networks are becoming much more complicated and
are faced with computational efficiency challenges. Thus,
distributed algorithms are introduced into distribution network
control, optimization and state estimation (SE) [1]–[5], and are
expected to be the main methods implemented in the future.

As an important part of distributed approaches in distribu-
tion networks, such as the multi-area state estimation (MASE)
and distributed control, a rational network partition is a key
prerequisite for ensuring the results and improving calculation
accuracy. Generally, each subregion after the partition has
an independent control center, which is responsible for SE,

Manuscript received August 19, 2020; revised January 2, 2021; accepted
February 3, 2021. Date of online publication December 30, 2021; date of
current version August 8, 2023.

M. M. Mao, Z. J. Wu (corresponding author, email: zjwu@seu.edu.cn;
ORCID: https://orcid.org/0000-0002-1173-809X), D. L. Xu, and Q. R. Hu are
with School of Electrical Engineering, Southeast University, Nanjing 210096,
China.

M. M. Mao is also with the State Grid Shanghai Municipal Electric Power
Company Pudong Power Supply Company, Shanghai 200122, China.

J. J. Xu is with College of Automation and College of Artificial Intelligence,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

DOI: 10.17775/CSEEJPES.2020.04150

control, optimization, and communication with other subregion
control centers [6].

The present network partition pattern can be categorized
into two main types according to the overlapping properties,
non-overlapping partition and overlapping partition [7]. The
latter can be further divided into node-overlapping, tie-line
overlapping and extended overlapping patterns. In order to
reduce the communication time cost and improve the calcu-
lation efficiency, the current major partitioning methods are
non-overlapping, node overlapping, and tie-line overlapping
partitions.

The existing partitioning methods in literature include those
based on system topology and geographic location, based
on measurement devices and multi-agent system deployment
locations, based on electrical distance [8], etc.

Muscas [9] proposes a simple subjective partitioning method
based on system topology and geographic location for MASE
in a distribution network, which is partitioned into border-
node overlapping subregions and each subregion has a similar
number of nodes. Similarly, Wei [10] partitions the system
into non-overlapping subregions based on similar criteria for
MASE, and expands it to the overlapping type. However, such
simple subjective partitioning methods lack strict theoretical
derivation.

Some partitioning methods quantify the criteria, such as
scale similarity and provide optimization solutions. An active
distribution network partition model is established from the
perspective of measurement configuration and parallel comput-
ing efficiency in [11]. Yuan [12] suggests a network partition
approach for three-phase MASE based on topology analysis
and a postorder-traversal algorithm. However, these methods
neglect the influence of coupling relationships between buses.

Additionally, community detection theory is introduced into
the power grid community identification method, providing
new ideas for the power system partition research area [13]–
[15]. Xu [16] proposes a non-overlapping partitioning method
based on the improved discrete particle swarm optimization
algorithm and community detection theory for distributed reac-
tive power control. But it focuses on the transmission networks
and does not consider the three-phase imbalance. Furthermore,
the over-partition problems of community detection algorithms
have remained unsolved.

Li [17] proposes a partitioning method based on reactive-
power-injection/voltage (Q/V) sensitivity [15] and the AP
clustering algorithm [19], focusing on distributed reactive
power control of active distribution networks. But it relies
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on the power flow and lacks the consideration of three-
phase imbalance, that’s why it cannot be directly applied in
distribution networks where the power flows are in dynamic
variation.

We consider the three-phase imbalance in our partitioning
method because it is targeted for unbalanced three-phase
distribution networks instead of the extreme cases of bal-
anced distribution networks and transmission networks. We
are looking forward to providing a more realistic test sce-
nario for three-phase distributed algorithms. While three-phase
imbalance is a significant feature of distribution networks, it
is not fully considered in the existing partitioning methods,
especially those that are sensitivity-based which are defined
as being related to the voltage magnitudes [15], [17]. That
is to say, the partition pattern is decided by the selected
operation situation and the three-phase imbalance actually
will change the partition results. Taking the original three-
phase imbalanced IEEE-123 system in [18] as an example
and partitioning it via the method proposed in [17], it becomes
clear that each bus itself is a subregion. Therefore, it is not
so persuasive to support the tests of three-phase distributed
algorithms in the multi-area distribution network partitioned
on the assumption of ideal three-phase balance.

To sum it up, though much research work has been done
in the distribution network partition area, the following ma-
jor shortcomings still exist: 1) The partitioning methods for
different application scenarios, such as MASE and distributed
control, are completely separated and the factors considered
are unilateral. However, the partition results should be equally
applicable to these scenarios, for they are implemented by
the same local control center. 2) The Q/V or P/V sensitivity
based partitioning methods depend on the power flows selected
for the calculation, which in fact are in dynamic changes.
Thus, it is unavoidable that a very different partition result
will be generated if the power flow values change even to
a small degree. 3) The three-phase imbalance is not fully
considered. 4) The electrical coupling relationship between
buses are neglected in the partitioning methods for MASE.

In light of the considerations above, this paper proposes
a novel approach to distribution network partition, including
the border-node overlapping partition and the non-overlapping
partitioning method. By partitioning distribution systems into
high intra-cohesive and low inter-coupled subregions with
similar scales, it is applicable for different distributed algo-
rithms in large scale distribution networks requiring infor-
mation exchange, such as MASE and distributed control. It
can greatly improve the computation efficiency. One reason is
that the subregions’ similar scale is beneficial to reduce the
communication time cost and thus to improve the distributed
computation speed because it means less waiting time for com-
munications between adjacent subregions. The other reason is
that the high intra-cohesive and low inter-coupled property
is an important factor impacting the computation efficiency.
According to [17], this property can help diminish the effect
of the operation state variations inside one subregion to the
other subregions in distributed control scenarios, resulting in
less expected information exchange. It should be noted that
the proposed method is based on the assumption that the

measuring devices in the system are evenly distributed and that
optimal deployment has been achieved. Additionally, when
applying the border-node overlapping partitioning method in
MASE, it is required that at least one full measurement
point is deployed in the overlapping area, while the non-
overlapping partitioning method for MASE with the non-
overlapping pattern requires measurements of the branch on
the tie-line.

The proposed partition approach differs from existing ones
in that it has the following contributions. 1) It considers the
three-phase imbalance of distribution systems and gives a new
definition of electrical distance, which is decoupled with the
power flow and only relies on network parameters. 2) The
proposed partitioning method considers both the coupling re-
lationship of buses and the size similarity of subregions based
on community detection, greedy algorithm and tabu search. 3)
With strong theoretical and algorithm support, both the non-
overlapping partition and border-node overlapping partitioning
method are given in this paper and are equivalently appliable
for different scenarios, such as MASE and distributed control.
According to the test result in the IEEE 123-bus system,
the proposed partition approach is proved to be effective and
credible.

The remainder of this paper is organized as follows. Sec-
tion II introduces the proposed approach to non-overlapping
partition from 4 perspectives, the framework, the definition
of electrical distance, the community-detection-based initial
partition, and the subregion merging. The proposed approach
to the border-node overlapping partition is presented in Sec-
tion III. The test using the IEEE 123-bus system is shown and
analyzed in Section IV. Section V concludes this paper.

II. PROPOSED APPROACH TO NON-OVERLAPPING
PARTITION

A. Framework

The framework of the proposed approach to the distribution
network partition is shown in Fig. 1. It has three steps. First,
a new method of electrical distance calculation is given to
describe the electric coupling extent in multi-phase networks,
which will further work as the weight of edges in the trans-
formed graphs. Secondly, community detection [20], [21] is
applied to partition the buses into inner-highly-coupled zones.
While it is an over partition process and the results cannot
be directly used for the distributed algorithms, it produces
significant references for the coupling properties. Thirdly,
these little zones are merged into bigger subareas with similar
sizes based on the greedy algorithm and tabu search method.
Therefore, both the electric connections and size similarities
are considered.

B. Electrical Distance

A new real symmetric positive electrical distance is con-
structed based on branch-current/voltage sensitivity. It can
be viewed as an extension of traditional electrical distance
definition which is based on Q/V sensitivity [8]. In this paper,
the observability for MASE is not considered in the function
but will be checked after the partition.
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Fig. 1. Framework of non-overlapping partition approach.

The relationship between the current injection phasor at the
phase p of bus i, İpi , and the voltage phasor at the phase q of
bus j, U̇p

i , can be represented as (1):

İpi =
∑
j

∑
q=a,b,c

Y pq
ij U̇ q

j (1)

where, Y pq
ij is the element of the admittance matrix related to

the phase p of bus i and the phase q of bus j.
Then, for phase p of bus i and phase q of bus j, they

are directly connected or line coupled, and their voltage
sensitivities can be deduced as (2)–(5):∣∣∣∆U̇p

i

∣∣∣ =
∣∣∣∆U̇ q

j

∣∣∣αpqij (2)

αpqij =

∣∣∣∆U̇p
i

∣∣∣∣∣∣∆U̇ q
j

∣∣∣ =

∣∣∣∂U̇p
i

∣∣∣∣∣∣∂U̇ q
j

∣∣∣ =

∣∣∣∂U̇p
i

∣∣∣∣∣∣∂İqj ∣∣∣
/∣∣∣∂U̇ q

j

∣∣∣∣∣∣∂İqj ∣∣∣ (3)

∣∣∣∆U̇ q
j

∣∣∣ = αqpji

∣∣∣∆U̇p
i

∣∣∣ (4)

αqpji =

∣∣∣∆U̇ q
j

∣∣∣∣∣∣∆U̇p
i

∣∣∣ =

∣∣∣∂U̇ q
j

∣∣∣∣∣∣∂U̇p
i

∣∣∣ =

∣∣∣∂U̇ q
j

∣∣∣∣∣∣∂İpi ∣∣∣
/∣∣∣∂U̇p

i

∣∣∣∣∣∣∂İpi ∣∣∣ (5)

where |U̇p
i | and |U̇ q

j | are the voltage magnitudes; |İpi | and
|İqj | are the current injection magnitudes. The above equations
indicate that the voltage sensitivities between two buses can
be represented as the ratio of current magnitude sensitivity to
voltage magnitude sensitivity.

Combined with (1), (3) and (5) can be represented as:

αpqij =

∣∣Y qq
jj

∣∣∣∣Y pq
ij

∣∣ , αqpji =
|Y pp
ii |∣∣Y pq
ij

∣∣ (6)

Because αpqij 6= αqpji , in order to obtain symmetrical dis-
tances, a new electrical distance definition is raised as:

wpqij =
1

αpqij
+

1

αqpij
(7)

The function wpqij is positive and symmetric. It is decou-
pled from the power flow and only depends on the network
topology.

Moreover, an extra normalization mathematical step, as
shown in (8), is applied in multi-phase distribution networks,
for each bus is an undividable integral and all its phases have
to be in the same subregion.

wij =
∑

p,q=a,b,c

wpqij (8)

For node i and node j without direct electrical connections,
wij is set as 0. Thus, the power system model is mapped into
an equivalent topological structure G with N vertices, and the
topological information is stored in a N×N adjacency matrix
A where Aij = wij .

Therefore, the definition of electrical distance, as proposed
in this paper, has the following properties:

1) The electrical distance between two buses with a coupling
relationship is always greater than 0.

2) The definition is closely related to the system topological
structures.

3) Compared with the currently existing method, the method
in this paper is decoupled from the power flows, so it is
equally applicable to different power flow scenarios under
the same topology and is more feasible.

4) The influence of three-phase imbalance is considered:
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a) The sensitivity of all phases is normalized, and the
more the number of phases, the stronger the electrical
coupling between the two coupled buses.

b) The electrical relationship between the direct-linked
phases is far greater than that between the indirect-
linked phases.

The value of the electrical distance is primarily determined
by that between the same phases in the normalization process,
which is consistent with the actual electrical properties.

C. Community-Detection-Based Initial Partition

According to the modularity-based Community Detection
algorithm proposed originally in [22] (BGLL algorithm), this
paper raises a non-overlapping distribution network partition-
ing method. By finding highly similar bus groups in the
network, the complex network is modularized into high intra-
connected and low inter-coupled subregions.

The modularity Q of the weighted undirected network is
defined as the following equations:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

=
1

2m

∑
C∈P

∑
i,j∈C

[
Aij −

kikj
2m

]
(9)

ki =
∑
j

Aij ,m =
1

2

∑
i

ki =
1

2

∑
ij

Aij , δ(u, v)

=

{
1, if u = v

0, if u 6= v
(10)

where C represents the community; P is the set of commu-
nities in the network; ci represents the community to which
the vertex i belongs. If vertex i and vertex j belong to the
same community, then δ(ci, cj) is set as 1, otherwise it is set
as 0. ki is the degree of the vertex i, representing the sum
of the weights of all the edges connected with vertex i. m
is the sum of the weights of all the edges in the network.
The network modularity Q can be regarded as the sum of
the modularity of each sub module. The value range of Q is
(−1, 1), and the larger the value is, the closer the connection
is in the community. Generally, the maximum value of Q is
in the range of 0.3–0.7 [16]. Q = 0 when the whole network
is seen as a single community.

The BGLL algorithm, taking Q in (9) maximization as the
optimization objective, is a clustering algorithm that consists
of two stages of repeated iteration:
1) Stage 1

For the graph with N vertices, each vertex is first initialized
to belong to its independent community, that is, there are N
different communities. Then, for each vertex i and each of
its adjacent vertices, j, the incremental change of modularity
∆Q is calculated if you move vertex i from its community
to that of the vertex j. Afterwards, compare the values and
move vertex i to the adjacent community to obtain the largest
non-negative ∆Q.

The movement is illustrated in Fig. 2. Move the vertex i
from community c1 to community c2 where the vertex j is

i j

c'
1

c'
2

c
1 c

2

Fig. 2. Framework of non-overlapping partition approach.

in to form new communities c′1 and c′2. If all of ∆Q is less
than 0, then vertex i remains in c1. This process is applied to
all vertices in a certain sequence, and the iteration is repeated
until there is no more available vertex movement.

The increment of modularity for each vertex movement is
represented as:

Q (c′1) =
1

2m

∑
p,q∈c′1

[
Apq −

kpkq
2m

]
=

1

2m
·

[ ∑
p,q∈c1

(
Apq −

kpkq
2m

)
−
(
Aii −

kiki
2m

)

−2
∑
q∈c1
q 6=i

(
Aiq −

kikq
2m

) (11)

Q (c′2) =
1

2m

∑
p,q∈c′2

[
Apq −

kpkq
2m

]

=
1

2m

[ ∑
p,q∈c2

(
Apq −

kpkq
2m

)
+ Aii −

kiki
2m

+2
∑
q∈c2

(
Aiq −

kikq
2m

)]
(12)

∆Q =Q (c′1) +Q (c′2)−Q (c1)−Q (c2)

=
1

m

∑
q∈c2

(
Aiq −

kikq
2m

)
− 1

m

∑
q∈c1

(
Aiq −

kikq
2m

)
[1− δ (i, q)] (13)

2) Stage 2
Each community in the result of Stage 1 is regarded as a

vertex. Therefore, a new graph is formed. The weight of the
edge between the new vertices is set to equal the sum of the
weight of the edge between the previous two communities.
The weight of the self-loop of the new vertices is twice the
weight of all the edges in the previous community. The sum
of degrees in the whole graph remains unchanged. Then the
process in Stage 1 is employed again until the communities
do not change.

The system is divided into multiple highly cohesive non-
overlapping subregions, identified as community. Although it
reflects the strength of the coupling extent in the distribution
network, such an algorithm has a common drawback: it is an
over-partition process and the partitioned subregions are too
small and scaled unevenly. Thus, a merge process needs to be
further applied on the initial partition result.

D. Subregion Merging
As mentioned in the Introduction section, it is a key

premise to ensure the computational efficiency of distributed
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algorithms. Therefore, it is necessary to merge the initially
partitioned subregions into a reasonable number according to
this principle. In this paper, the number is preset.

It can be seen as a k-balanced graph partition prob-
lem [23], [24]. It refers to dividing a weighted graph into
non-overlapping k parts with as few similar scales as possible,
which is the constraint, to obtain the minimized sum of
edge weights connecting different subregions, namely the cut
set, which is the optimization objective. When the edges
are unweighted, the problem is equivalent to taking the size
similarity of subregions as the optimization objective.

In this paper, the subregion merging problem is constructed
as a k-balanced graph partition problem. It is solved in three-
phases: equivalent graph construction phase, a coarsening
phase by a greedy algorithm, and a refining phase by a tabu
search algorithm.
1) Equivalent Graph Construction

First, an equivalent graph for a k-balanced graph partition
is constructed. After the initial partition, each community is
regarded as a weighted vertex and the weight is set as the scale
of “community” such as the number of nodes or phases, etc.
The edges connecting the “communities” are viewed as non-
weighted, because the merging part focuses more on the scale-
similarity. The size of the equivalent graph is much smaller
than the original. This paper primarily considers the radial
distribution network, so it is sparse and has limited edges.

For the distributed algorithms in power networks, the inter-
action information between subregions is limited, for example,
the information of only interacting boundary nodes [9], [25],
therefore, the communication cost is not considered in this
paper.

In this way, the problem of subregion merging is trans-
formed into the problem of k-balanced graph partition with
weighted points and unweighted edges.
2) Coarsening Phase

A greedy algorithm based coarsening phase is used here to
generate a good initial solution as the input of the following
tabu-search-based refining phase.

In this k-balanced graph partition problem of a weighted-
vertices unweighted-edges graph, the optimization problem
can be viewed as the minimization of scale imbalance, the rate
of the subregions’ biggest size and minimum size, in (14).

min f =
max(Ni)

min(Ni)
, i = 1, 2, · · · , k (14)

where k refers to the preset number of subregions, Ni is the
size of the ith subregion.

In a non-overlapping partition, the weight of each vertex
and the final partitioned number is known in advance. So, the
optimization problem equals (15).

min f =
∑
|Ni −N |, i = 1, 2, · · · , k (15)

N =
1

k

∑
w (16)

where, N is the average size of the subregions.
A greedy algorithm is applied to distribute the overall

objective into a smaller one:

Algorithm 1: Greedy Algorithm for Coarsening Phase
Input: G := {V,E}, {K}, {W}, kmin := min{K};

1 Initialize the counter of subregions kc := 0;
2 Initialize the candidate vertices set
{S} := {v|k(v) = kmin, v ∈ {V }}

3 for each vi ∈ {S} do
4 if vi can be cut as a subregion then
5 Do the cut and update

kc, {V }, {K}, {W}{S}, kmin

6 if kmin changes then
7 Return to step 3;
8 end
9 end

10 end
11 Initialize the related counter set of
{S} : {SF} := {f(v)|v ∈ {S}} = {0}

12 while {S} is not empty do
13 Find the vm ∈ {V } : k(vm) = kmin and

f(vm) = min{SF}
14 if vm cannot be merged into its neighour(v′) and

f(vm) = 0 then
15 f(vm) := 1 and update {SF};
16 else
17 Do the merge and update

{S}, {SF}, {W}, {K}
18 if k(v′) < kmin then
19 Go to step 3
20 else
21 k(v′) = kmin

22 vm := v′, go to step 10;
23 end
24 end
25 end

Starting from vertex v with the minimum degree and
minimum weight, search the connected vertex set Sv to make
the weight sum of vertex v and v′ most closer to the objective
value. That is, whether there is a unique solution to obtain a
minimum negative value in (17).

min ∆(vn) = |w(v) + w(vn)−N | − |w(v)−N |, vn ∈ Sv

s.t.

{
min ∆ < 0

|v′|∆(v′)=min ∆ = 1
(17)

If such vertex v′ exists and is unique, then merge vertex v
into v′ and make the sum of their weights to be that of the
new vertex.

If it exists but is not unique, then leave the graph unchanged
and start from the vertex with the minimum degree and the
minimum weight except v.

If there is not a negative ∆, which means that merging v
into any vertex in Sv will not make its weight closer to the
target value N , then cut vertex v off as a subregion.

These steps should iterate until you obtain the preset number
of subregions.
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3) Refining Phase
In order to escape the trap of local optimum of the greedy

algorithm and to achieve the global partition equilibrium, a
heuristic algorithm, tabu search, is used to refine the results.

The solution of the coarsening phase is taken as the initial
current optimum and the initial historical optimum. It is
intensified and diversified by re-decomposing and re-merging
the vertices with two move operators repeatedly. Equation (14)
works as the evaluation function for measuring the attractive-
ness of the results.

Specifically, the two move operators respectively are the
neighborhood move operator and the exchange move oper-
ator. Move gain is introduced here to describe the partition
improvement of each movement. one of its neighboring sub-
regions from its previous one. Start from any one subregion
Sm except for the maximum weight subregion Smax that
Sm ∈ {Si|Si 6= SmaxSi ⊂ {S}} and randomly select a
border node vn connecting to Sm from its adjacent subregion
Sn(m 6= n). Move vn into Sm from Sn so that the vertices
left in Sn are interlinked. Its move gain is described in (18).

∆f1 = |Nm + wvn −N |+ |Nn − wvn −N |
− |Nm −N | − |Nn −N | (18)

Exchange move operator references that after moving the
above mentioned neighboring move operator vn into Sm from
Sn, then randomly select a border node vm in Sm adjacent
to Sn and move it into the Sn so that the left subregion Sm
remains interlinked. Its move gain is described in (19).

∆f2 = |Nm + wvn − wvm −N | − |Nm −N |
+ |Nn + wvm − wvn −N | − |Nn −N | (19)

Consider all possible movements and execute that one with
the minimum move gain. If vn is moved into Sm from Sn,
then vn is rejected from being moved back into Sn in the given
number of following steps, namely the tabu length, unless it
satisfies the amnesty criterion. For example, in this paper, set
the tabu length as tt, then the size of the tabu list is 2tt.
Each time there is a movement, the corresponding data [vn, Sn]
is added to the end of the list and the first row of the list
is deleted. If the element [vn, Sn] exists in the list, then the
movement of vn into Sn is rejected.

Amnesty criterion references that when the current optimal
solution is better than the historical optimal solution but is on
the tabu list, it should be released and ignored and be accepted
directly.

The neighborhood exploration strategy is described as the
following. Make a candidate set of all possible move operators,
calculate their corresponding move gain, and arrange them in
order. The current best move operator is called the current
optimal solution. If the current optimal solution is not rejected,
or is rejected but meets the amnesty criterion, then execute
it. Otherwise, consider the suboptimal solution until a feasible
solution is found. If it is better than the historical optimal solu-
tion changes, update it, including the corresponding evaluation
value and the detailed partition scheme. If the current optimum
is the same as the historical optimum, but the partition schemes

are different, it means that it has multi-solutions, so add the
new solution to the historical optimal scheme record.

There are three types of termination criterion defined in
this paper. The first one is to set the maximum search times
tmax. If the counter number exceeds tmax, the current optimal
solution will be used as the final result. The second one is
to specify the number of steps tstop. If the current optimal
solution does not change within tstop steps, then the search is
terminated. The third one is that when currently there are no
available move operators, then the search is terminated. The
result is the global optimal partition scheme with the minimum
evaluation function value.

III. PROPOSED APPROACH TO BORDER-BUS
OVERLAPPING PARTITION

The tie-line overlapping partition can be directly obtained
by extending the non-overlapping partition pattern as presented
in [10]. Another important partition pattern in a distribution
network, which many MASE methods are based on, is the
border-bus overlapping partition, which can be obtained by
the following method.

A. Framework

The framework of the proposed approach for the border-
bus overlapping partition is similar to that of non-overlapping
Partition Approach, however, you just replace the vertex par-
tition community detection with the link partition community
detection.

Combining the community discovery method based on edge
division [26], [27], and the merging method based on the
principle of uniformity of subregions, this paper proposes a
node overlapping distribution network partitioning method.

B. Community-Detection-Based Initial Partition

According to the links partitions in [28], the vertices and
the links are equivalently conversed and then the modularity-
based community detection is applied in this initial partition
stage.

For a graph of a distribution network with N vertices and
L links, by shifting vertices to links and links to vertices,
an adjacency matrix of the line graph, C, is defined. First,
construct the correlation matrix B:

Biα = Bjα = wij (20)

where α refers to the edge with the ends i and j. Matrix B can
be regarded as the adjacency matrix of this bilateral network,
which contains all the graph’s information. For example, the
degree of node i, ki, and the number of vertices connecting
to the line α, kα, can be expressed as:

ki =
∑
α

Biαkα =
∑
i

Biα (21)

Then the adjacent matrix C(L× L) is defined as:

Cαβ =
∑
i,ki>0
j,kj>0

BiαwijBjβ

kikj
(22)
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C can be regarded as a weighted undirected network with
L vertices as well as self-loops. For a large and sparse
distribution network, the number of branches is limited, so
the construction of the adjacency matrix C will not cause a
massive increase in the dimension of the matrix.

Therefore, matrix C can be directly put into (13) for the
initial partition. This link partitioning method ensures that
there is only one layer of border nodes in the overlapping
areas. However, it is still an over-partition process.

C. Subregion Merging

Similarly, in this part, the subregion merge problem is
constructed as a k-balanced graph partition problem with the
optimization goal of scale similarity. It is solved by a greedy
algorithm and a tabu search method.
1) Equivalent Graph Construction

First, construct an equivalent graph with weighted vertices
and unweighted edges. Each subregion of the result in the
previous initial partition is viewed as a weighted vertex, and
the weight is set as its size. Considering the three-phase
imbalance of distribution networks, here we take the number
of phases as the size. The adjacent subregions are connected
by edges. Additionally, the overlapping areas are marked as
a different type of weighted vertices in the graph and are
connected with the subregions to which they belong with a
different type of edges.
2) Coarsening Phase

A greedy algorithm is used to pursue the scale uniformity
of a target number of subregions. Different from the non-
overlapping partitioning method, in the border-node overlap-
ping pattern, the existence of overlapping areas will cause
the uncertainty of the average size of optimally partitioned
subregions. But the influence is limited. So, in this section,
the average size Ñ is approximated to N .

Since it involves the repeated calculation of the size in
the overlapping area and the locally connected graph, the sub
objective of the greedy algorithm can be described as:

min ∆(vn) = |w(v) + w(vn)− w(v ∩ vn)− Ñ |
− |w(v)− Ñ |, vn ∈ Sv

s.t.

{
min ∆ < 0

|v′|∆(v′)=min ∆ = 1
(23)

where w(Sm∩vn) refers to the weight of the overlapping part
of the vertex vn and the subregion Sm.

Starting from vertex v with the minimum degree and the
minimum weight, search the connected vertex set Sv to
determine whether there is a vertex v′ in Sv to make the weight
of the new subregion more closer to the objective value. That
is, whether there is a unique solution to obtain a minimum
negative value in (23).

If such vertex, v′, exists and is unique, then merge vertex
v into v′ and update the new weights.

If the solution exists but is not unique, then keep the graph
unchanged and restart the search from the vertex with the
minimum degree and the minimum weight, except v.

If there is not a negative ∆, which means that merging v
into any vertex in Sv will not make its weight closer to the
target value Ñ , then cut the vertex v off as a subregion.
3) Refining Phase

A tabu search is used to refine the partition results. Define
the scale imbalance of the neighboring subregion i and j
as (24).

gij = max{Ni/Nj , Nj/Ni} (24)

Equation (25) is the evaluation function. The optimization
goal is to minimize the maximum value of the scale imbalance
between all adjacent subregions. The merging result in the
coarsening phase is taken as the initial solution as well as the
current optimal solution, fcur = f

best
.

min f = max(gij) (25)

There are two move operators, the neighborhood move
operator and the exchange move operator, respectively. Their
move gains are given as the following.

For the neighborhood move operators, move vn into Sm
from Sn, and its move gain is shown in (28).

a = Nm + wvn − w(Sm ∩ vn) (26)
b = Nn − wvn + w((Sn − vn) ∩ vn) (27)

∆g1 = max {a/b, b/a} −max {Nm/Nn, Nn/Nm} (28)

where (Sn − vn) refers the subregion Sn after removing vn
out.

For the exchange move operators, move vn into Sm from
Sn and move vm into Sn from Sm(vm 6= vn) so that Sm
and Sn are still connected internally. The move gain is shown
in (31).

a =Nm − wvm + w((Sm − vm) ∩ vm) + wvn

− w(Sm ∩ vn) (29)
b =Nn − wvn + w((Sn − vn) ∩ vn) + wvm

− w(Sn ∩ vm) (30)
∆g2 = max{a/b, b/a} −max{Nm/Nn, Nn/Nm} (31)

IV. CASE STUDY

The proposed partitioning method is developed in the
MATLAB R2018b environment. This section gives the results
and comparisons of numerical simulations that have been
performed on a computer with an Intel (R) Core (TM) i5-
8400 CPU @ 2.80 GHz and 8 GB main memory.

A. Equivalent Graph Construction

In this paper, when constructing the equivalent topology of
the distribution network, the buses at both ends of the closed
circuit breakers are simplified to one vertex. The isolated
part of the disconnected network is no longer included in the
equivalent topology to be partitioned.

Taking the IEEE 123-bus distribution system [29] as an
example, the electrical system model is shown in Fig. 3. Its
renumbered equivalent weighted undirected graph is shown in
Fig. 4.
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Three-phase Two-phase Single-phase

Fig. 3. IEEE 123-bus power system mode.

Fig. 4. IEEE 123-bus equivalent weighted undirected topology.

Taking the three-phase lines between vertex No. 1 and No.
7, the related elements in the admittance matrix is shown in
(32). The calculated electrical distance is shown in (33).9.8803− 20.4871i −4.7993 + 7.0327i −1.7318 + 4.5682i
−4.7993 + 7.0327i 11.0484− 21.2300i −2.9397 + 5.5754i
−1.7318 + 4.5682i −2.9397 + 5.5754i 8.8766− 19.7719i


(32)0.9714 0.3562 0.2129

0.2923 0.8009 0.2219
0.1832 0.2309 0.8318

 (33)

The electrical distance between nodes is 4.1016, the sum of
all elements in (33), in which the diagonal elements account
for 2.3041/4.1016 = 63.5% and the non-diagonal elements
account for 1.4975/4.1016 = 36.5%. Therefore, the electrical
distance between the same phases is dominant, proving that
the proposed method is consistent with the actual electrical
properties.

B. Non-Overlapping Partition

1) Initial Partition Result
The initial non-overlapping partition result of the IEEE 123-

bus network based on community detection is given in Fig. 5.
It is partitioned into 15 small communities with uneven scales.
The number of nodes of each subregion varies from 2 to 18
and that of the phases varies from 4 to 38. Therefore, it cannot
be used as the final result in distribution networks.

Fig. 5. IEEE 123-bus non-overlapping initial partition result based on
community detection.

2) Equivalent Graph Constructed for Subregion Merging
Construct Fig. 5 into an equivalent graph with weighted

vertices and unweighted edges for applying the following
subregion merging algorithms. It is shown in Fig. 6 and the
numbers in the circles are the weight.

27 20 21 16

38 21 18

4 4 6 23

18 17

23

6

Fig. 6. IEEE 123-bus non-overlapping equivalent graph constructed for
subregion merging.

Taking the target number of subregions N = 6 and N =
4 respectively as examples, the IEEE 123-bus system is
partitioned into non-overlapping subregions. The tabu length
is set as tt = 3, the maximum search times is tmax = 200,
and the specified number of steps is tstop = 3. The results are
presented in Figs. 7 and 8.

The proposed method is computationally efficient. When
merging the network into 6 subregions, the scenario under
consideration (the number of merge/split judgments) is 23 in
the coarsening phase and the ones considered in the refining
phase is 5. Compared with C6

14 = 3003 times in the traversing
method, it is (3003− 28)/3003 = 99.1% less. When merged
into 4 subregions, the scenario considered in the proposed
method is 22 + 2 = 24 while in the traversing method the
number is C6

14 = 3003 times. It is (364 − 24)/394 = 93.4%
less.
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Fig. 7. IEEE 123-bus non-overlapping partition (N = 6).

Fig. 8. IEEE 123-bus non-overlapping partition (N = 4).

The result in the refining phase of the Subregion Merging
step is the same as that of the traversing method, which
verifies the global optimality of the proposed tabu-search-
based method. Comparing the result of 4 subregions with the
existing literature, it is the same as that in [11] and [17], and
is similar to Fig. 9 in [15] and Fig. 10 in [30]. Reference [11]
partitions the network based on node number similarity and
observability for MASE, but neglects the electrical coupling
relationship. The methods in [15] and [17] are both based
on the assumption of three-phase balance and is sensitive
to the power flow selected for the calculation. While in this
paper, the three-phase imbalance is considered, and the result
is decoupled from the power flows. Reference [30] divides
the training data into smaller packages for MASE, and just
mentions the nodes scale similarity without more descriptions,
while this paper provides theoretical explanations and detailed
algorithms. Therefore, this proposed method is effective and
credible.

C. Border-Bus Overlapping Partition

1) Initial Partition Result
The initial border-bus overlapping partition result of the

Fig. 9. IEEE 123-bus over-overlapping partition result in [13].

Fig. 10. IEEE 123-bus over-overlapping partition result in [28].
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Fig. 11. IEEE 123-bus over-overlapping initial partition result based on
community detection.

IEEE 123- bus network is shown in Fig. 11. It has the apparent
shortages of over-partition and uneven scales.
2) Equivalent Graph Constructed for Subregion Merging

Figure 11 is constructed into an equivalent graph with
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Fig. 12. IEEE 123-bus border-node overlapping equivalent graph constructed
for subregion merging.

weighted vertices and unweighted edges as shown in Fig. 12
for applying the following subregion merging algorithms. The
circles are the equivalent vertices of the subregions and the
circled number is the weight. The blue numbers beside the cir-
cles are the serial numbers of the vertex. The diamonds are the
equivalent vertices of the overlapping areas and the numbers
nearby are the weights. The solid black lines connect adjacent
subregions, and the dotted lines connect the overlapping areas
and the subregions to which they belong.
3) Final Partition Result

Taking the target number of subregions N = 6 and N = 4
respectively as examples, partition the IEEE 123-bus system
into border-bus overlapping subregions. Set tt = 3, tmax =
200 and tstop = 3. The results are presented in Figs. 13 and 14.

Fig. 13. IEEE 123-bus border-node overlapping partition (N = 6).

The final partition result is the same as that by the traversing
method. When merged into 6 subareas, the proposed method
considers 23 + 3 = 26 scenarios in total while the traversing
method considers 3705 times. When merged into 4 subareas,
the scenarios considered are 23+2 = 25 and 1710 respectively.

Comparing the partition results of 4 subregions in Fig. 14
with that in [12], [30], [31] as shown in Fig. 15, they are sim-
ilar. Thus, the credibility of the proposed method is verified.
Different from the simple subjective partitioning method in
[31], this paper provides strong algorithm support. It takes both
the electrical coupling relationship and the scale similarity into

Fig. 14. IEEE 123-bus border-node overlapping partition (N = 4).

Fig. 15. IEEE 123-bus border-node overlapping partition (N = 4) in other
literatures.

account, which is realized by the method in Section III. While
the considered elements are different from the data-package-
division method in [30] and the node number similarity and
observability based method in [12], the results verify that this
proposed method is effective and credible.
4) Partition Efficiency

To prove that the proposed method is efficient compared
with other methods, Monte Carlo simulations are used for
the test of this part, 100 trails for each test, to compare
the efficiency of the method proposed in [12], the traversing
method and the method in this paper.

These three methods are used to partition the IEEE123-
bus system into four border-node overlapping subregions.
As shown in Fig. 16, the red curve represents the time-
consuming of the traversing method, the blue curve represents
the time-consuming of the method in [12], and the green curve
represents the time-consuming of the method in this paper.
Through 100 partition experiments, it can be found that the
method proposed in this paper can greatly shorten the time
spent in the partition of the distribution system. The results
show that the proposed method is efficient.
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Fig. 16. Time consuming of three partitioning methods.

V. CONCLUSION

This paper has proposed a community-detection-based non-
overlapping and border-node overlapping partition approach in
three-phase imbalanced distribution networks. First, a novel
electrical distance is defined to quantify the coupling rela-
tionship of buses and then is used as the edge weight of the
equivalent topology graph. Afterwards, the vertex-partition and
link-partition community detection algorithms are introduced
in the initial over-partition stage to generate high-inter-coupled
subregions. Finally, a greedy algorithm and a tabu search
method are employed to merge these small subregions to the
target number according to the scale similarity. The results and
comparisons of the tests on IEEE 123-bus systems verify that
the proposed partition approach is effective and credible.

This approach is equivalently applicable for different sce-
narios in distribution networks, such as MASE and distributed
control. It is based on the coupling relationship of buses and
the scale similarity with strong theoretical and algorithm sup-
port. Three-phase imbalance is fully considered. The partition
result is decoupled with the power flow and only relies on the
network parameter.
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