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Abstract—With more and more offshore wind power being
increasingly connected to power grids, fluctuations in offshore
wind speeds result in risks of high operation costs. To mitigate
this problem, a risk-averse stochastic economic dispatch (ED)
model of power system with multiple offshore wind farms (OWFs)
is proposed in this paper. In this model, a novel GlueVaR method
is used to measure the tail risk of the probability distribution
of operation cost. The weighted sum of the expected operation
cost and the GlueVaR is used to reflect the risk of operation
cost, which can consider different risk requirements including
risk aversion and risk neutrality flexibly by adjusting param-
eters. Then, a risk-averse approximate dynamic programming
(ADP) algorithm is designed for solving the proposed model,
in which multi-period ED problem is decoupled into a series
of single-period ED problems. Besides, GlueVaR is introduced
into the approximate value function training process for risk
aversion. Finally, a distributed and risk-averse ADP algorithm
is constructed based on the alternating direction method of
multipliers, which can further decouple single-period ED between
transmission system and multiple OWFs for ensuring information
privacy. Case studies on the modified IEEE 39-bus system with
an OWF and an actual provincial power system with four OWFs
demonstrate correctness and efficiency of the proposed model
and algorithm.

Index Terms—Approximate dynamic programming (ADP),
alternating direction method of multipliers, GlueVaR, offshore
wind farm, risk-averse stochastic optimization.

NOMENCLATURE

A. Sets and Indices

t/ΩT Index/Sets of all time periods.
g/ΩG Index/Sets of fuel-fired units in power system.
m/ΩOWF Index/Sets of OWFs.
w/Ωm Index/Sets of wind turbines in the m-th OWF.
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s/Ns Index/Sets of storage units.
p/Nps Index/Sets of PSH stations in power system.
b/Nbs,m Index/Sets of BS stations in m-th OWF.
r/Bp/Bb Index/Sets of piecewise storage quantities of

PSH/BS station.
cm/Ncon Index/Sets of connection buses between power

system and OWFs.
i/j Indices of buses.
ij Index of branches.
δ(j)/π(j) Set of buses whose parent/child bus is bus j.

B. Parameters

CWm Penalty cost coefficient of wind curtail-
ment.

alg/elg Slope/Intercept of the lg-th segment of the
piecewise linear cost function of the g-th
thermal power unit.

Pg,min/Pg,max Minimum/Maximum active output of the
g-th thermal power unit.

rg,u/rg,d Ramp up/down rate of the g-th thermal
power unit.

∆T Length of a time period, i.e., 1 h in this
article.

θij,min/θij,max Minimum/Maximum value of θij .
PLi,t Active load power of bus i.
ηp/ηb Roundtrip efficiency of PSH/BS station.
Ppp,max/Pgp,max Maximum pumping/generating output of

the p-th PSH station.
Pcb,max/Pdb,max Maximum charging/discharging output of

the b-th BS station.
Pij,min/Pij,max Minimum/Maximum active power of

branch ij.
Rp,min/Rp,max Minimum/Maximum stored energy of the

upper reservoir of the p-th PSH station.
Rb,min/Rb,max Minimum/Maximum stored energy of the

b-th BS station.
bij Susceptance of branch ij.
rij/xij Resistance/Reactance of branch ij.
θs Weight of the s-th storage unit.
Pwjmin Minimum active power output of wind

turbine w.
Pwjmax,t Maximum available active power output of

wind turbine w at time period t.
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Ĩij,max Maximum square of current of branch ij.
Ũj,min/Ũj,max Minimum/Maximum square of voltage of

bus j.
ϕmin/ϕmax Minimum/Maximum power factor angle of

wind turbine w.
Cpw/CTw Power coefficient/Thrust coefficient of

wind turbine w.
Prated Rated active power of wind turbine g.
ρa Air density.
vci/vrated/vco Cut-in/Rated/Cut-out wind speed of wind

turbine g.
Rw′w Wake radius generated by the wind turbine

w′ at wind turbine w along the wind
direction.

vm Natural wind speed of the OWF m.
R Rotor radius of all wind turbines.
α Wake decay constant, the recommended

value of which is 0.04 for the offshore
environment.

d Distance between the wake area center and
WT rotation area.

Xw′w Distance between wind turbines w′ and w
along wind direction.

ε1/ε2 Threshold of the stop criterion of ADMM
algorithm.

λ1/λ2 Augmented Lagrange multiplier.
ρ Penalty coefficient.
M Total number of OWFs.

C. Variables

Fg,t Operation cost of thermal power unit g.
Pg,t Active power output of thermal power unit g.
Pi,t Injected active power of bus i at period t.
Pj,t Injected active power of bus j at period t in

the OWF.
Rp,t/Rb,t Stored energy of PSH/BS station at period t.
Ppp,t/Pgp,t Pumping/Generating power of PSH station

at period t.
ypp,t/ygp,t Binary variable indexing the pumping/

generating state of PSH station at period t.
Pcb,t/Pdb,t Charging/Discharging power of BS station at

period t.
ycb,t/ydb,t Binary variable indexing the charging/

discharging state of BS station at period t.
Pij,t/Qij,t Active/Reactive power in the head end of

branch ij at period t.
Ũj,t Square of the voltage of bus j at period t.
Ĩij,t Square of the current of branch ij at period t.
Pwj,t/Qwj,t Active/Reactive power outputs of wind tur-

bine w in bus j at period t.
PWc,m/PΣc,m Active power across the connection bus

cm between transmission system and m-th
OWF.

vt Vector of stochastic variables at period t.
Rt Vector of storage quantities at period t.
St/xt Vector of state/decision variables at period t.
x1/x2 Variables of region 1/2.
x1bc/x2bc Boundary coupling variables of region 1/2.

z Intermediate variables in the ADMM.
c1/c2 Cost function of region 1/2.

I. INTRODUCTION

W ITH power generated from offshore wind farms
(OWFs) increasingly being integrated into power grids,

wind speed uncertainties considerably affect active power out-
puts of OWFs and render the secure and economic operation
of the power system with multiple OWFs challenging [1],
[2]. To address power uncertainties, storage systems such as
pumped-storage hydro (PSH) stations and battery storage (BS)
stations are widely used in transmission systems and OWFs,
respectively, which play a crucial role in the economic dispatch
(ED) of power systems [3]. Furthermore, the performance of
the transmission system and multiple OWFs are attributed to
various stakeholders, including the power network company
and OWF investment companies. Therefore, ensuring infor-
mation privacy between the transmission system and multiple
OWFs is crucial. Thus, the ED problem of power systems
with multiple OWFs considering wind speed uncertainties has
attracted considerable research attention.

Robust optimization (RO) and stochastic optimization (SO)
are typically used to mitigate the effects of uncertainty on
the ED problem. In RO [4], [5], decisions are made under
the worst case of given uncertainty sets of uncertain vari-
ables. However, these decision results are too conservative
because the worst-case scenario does not always occur [6].
In SO [7]–[9], uncertainty in optimization problems is ad-
dressed by describing uncertain variables with a series of
sampling scenarios [10]. However, SO decision results could
be over-optimistic and risk-neutral because low-probability,
high-impact uncertainty scenarios are usually excluded via
the scenario reduction methods for alleviating computational
burden [11].

To avoid potential risks of decision results due to uncer-
tain variables, numerous studies have focused on integrating
appropriate risk measures into the SO method to avoid over-
optimistic decisions [12]–[17]. In [12] and [13], an adap-
tive risk-averse SO approach for multi-energy microgrids
and risk-based scheduling and control of microgrids under
uncertainty were presented, respectively, by scenario-based
method, in which conditional value-at-risk (CVaR)-based risk-
measurement method was used to avoid over-optimistic solu-
tions. In [14], the robustness function of the information gap
decision method was used for developing the risk-averse strat-
egy to appropriately manage fluctuations of uncertain parame-
ters of microgrids. In [15] and [16], the risk-averse stochastic
programming model for the hybrid wind-thermal power system
and voltage control of AC/DC power systems was proposed,
respectively. The risk-aversion procedure was formulated using
CVaR. In [17], uncertainties were modeled using a scenario-
based stochastic approach, whereas risk-related uncertainties
were modeled by using downside risk constraints to capture
risk-averse operations. Among these publications, CVaR is
the most popular risk-measurement method used in the risk-
averse framework. In fact, decision-makers always consider
two conflicting demands and try to make a balance between
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them. On one hand, aversion to high economic risks of some
extreme scenarios is critical. On the other hand, they also
wish to reduce the operation cost of the forecast scenario.
However, the conservatism of CVaR risk measurement can
only be adjusted by changing the given confidence level,
which makes it difficult to find a satisfactory degree of risk
aversion. Recently, a novel flexible risk-measurement method
based on distortion function called GlueVaR was proposed
in the financial field to utilize more than one parameter to
capture various risk demands [18]. Conservatism of GlueVaR
can be adjusted not only by changing confidence level but
also by changing other parameters. By selecting appropriate
parameters, GlueVaR can be a combination of value-at-risk
(VaR) and CVaR, which makes GlueVaR more flexible in
reflecting risk aversion degree than CVaR. Thus, GlueVaR will
be further studied and applied in the ED problem of a power
system with multiple OWFs for risk aversion decisions in this
paper.

Besides, the aforementioned studies [12]–[17] have mostly
utilized scenario-based methods to establish SO model, which
is only suitable for microgrids and small-scale power systems.
However, the computational burden increases rapidly when
the system is large or numerous scenarios are taken into
account [19]. The approximate dynamic programming (ADP)
algorithm exhibits excellent computational performance for
the stochastic ED (SED) problem with storage systems. The
multi-period SED problem is transformed into a series of
single-period ED problems by approximate value functions
(AVFs), which can effectively reduce model scale [20]. In [21]
and [22], the ADP algorithm was applied to solve the SED
problem of microgrids and residential distributed energy sys-
tems. However, the aforementioned ADP formulation for the
SED problem is risk neutral, and decisions may have the
risk of high operation cost due to fluctuations in uncertain
variables, which makes it critical to introduce a proper risk-
measurement method into the ADP formulation for avoiding
this risk. Therefore, a risk-averse ADP algorithm with Glue-
VaR is proposed in this paper. In addition, the conventional
ADP algorithm requires a relatively long time to train AVFs,
which should be improved in the proposed risk-averse ADP
algorithm.

For a power system with multiple OWFs, the transmission
systems and each OWF are connected by the same connection
bus. Information privacy is a critical requirement between
the transmission systems and multiple OWFs, which renders
the realization of the centralized optimization method diffi-
cult [23]. Furthermore, the centralized optimization method
requires data from the power system and increases the com-
putational burden on the central control center when consid-
erable data form multiple OWFs exist [24]. Therefore, the
distributed optimization method is suitable for the SED of a
power system with multiple OWFs. The alternating direction
method of multipliers (ADMM) is a widely used distributed
optimization method in which the decomposability of the
dual ascending algorithm and the convergence of multiplier
method are combined [25]. This method has been extensively
applied in ED [26], voltage control [23], and optimal power
flow [27]. However, further research is required in combining

the ADMM and risk-averse ADP algorithm and designing the
distributed risk-aversion optimization algorithm for solving the
SED of a power system with multiple OWFs.

The major contributions of the present study are as follows:
1) Considering uncertainties of offshore wind speeds and

introducing a novel risk-measurement method, GlueVaR, a
risk-averse SED model of power system with multiple OWFs,
PSH stations, and BS stations, is established. The relationship
between wind speeds and maximum available active outputs
of wind turbines is calculated by using the wake model.

2) A risk-averse ADP algorithm is proposed to solve the
risk-averse SED model by introducing the GlueVaR-based
risk-averse method in the training process of AVFs. It can solve
multiple scenarios of the same group by parallel computing
in AVF training, which improves computational efficiency
compared with conventional ADP algorithm. It can also avert
the potential risk of high operation costs in some extreme
scenarios and narrow the range of operation costs under wind
speed uncertainties.

3) A distributed and risk-averse ADP algorithm combining
risk-averse ADP and ADMM algorithm is proposed to solve
the proposed SED model by distributed optimization calcu-
lation between the transmission system and multiple OWFs.
This technique can maintain information privacy between
transmission system and multiple OWFs.

The rest of this paper is organized as follows: Section II
introduces the risk-measurement method based on GlueVaR.
Section III proposes a risk-averse SED model for a power
system with multiple OWFs. Section IV introduces the dis-
tributed and risk-averse ADP algorithm for solving the pro-
posed model. Section V presents case studies in the modified
IEEE 39-bus system and an actual provincial power system.
Section VI presents the conclusion.

II. RISK-MEASUREMENT METHOD BASED ON GLUEVAR

To calculate risk-measurement cost, selecting an appropriate
risk-measurement method is crucial. VaR and CVaR are the
most widely used risk measures. VaR does not consider the
tail risk cost of the probability density function (PDF) of the
random variable. CVaR can consider tail risk cost of the PDF
and quantify risk potential beyond VaR, which has been widely
used in many fields [12]. Calculations of VaR and CVaR are
as follows:

VaRα(X) = inf
u
{P (X ≤ u) ≥ α} (1)

CVaRα(X) = inf
u
{u+ 1/(1− α)E[(X − u)+]} (2)

where α ∈ [0, 1] is confidence level; P (X ≤ u) ≥ α indicates
the probability of random variable X is lower than u is greater
than α; (X − u)+ denotes the value is X − u when X ≥ u,
and value is 0 when X ≤ u.

GlueVaR is a risk-measurement method with multiple pa-
rameters, which is flexible and convenient for finding the
appropriate combination of parameters to reflect multiple risk
demands. Selecting appropriate parameters can cover various
risk-measurement methods including VaR and CVaR. Some
basic definitions related to GlueVaR are as follows:



1980 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 5, SEPTEMBER 2024

Definition 1. Let g: [0, 1] → [0, 1] be a function such that
g(0) = 0, g(1) = 1, and g is non-decreasing. Then g is called
a distortion function.
Definition 2. Let g be a distortion function. Consider a ran-
dom variable X and its survival function SX(x) = P (X > x).
Function ρg(X) =

∫ 0

−∞[g(SX(x))−1]dx+
∫ +∞

0
g(SX(x))dx

is called a distortion risk measure.
Given two confidence levels α and β, the distortion function

of GlueVaR is expressed as (3) VaRα and CVaRα can be
described by their distortion functions. Further details can be
found in [18].

gh1,h2

β,α (u) =
h1/(1− β)× u, 0 ≤ u < 1− β

h1 +
h2 − h1

β − α
× [u− (1− β)], 1− β ≤ u < 1− α

1, 1− α ≤ u < 1

(3)

where α, β ∈ [0, 1], α < β; h1 ∈ [0, 1], and h2 ∈ [h1, 1].
If the following notation is used,

k1 = h1 − (h2 − h1)× (1− β)/(β − α)

k2 = (h2 − h1)/(β − α)× (1− α)

k3 = 1− k1 − k2

(4)

then, according to [18], distortion function gh1,h2

β,α (u) can be
rewritten as follows:

gh1,h2

β,α (u) = k1γβ(u) + k2γα(u) + k3ψα(u) (5)

where γβ , γα, and ψα are distortion functions of CVaR at
confidence levels β and α, and of VaR at confidence level α,
respectively. Therefore, GlueVaR risk measure κk1,k2β,α (X) can
be expressed as a linear combination of three risk measures:
CVaR at confidence levels α and β, and VaR at confidence
level α, as follows:

κk1,k2β,α (X) = k1CVaRβ(X) + k2CVaRα(X) + k3VaRα(X)

(6)

The main differences between VaR, CVaR, and GlueVaR
are shown in Fig. 1. Unlike VaR and CVaR, which can only
make decisions under a single parameter, GlueVaR includes
the following three conditions when confidence levels α and
β are given: a) The most conservative situation at CVaRβ ;
b) The general conservative situation at CVaRα; and c) The
general situation at VaRα. Thus, in GlueVaR, the risk cost of
extreme scenarios in the tail of the PDF of a random variable
is considered.

Given confidence levels α and β, risk measure GlueVaR
satisfies subadditivity in the tail and becomes a coherent
measure within a specific range [18], from which convexity
of GlueVaR can be deduced [28]. The range of (k1, k2) value
which makes κk1,k2β,α (X) satisfy subadditivity in the tail is the
shaded in Fig. 2. From(4) when k1 and k2 are given, k3 can
be calculated. The closer the weight (k1, k2) is to the point
( 1−β

1−α , 0), the greater the weight of VaRαk3 is, and the decision
is inclined to a lower risk-averse level. When weight (k1, k2)
falls on the red line in Fig. 2, the weight of VaRαk3 is zero,

D
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Average value

Cost (¥)

Maximum cost

Maximum deviation

GlueVaR

value range

VaRα
CVaRβ

CVaRα

Fig. 1. Schematic of the differences between VaR, CVaR, and GlueVaR.

VaRα
CVaRβ

CVaRα

k2

k1

(0, 1)

(0, 0)
(——, 0)
1 − β

1 − α

(1, 0)

Fig. 2. Value range of (k1, k2) after giving α and β.

which indicates the decision is at a higher risk-averse level
and more conservative. On this red line, risk-averse level of
the decision is higher when weight (k1, k2) is closer to (1,
0), whereas risk-averse level of the decision is lower when
weight (k1, k2) is closer to (0, 1). Therefore, by adjusting the
two parameters k1 and k2 after giving confidence levels α and
β, weights of different risk measures in the GlueVaR can be
adjusted according to various risk-aversion requirements.

III. RISK-AVERSE SED MODEL OF POWER SYSTEM WITH
MULTIPLE OWFS

For a power system with multiple OWFs, the transmission
system includes thermal power units and PSH stations, and
OWFs include wind turbines (WTs) and BS stations. The risk-
averse SED model of such a system is described as follows.

A. Objective Function

The objective function of the risk-averse SED model in-
cludes the operation cost of thermal power units and wind
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curtailment cost in OWFs. Considering uncertainties of wind
speeds in OWFs and risks of high operation cost, the objective
function should be expressed as minimizing the weighted sum
of the expected value of operation costs corresponding to
various possible scenarios of wind speeds and risk measure
cost as follows:

min
∑
t∈ΩT

ρrisk
t (Ct) (7)

ρrisk
t (Ct) = (1− λ)E(Ct) + λκ(Ct) (8)

Ct =
∑
g∈ΩG

Fg,t +
∑

m∈ΩOWF

∑
w∈Ωm

CWm(Pwjmax,t − Pwj,t)

(9)

where ρrisk
t is weighted risk measure cost; λ is weight coeffi-

cient, and model becomes a risk-neutral model when λ = 0;
E is mathematical expectation operator, and κ is risk measure
cost. Equation (8) considers risk cost of extreme scenarios,
and decision results can avert potential risk of high operation
cost of some extreme scenarios.

Operation cost of thermal power units Fg,t is a quadratic
function as (10) and it can be approximated by piecewise linear
inequality for higher solution efficiency [29], as shown in (11).

Fg,t = Ag2 × P 2
g,t +Ag2 × Pg,t +Ag0 (10)

Fg,t ≥ algPg,t + elg , lg = 1, 2, · · · , L (11)

B. Operation Constraints of Thermal Power Units
Thermal power units need to operate under constraints (12)

as follows.

Pg,min ≤ Pg,t ≤ Pg,max, ∀g ∈ ΩG (12){
Pg,t − Pg,t−1 ≤ rg,u∆T

Pg,t−1 − Pg,t ≤ rg,d∆T
(t > 1) (13)

C. Operation Constraints of PSH Stations

Rp,t = Rp,t−1 + Ppp,tηp∆T − Pgp,t∆T (14){
Rp,min ≤ Rp,t ≤ Rp,max

Rp,T = Rp,0
(15)

ypp,t + ygp,t ≤ 1, ypp,t, ygp,t ∈ {0, 1}
0 ≤ Ppp,t ≤ ypp,tPpp,max

0 ≤ Pgp,t ≤ ygp,tPgp,max

(16)

D. Security Limit of Active Power Flow of Branches
DC power flow model is used to describe transmission

branches on the grid side as follows:

Pij,t = −bijθij,t (17)

Pi,t =
∑
i→j

Pij,t (18){
Pij,min ≤ Pij,t ≤ Pij,max

θij,min ≤ θij,t ≤ θij,max

(19)

where θij = θi − θj is difference angle between bus i and j.
In (18), if bus i is connected to fuel-fired units, Pi,t = Pg,t−
PLi,t; if bus i is connected to OWF m, Pi,t = PΣmi,t−PLi,t;
and if bus i is connected to PSH stations, Pi,t = Pgp,t −
Ppp,t − PLi,t.

E. Operation Constraints of BS Stations

Rb,t = Rb,t−1 + Pcb,tηb∆T − Pdb,t∆T (20){
Rb,min ≤ Rb,t ≤ Rb,max

Rb,T = Rb,0
(21)

ycb,t + ydb,t ≤ 1, ycb,t, ydb,t ∈ {0, 1}
0 ≤ Pcb,t ≤ ycb,tPcb,max

0 ≤ Pdb,t ≤ ydb,tPdb,max

(22)

F. Power Output Constraints of WTs

Power output constraints of WTs are as follows:

Pwjmin ≤ Pwj,t ≤ Pwjmax,t (23)
Pwj,t · tanϕmin ≤ Qwj,t ≤ Pwj,t · tanϕmax (24)

G. Power Flow Equations of the OWF Collector Network

AC collector network in a OWF is typically a radial net-
work. Considering ground susceptance of marine cable lines,
AC collector network can be described by the branch power
flow model as follows [1]:∑

k∈δ(j)

Pjk,t =
∑
i∈π(j)

(Pij,t − rij Ĩij,t) + Pj,t (25)

∑
k∈δ(j)

Qjk,t =
∑
i∈π(j)

(Qij,t − xij Ĩij,t) + bjŨj,t +Qj,t (26)

Ũj,t = Ũi,t − 2(rijPij,t + xijQij,t) + [(rij)
2 + (xij)

2]Ĩij,t
(27)

Ĩij,tŨi,t = (Pij,t)
2 + (Qij,t)

2 (28)

In (25) and (26) if bus j is connected to BS station b, then
Pj,t = Pdb,t − Pcb,t, Qj,t = 0; if bus j is connected to WT
w, Pj,t = Pwj,t, and Qj,t = Qwj,t.

Nonconvex quadratic (28) can be transformed into a convex
inequality constraint using second-order cone relaxation [31]
as follows:

‖2Pij,t; 2Qij,t; Ĩij,t − Ũi,t‖2 ≤ Ĩij,t + Ũi,t (29)

To ensure the secure operation of the OWF collector net-
work, branch current and bus voltage should not exceed the
following secure operation limit:{

0 ≤ Ĩij,t ≤ Ĩij,max

Ũj,min ≤ Ũj,t ≤ Ũj,max

(30)

H. Maximum Available Active Power Output of Wind Turbine

Maximum available active power output of WT w can be
expressed as follows [32]:

Pwjmax =


0 vw < vci

1

2
ρaπR

2v3
wCpw vci ≤ vw < vrated

Prated vrated ≤ vw ≤ vco

(31)

where Pwjmax can be calculated based on wind speed vw.
However, because of the wake effect, wind speeds of multiple
WTs affect each other in an OWF. The Jensen model is used
to describe the wake effect as follows [32]:

Rw′w = R+ αXw′w (32)
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vw′w = v0

[
1−

(
1−

√
1− CTw′

)
(Sov,w′w/πR

2
w′w)

]
(33)

Assume that WT w′ is upstream and WT w is downstream,
and the intersection area is calculated as (34). Therefore, the
number of WTs at the upstream part of WT w within the
intersection area, GW, can be determined as follows:

Sov,w′w =

arccos[(R2
w′w + d2 −R2)/2Rw′wd] ·R2

w′w

+ arccos[(R2 + d2 −R2
w′w)/2Rd] ·R2

− sin{arccos[(R2
w′w + d2 −R2)/2Rw′wd]}Rw′wd (34)

Wind speed of WT w considering wake effect can be
calculated by the following expression:

vw = vm

1−

√√√√ GW∑
w′=1

(1− vw′w/vm)2

 (35)

According to natural wind speed each OWF, the actual
input wind speed of each WT under the wake effect can
be calculated using (32)–(35), and then Pwjmax of each
WT can be calculated using (31). Natural wind speed and
Pwjmax of each WT exhibit a one-to-one correspondence.
Thus, uncertainties of offshore wind speeds in the model are
equivalent to uncertainties of Pwjmax of each WT. For the
scenario-based risk-averse SED model, wind speeds of OWFs
can be sampled first, and subsequently, the Pwjmax of each
WT can be calculated under each scenario. Therefore, in the
optimization process of the proposed model, the nonlinear
equations (31)–(35) are not included.

Therefore, the risk-averse SED model of a power system
with multiple OWFs can be formulated as (7)–(9), (11)–
(27), (29), (30). Because of variables of multiple stochastic
scenarios, multiple periods, and multiple regional networks are
included, the model size is large, and it is difficult to obtain
optimal risk-averse decisions directly when applied in a large-
scale power system. Thus, a distributed and risk-averse ADP
algorithm is designed to solve the proposed risk-averse SED
model.

IV. SOLUTION METHODOLOGY

A. Centralized Risk-averse ADP Algorithm

For the aforementioned risk-averse SED model, if Rp,t, Rb,t
are deemed as storage quantities Rt and vm,t is deemed as
exogenous uncertain variables vt, then the system state can be
defined as St = (vt,Rt), and the decision vector is expressed
as xt = (Pg,t, Ppp,t, Pgp,t, Pcb,t, Pdb,t, Pwj,t, Qwj,t). State
transition equations are shown in (14) and (20). Then the
multi-period risk-averse SED model can be solved period by
period using the ADP algorithm. Transformation of the multi-
period risk-averse SED model into a series of deterministic
single-period ED models and detailed solution steps of the
algorithm are introduced below.

1) Transformation of the Multi-Period Model
The aforementioned risk-averse SED model can be trans-

formed into deterministic optimization model by using the
risk-averse ADP algorithm. According to the risk-averse Bell-
man recursion equation [33], the optimal solution of each
period must be satisfied (36) when solving the multi-period
risk-averse SED model with the objective function as (7), and
instant cost at period t is (37).

Vt(St) = min
xt∈Πt

Ct(St,xt) + ρrisk
t (Vt+1(St+1)|St) (36)

Ct(St,xt) =
∑
g∈ΩG

Fg,t +
∑

m∈ΩOWF

∑
w∈Ωm

CWm(Pwjmax,t

− Pwj,t) (37)

Expression of the risk-measurement term ρrisk
t (Vt+1(St+1)|

St) is as (8). Here, ρrisk
t (Vt+1(St+1)|St) in the value function

calculation includes mathematics expectation operation, which
makes (36) difficult to obtain optimal risk-averse decision
xt. Equation (36) can be simplified by introducing the pre-
decision state St = (vt, Rt) and post-decision state Sxt =
(vt,R

x
t ), state will transit from Sxt−1 to St after observing

exogenous stochastic variables vt, and state will transit from
St to Sxt after executing decision variables xt. By observing
vt and executing xt separately, value functions of pre-decision
and post-decision states are written as (38) and(39), respec-
tively [34].

Vt(vt,Rt) = min
xt∈ψt

(Ct(vt,Rt,xt) + V xt (vt,R
x
t )) (38)

V xt (vt,R
x
t ) = ρrisk

t (Vt+1(vt+1,Rt+1)|(vt,Rx
t )) (39)

If the analytical expression of V xt (vt,R
x
t ) is obtained,

then (38) is a deterministic optimization model. Here, can
be calculated by (39) with the risk-measurement term ρrisk

t

(Vt+1(St+1)|St), and obtaining exact V xt (vt,R
x
t ) is difficult.

As shown in (8), V xt (vt,R
x
t ) is equal to the linear weighted

sum of expected operation cost and GlueVaR measure, and the
GlueVaR measure is convex given proper parameters of (k1,
k2) as in Fig. 2. Hence, V xt (vt,R

x
t ) is also convex. Thus,

piecewise linear functions are applied to approximate value
function V xt (vt,R

x
t ) as follows [19]:

V xt (vt,R
x
t ) =

∑
s∈Ns

θs(Vts,0 + kT
tsµts) (40)

Therefore, (38) can be transformed into the following ex-
pression:

Vt(vt,Rt) = min
xt∈ψt

Ct(vt,Rt,xt) +

Ns∑
s=1

θs(Vts,0 + kT
tsµts)

(41)

Thus, solving the multi-period risk-averse SED model is
transformed into successively solving the single-period deter-
ministic ED model as follows:

min
xt∈ψt

Ct(vt,Rt,xt) +
∑
s∈Ns

θs(Vts,0 +
∑
r∈Bs

kts,rµts,r)

s.t. (9), (11)–(27), (29), (30)∑
r∈Bs

µts,r = Rxs,t, µts,r ∈ [0, Rs,max/Bs], s ∈ Nps (42)
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2) Algorithm Steps
Similar to the conventional ADP algorithm, to obtain piece-

wise linear risk-averse AVFs, the risk-averse ADP algorithm
also requires sufficient scenarios to train and correct slopes
and intercepts of the risk-averse AVFs. After obtaining trained
risk-averse AVFs, substitute these values into (42) to obtain
risk-averse decisions by successively solving the single-period
deterministic ED model (42) under the forecast scenario. The
specific steps of the risk-averse ADP algorithm are as follows:

a) Initialization: Solve the deterministic ED model under
the forecast scenario, and obtain the operation cost of each
period. Next, the initial value of the AVF of post-decision
state at period t should be the sum of the operation costs
from period t+ 1 to the final period T as follows:

V 0
t =

T∑
t′=t+1

Ct′(St′ ,xt′ )
(43)

Storage quantities of the deterministic ED solution are used
as optimal storage quantity of each storage at each period
Rx0
t . Initial slope kts,0 can be given as in [19], and then initial

intercept Vts,0 can be obtained using the following expression:

Vts,0 = V 0
t − kT

ts0uts (44)

b) Training of risk-averse AVFs: Based on the forecast
scenario of natural wind speeds v0 = (v0

1 , · · · ,v0
T ), N error

scenarios vn = (vn1 , · · · ,vnT ), n = 1 ∼ N are generated
by the Monte-Carlo sampling method. Sampling scenarios are
randomly divided into G groups, and each group contains
num = N/G scenarios. Next, (42) is solved by successive
periods under each scenario in one group to obtain operation
cost of each scenario. Cumulative distribution function (CDF)
of the operation cost can be obtained from equal probability
value and operation cost of each scenario in the group.

However, because of the limited number of scenarios in each
group, the obtained CDF of operation cost is discrete. Here,
the piecewise linear interpolation method is used to calculate
approximate risk-measurement cost, that is, risk-averse AVFs.
For the sc-th group of scenarios, assume the vector V̄t is
composited of total operation cost from t + 1 period to final
period T of each scenario, that is, V̄t = [V

1

t , V
2

t , · · · , V
num

t ]

and V
1

t < V
2

t < · · · < V
num

t . Next, expectation and cumula-
tive probability values can be approximated and calculated as
follows:

E(V t) =

num∑
i=1

V
i

t/num (45)

ϕ(V
i

t) = P (X ≤ V it) = i/num, i = 1, 2, · · · , num (46)

Next, the discrete inverse function of the CDF can be
obtained as follows:

ϕ−1(P (X ≤ V it)) = V
i

t, i = 1, 2, · · · , num (47)

Based on the aforementioned discrete inverse function, the
continuous function ϕ−1(·) can be obtained by the piece-
wise linear interpolation method. Hence, VaRα, CVaRα and
CVaRβ , and GlueVaRk1,k2

β,α in (48)(51) can be calculated.
The latest risk-averse AVFs Ṽ sct can be obtained from (52).

Based on V̄ i
t and Rx,it , i = 1, 2, · · · , num. The discrete cor-

responding relationship between V̄ i
t and Rx,it can be obtained.

Next, the optimal storage quantity Rx,sct corresponding to Ṽ sct
can be obtained by using the piecewise linear interpolation
method. Slopes and intercepts of the risk-averse AVFs are
updated by the successive projection approximation routine
algorithm [32], and risk-averse AVFs gradually approach accu-
rate ρrisk

t (vt,R
x
t ). When risk-averse AVFs of the two adjacent

iterations are close in all periods, iteration process converges.

VaRα(V t) = ϕ−1(α) (48)

CVaRα(V t) =

∫ 1

α

ϕ−1(u)du/(1− α) (49)

CVaRβ(V t) =

∫ 1

β

ϕ−1(u)du/(1− β) (50)

κk1,k2β,α (V t) = k1CVaRβ(V t) + k2CVaRα(V t)

+ k3VaRα(V t) (51)

Ṽ sct = (1− λ)E(V t) + λκk1,k2β,α (V t) (52)

B. Distributed and Risk-averse ADP Algorithm Based on
ADMM

The aforementioned centralized single-period deterministic
ED model of a power system with multiple OWFs as (42)
is a convex programming model, which can be solved in a
fully distributed manner by using the synchronous ADMM
algorithm [35]. For a typical two-region optimization problem
as (53), the augmented Lagrangian functions of each region
in the k-th iteration can be expressed as follows:

minx1,x2
c1(x1) + c2(x2)

s.t.

{
x1 ∈ ψ1t, x2 ∈ ψ2t

x1,bc = x2,bc

(53)

L1(x1, z
k
1 , λ

k
1) = c1(x1) + λk1(x1,bc − zk1 )

+ (ρ/2)‖x1,bc − zk1‖22 (54)

L2(x2, z
k
2 , λ

k
2) = c2(x2) + λk2(x2,bc − zk2 )

+ (ρ/2)‖x2,bc − zk2‖22 (55)

where the intermediate variables zk1 = zk2 = (x1,bc +x2,bc)/2.
The update process of x1, x2, λ1, and λ2 in the synchronous

ADMM algorithm are as (56)–(58). When convergence crite-
rion given by (59) is satisfied, the iteration process terminates
and the solution is obtained.{

xk+1
1 = argminL1(x1, z

k
1 , λ

k
1)

xk+1
2 = argminL2(x2, z

k
2 , λ

k
2)

(56)

zk+1
1 = zk+1

2 = (xk+1
1,bc + xk+1

2,bc)/2 (57){
λk+1

1 = λk1 + ρ(xk+1
1,bc − z

k+1
1 )

λk+1
2 = λk2 + ρ(xk+1

2,bc − z
k+1
2 )

(58){
∆p = ‖xk+1

1,bc − x
k+1
2,bc‖2 ≤ ε1

∆d = ‖xk+1
2,bc − xk2,bc‖2 ≤ ε2

(59)

where ∆p and ∆d are primal residual and dual residual at the
(k + 1)-th iteration, respectively.

Assume m-th OWF is connected to the transmission system
through connection bus cm. Bus tearing method is used to
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Fig. 3. Decoupling by the bus tearing method.

devolve the OWF and transmission system, as displayed in
Fig. 3. Next, active power across connection bus cm is equiv-
alent to the injected power of bus cm into transmission system
PWc,m and total active power output of the OWF into bus cm
PΣcm. Thus, PWc,m and PΣc,m can be defined as boundary
coupling variables, with boundary coupling constraint as(60)
to ensure consensus of the distributed solution of transmission
system and the m-th OWF.

PWc,m,t = PΣc,m,t (60)

Because instant cost and AVFs in (42) are separable between
the transmission system and each OWF, in the distributed
solution of the single-period deterministic ED model, the sub-
problems of transmission network and m-th OWF at K-th
iteration can be defined as follows:

min

{ ∑
g∈ΩG

Fg,t +
∑
p∈Nps

θp(Vtps,0 +
∑
r∈Bp

ktp,rµtp,r)

+
∑

m∈ΩOWF

[λK1,m(PWc,m,t − zKc,m,t)

+ ρ/2‖PWc,m,t − zKc,m,t‖22]

}
s.t. (11)–(19)∑

r∈Bp

µtp,r = Rxp,t, µtp,r ∈ [0, Rp,max/Bp], p ∈ Nps (61)

min

{ ∑
w∈Ωm

CWm(Pwjmax,t − Pwj,t)

+
∑

b∈Nbs,m

θb

(
Vtbs,0 +

∑
r∈Bb

ktb,rµtb,r

)

+ λK2,m(PΣc,m,t − zKc,m,t) + ρ/2‖PΣc,m,t − zKc,m,t‖22
}

s.t. (20)–(27), (29), (30)∑
r∈Bb

µtb,r = Rxb,t, µtb,r ∈ [0, Rb,max/Bb], b ∈ Nbs,m

(62)

The synchronous ADMM algorithm is embedded into the
risk-averse ADP algorithm in the AVF training process, and
the optimal solution obtaining process to realize the distributed
solution and maintain information privacy between transmis-
sion system and multiple OWFs. Flowchart of the distributed
and risk-averse ADP (DRADP) algorithm is displayed in
Fig. 4.

V. CASE STUDIES

Case studies are conducted on a modified IEEE 39-bus

system with an OWF and an actual provincial power system
with four OWFs. Parameters of the GlueVaR risk-measurement
are set as α = 0.8, β = 0.95, k1 = 0.4, k2 = 0.3. Assume
predicted errors of wind speeds obey normal distribution with
(µ, σ2) = (0, 0.152), while largest deviation should be less
than 30% of predicted wind speed. Based on the forecast
scenario, 200 sampling scenarios are generated by Monte-
Carlo method, which are randomly divided into 20 groups
(10 scenarios in each group) for training risk-averse AVFs.
Thresholds of ADMM algorithm are set as ε1 = ε2 = 10−3.
Computing platforms are GAMS 24.5 and MATLAB 2017a,
and the GUROBI solver in GAMS is used to solve op-
timization models (61) and (62). Parallel computation was
conducted using a blade cluster composed of 24 HPE BL460C
GEN10 computing blades, where each computing blade was
composed of two 2.30 GHz Intel Gen10 Xeon-G 5118 (12
cores) processors and 128 GB of RAM.

A. Modified IEEE 39-bus System with an OWF

1) System Parameters
The modified IEEE 39-bus system includes a PSH station

and an OWF connected with a BS station as displayed in
Fig. 5. Number of WTs in the OWF is 91. The rated power
of each WT is 8 MW, whereas the minimum power output
is 0.103 MW. The cut-in wind speed, rated wind speed, and
cut-out wind speed were 3, 13, and 25 m/s, respectively.
Parameters of PSH and BS stations are Rp,0 = 1000 MWh,
Rp,max = 2000 MWh, Ppp,max = Pgp,max = 400 MW, Rb,0 =
70 MWh, Rb,max = 140 MWh, and Pcb,max = Pdb,max =
30 MW. Total active load curve of the system is displayed
in Fig. 6. Forecast and sampling scenarios of wind speed are
shown in Fig. 7.
2) Analysis of AVF Training and Solution Results

Changes in risk-averse AVFs of each period during training
of first and last five groups of scenarios are displayed in Fig. 8.
With increase in number of training scenario groups, risk-
averse AVFs of each period gradually converge, which reveals
excellent convergence of the proposed algorithm for training
risk-averse AVFs.

Solution results of different algorithms, including the pro-
posed DRADP and CRADP algorithms, RO algorithm, and
scenario-based SO algorithm, are listed in Table I. Among
them, the same sampling scenarios of the proposed DRADP
algorithm are used in the scenario-based SO algorithm, and
maximum and minimum wind speeds in sampling scenarios
are taken as upper and lower bounds of uncertainty sets in
the RO algorithm. Table I shows that the results of RO algo-
rithm are conservative, and the total operation cost is bigger,
while results of scenario-based SO algorithm are optimistic,
and total operation cost is smaller. However, scenario-based
SO algorithm consumes much more time than the proposed
DRADP and CRADP algorithms. Total operation cost obtained
by the two proposed algorithms is close, which indicates
distributed optimization in the DRADP algorithm does not
affect optimality of decision-making. For CPU time because
scale of the single-period ED model after decoupling is small,
the DRADP algorithm requires multiple distributed iterations
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Fig. 4. Flowchart of the distributed and risk-averse ADP algorithm.

and consumes more CUP time than the CRADP algorithm.
But the DRADP algorithm only needs to transmit a small
amount of boundary connection bus information of adjacent
regions during the calculation process, which can maintain the
information privacy of the transmission system and the OWF.

The total number of sampling scenarios remains unchanged,
and comparative results with different G values in the AVF
training process of the DRADP algorithm are shown in Ta-

ble II. It can be seen with the increase of G values, total
operation costs slightly decrease, but consumed total CPU time
increases greatly. Increasing G values means increasing the
number of groups and decreasing the number of scenarios
per group. Increasing groups results in more training time
because risk-averse AVFs are trained group by group and
decreasing scenarios per group results in the lack of covering
scenarios in high-risk regions and low-risk aversion degrees. In
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Fig. 5. Topology of the modified IEEE 39-bus system with an OWF.
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TABLE I
COMPARATIVE SOLUTION RESULTS OF DIFFERENT ALGORITHMS

Algorithm Total operation
cost (¥)

Training time (s) Decision
time (s)Serial

computing
Parallel
computing

CRADP 37 113008.8 2 970.5 326.8 6.8
DRADP 37 113020.1 8 863.6 421.3 21.8
RO 37 299453.2 – – 268.4
Scenario-based SO 37 104789.6 – – 8 941.5

TABLE II
COMPARATIVE RESULTS OF DRADP ALGORITHM WITH

DIFFERENT G VALUES

G num
Total operation
cost (¥)

Training
time (s)

Decision
time (s)

Total
time (s)

10 20 37 114654.2 235.5 20.9 256.4
20 10 37 113020.1 421.3 21.8 443.1
40 5 37 110478.4 945.7 22.2 967.9

of iterations at each period are displayed in Figs. 9–11. The
distributed optimization computation of the proposed DRADP
algorithm exhibits an excellent convergence performance. In
some periods, such as periods 17–21, the total number of
iterations in these periods was reduced considerably because
solution of the previous period can provide excellent initial
values for distributed optimization computation.

In the obtained risk-averse SED scheme, changes in storage
quantities and active power output of PSH and BS stations are
displayed in Fig. 12. Storage units charge power or pump water
when the active load of the system is low, and discharge power
or generate power when the active load is high, which plays
a role in shaving peak load in system operation. Therefore,
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thermal power units can be operated economically to reduce
total operation costs. The active power output of OWF and
the total maximum available active power output of WTs are
displayed in Fig. 13. During periods 5–9, OWF reduces active
power output to charge power into the BS station. In contrast
BS station discharges power during periods 12 and 20. This
process reduces the volatility of the total active power output
of the OWF. Thus, the BS station plays a crucial role in
absorbing excess wind power at high wind speed periods to
reduce the amount of wind curtailment.
3) Comparison of the Decision Results Under Various Risk-
Measurement Parameters

In the proposed DRADP algorithm, various risk-
measurement parameter values affect the conservatism
of decision results. Given confidence levels α = 0.8, β =
0.95, value range of (k1, k2) can be obtained as displayed
in Fig. 14. Various parameter combinations are considered
within the value range in Fig. 14, and values of obtained
total operation costs are normalized in interval [37 110000,
37 116000], as displayed in Fig. 15. These results revealed the
conservatism of decision results can be adjusted flexibly by
changing the combination of (k1, k2) under given confidence
levels, and the closer the value of (k1, k2) is to (0.25, 0), the
more economical decision results are; the closer the value
of (k1, k2) is to (1, 0), the more conservative the decision
results are.

Assuming predicted errors of wind speeds obey N (0, 0.152),
100 new sampling scenarios are generated and used to demon-

strate the performance of risk-averse decisions under various
(k1, k2) values. A comparison of decision results for various
(k1, k2) values is presented in Table III. When values of (k1,
k2) are (0.0, 1.0) and (1.0, 0.0), GlueVaR is equal to CVaRα,
i.e., CVaR0.80, and CVaRβ , i.e., CVaR0.95, respectively. It
can be seen that given confidence levels α = 0.8, β =
0.95, GlueVaR risk-measurement can cover CVaR0.80 and
CVaR0.95 by properly adjusting parameters. GlueVaR risk-
measurement method can also obtain risk aversion degree
between CVaR0.80 and CVaR0.95, which indicates GlueVaR
risk-measurement method is more flexible than CVaR risk-
measurement method. When values of (k1, k2) are closer
to (1.0, 0.0), decision results are more conservative, and the
operation cost of forecast scenario and the average operation
cost of sampling scenarios are higher, but risk-measurement
GlueVaR cost is lower. Therefore, in practice, parameters (k1,
k2) can be flexibly selected to satisfy various risk requirements
of power system operation.

TABLE III
COMPARISON OF DECISION RESULTS FOR VARIOUS PARAMETER VALUES

Value of
(k1, k2)

Operation cost
of forecast
scenario (¥)

Average
operation
cost (¥)

GlueVaR
cost (¥)

(GlueVaR -
average opera-
tion cost) (¥)

Risk-neutral 37 105648.7 37 111433.3 37 370121.9 258688.6
(0.25, 0) 37 110789.5 37 117380.5 37 356168.3 238787.8
(0.0, 1.0) 37 112541.1 37 119523.3 37 348469.7 228946.4
(0.4, 0.3) 37 113020.1 37 120104.8 37 345485.6 225380.8
(1.0, 0.0) 37 115034.8 37 123159.8 37 329657.6 206497.8

4) Comparison of the Decision Results of Various Algorithms
In the conventional ADP algorithm, the risk cost of extreme

scenarios in the AVF training process is not considered, and
its decision-making is economical and risk-neutral. In the
proposed DRADP algorithm, GlueVaR is used to consider
the risk costs of extreme wind speed scenarios in the AVF
training process, and the decision results are conservative.
However, decision results are risk-averse. Comparative results
of various algorithms are presented in Table IV. Among
them, the optimal offline solution minimizes total cost with
perfect information of uncertainties available in advance [34].
Although the operation cost of forecast scenario and the
average operation cost of the proposed DRADP algorithm are
higher than of the conventional ADP algorithm and the opti-
mal offline solution, GlueVaR cost of the proposed DRADP
algorithm is considerably lower than that of conventional ADP
algorithm and is closer to the optimal offline solution, which
indicates although the proposed DRADP algorithm sacrifices
the economy of forecast scenario, it can reduce risk cost of

TABLE IV
COMPARATIVE RESULTS OF VARIOUS ALGORITHMS

Algorithm
Operation cost
of forecast
scenario (¥)

Average
cost (¥)

GlueVaR
cost (¥)

(GlueVaR-
Average
cost) (¥)

DRADP 37 113020.1 37 120104.8 37 345485.6 225380.8
Conventional
ADP 37 105963.0 37 111841.7 37 369865.2 258023.5

Optimal offline
solution 37 081545.3 37 104523.9 37 309072.3 204548.4
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extreme scenarios and mitigates change range of operation
costs under wind power fluctuation. In addition, the results
of the conventional ADP algorithm are close to those of the

0.2

0

0.6

0.4

1

0.8

T
o
ta

l 
o
p
er

at
io

n
 c

o
st

 (
p
.u

.)

0.2
0

0.6

0.4

1
0.8

k2 0.2
0

0.6
0.4

1
0.8

k1

0.2

0.6

0.4

0.8

0.3

0.7

0.4

Fig. 15. Total operation cost of forecast scenario corresponding to various
parameter combinations.

risk-neutral DRADP algorithm in Table III, which reveals the
decision of the conventional ADP algorithm is risk-neutral.

Comparison of the solution time of conventional ADP and
DRADP algorithm is displayed in Table V. It can be found
in the DRADP algorithm, multiple scenarios within the same
group can be calculated in parallel computing in AVF training,
while the conventional ADP algorithm can only solve multiple
scenarios one by one in series computing in AVF training,
hence consumed CPU time of the proposed DRADP algorithm
is much smaller than of conventional ADP algorithm.

TABLE V
COMPARISON OF THE SOLUTION TIME OF VARIOUS ALGORITHMS

Algorithm Training
time (s)

Decision
time (s)

Total CPU
time (s)

DRADP 421.3 21.8 443.1
Conventional ADP 2 508.72 6.8 2 515.5

B. Actual Provincial Power System

The transmission system of the actual provincial power
system has 2752 buses and 3003 branches, including 178
thermal power units (122 coal-fired units and 56 gas-fired
units), 9 nuclear power units, 10 hydroelectric units, and 4 PSH
stations. Four OWFs are connected to the transmission system.
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Each OWF is equipped with a BS station at the offshore step-
up substation. The topology of the 500-kV main network of the
system with four OWFs is displayed in Fig. 16. Parameters of
PSH stations and BS stations, total active load curve, forecast
scenario of wind speed in each OWF, and topology of each
OWF are presented in Appendix A.

Comparison of solution results of the DRADP, CRADP,
and conventional ADP algorithms is presented in Table VI.
Total operation costs of the DRADP and CRADP decisions
are close, and their total operation costs are higher than
conventional ADP decisions because of consideration of oper-
ation cost risk of extreme scenarios during AVF training. For
CPU time, both DRADP and CRADP have less training time
and total CPU time than conventional ADP, since multiple
scenarios within the same group can be calculated in parallel
computing in the AVF training process of the DRADP and
CRADP algorithms. After the time period is decoupled, the
scale of the single-period ED problem is small. The total CPU
time of DRADP is more than CRADP because distributed
computing requires multiple iterations, but they are very close.
However, when more OWFs are integrated into the power
system, the total CPU time of DRADP will be smaller than
CRADP. Moreover, the DRADP algorithm only exchanges in-
formation on boundary variables between transmission system
and multiple OWFs and maintains their information privacy.
In this method, data confidentiality is realized between various
stakeholders, which exhibits the incomparable advantages of

TABLE VI
COMPARATIVE RESULTS OF VARIOUS OPTIMIZATION ALGORITHMS

Algorithm
Total operation
cost (104¥)

Training
time (s)

Decision
time (s)

Total CPU
time (s)

DRADP 36 452.93 3 809.6 60.46 3 870.1
CRADP 36 450.66 3 435.1 52.11 3 487.2
Conventional ADP 36 388.84 31 806.2 51.42 31 857.6

the CRADP algorithm.

Comparison of changes in storage quantities of storage units
for the DRADP and ADP decisions is displayed in Fig. 17.
Combined with the active load curve of the system as Fig.
A1 in Appendix A, it can be seen storage units charge power
or pump water when active load of the system is low, such as
time periods 0–8 h, and discharge power or generate power
when active load is high, such as time periods 11–13 h and 19–
22 h. Changes in storage quantities show the positive effect
of storage units in shaving peak load in system operation.
Meanwhile, storage quantities of the DRADP decision tend
to reserve more storage quantities than conventional ADP
decisions to address extreme scenarios of a sudden drop in
power output of OWFs at time periods of high active load.
The difference in storage quantities between the DRADP and
conventional ADP decisions also infers DRADP decisions are
risk-averse while conventional ADP decisions are risk-neutral.
Besides, thermal units in the forecast scenario do not operate
in the most economical state, and the total operation cost of
DRADP decisions is higher than conventional ADP decisions.

Solution results of the DRADP algorithm under various
risk-measurement parameters of GlueVaR are compared in
Table VII. When values of (k1, k2) are (0.0, 1.0) and (1.0, 0.0),
GlueVaR is equal to CVaRα, i.e., CVaR0.80, and CVaRβ , i.e.,
CVaR0.95, respectively. Risk preference of decision-making
can be adjusted by appropriate adjustment of parameters in
GlueVaR. When the risk measure is conservative, the average
total operation cost is high, but it can reduce GlueVaR cost
value in sampling scenarios and consequently reduce the
variation range of total operation costs. When the risk measure
is close to risk-neutral, decision results are economical. There-
fore, decision-makers can flexibly select proper risk measures
between conservatism and risk neutrality.
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Fig. 16. Topology of 500-kV main network for the provincial power grid.
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TABLE VII
COMPARISON OF DECISION RESULTS FOR VARIOUS PARAMETER VALUES

Value of
(k1, k2)

Operation cost
of forecast
scenario (104¥)

Average
operation
cost of error
scenarios (104¥)

GlueVaR
cost (104¥)

(GlueVaR -
average
operation
cost) (104¥)

Risk-neutral 36 379.14 36 583.02 37 316.91 733.89
(0.25, 0) 36 420.29 36 617.57 37 241.73 624.16
(0.0, 1.0) 36 448.78 36 645.47 37 220.45 574.98
(0.4, 0.3) 36 452.93 36 653.10 37 218.74 565.64
(1.0, 0.0) 36 481.66 36 707.63 37 209.04 501.41

VI. CONCLUSION

This paper considers risk costs caused by random fluctuation
of offshore wind speeds, and proposes a DRADP algorithm for
SED of power system with multiple OWFs. The risk-aversion
process is constructed by GlueVaR risk-measurement method,
and distributed computing between transmission network and
multiple OWFs is executed by introducing the ADMM algo-
rithm into the risk-averse ADP algorithm. Case studies on the
modified IEEE 39-bus system with an OWF and an actual
provincial power system with four OWFs demonstrate the
proposed DRADP algorithm can avoid risks of high operation
costs caused by random fluctuation of offshore wind speeds.
The operation cost of extreme scenarios is lower than that
of risk-neutral decision results. By adjusting different risk-
measurement parameters, distributed and risk-averse ADP
algorithm can obtain decision results that adapt to various
risk-aversion degrees. ADMM is introduced into the proposed
algorithms to ensure data privacy between transmission system
and multiple OWFs.

However, although the proposed DRADP algorithm exhibits
more excellent computational performance than the conven-

tional ADP algorithm, it still requires a large number of
scenarios for training risk-averse AVFs. Thus, applying the
risk-directed sampling method [35] to obtain scenarios from
regions of high risk and reducing total number of required
training scenarios to obtain converged risk-averse AVFs will
be helpful to further increase computational efficiency, and it
is a possible direction of future work.

APPENDIX A

The parameters of PSH and BS stations are listed in Ta-
ble AI. The active load curve of the provincial power system,
forecast scenario of wind speed in each OWF, and topology of
each OWF are displayed in Figs. A1–A3, respectively. Total
numbers of WTs in OWFs 1–4 are 160, 136, 146, and 127,
respectively. The rated power of each WT is 8 MW, whereas
the minimum power output is 0.103 MW. Cut-in wind speed,
rated wind speed, and cut-out wind speed are 3, 13, and 25 m/s,
respectively.

TABLE AI
PARAMETERS OF PSH STATIONS AND BS STATIONS

Storage unit

Maximum
charge
or pump
power (MW)

Maximum
discharge
or generate
power (MW)

Maximum
stored
energy
(MWh)

Roundtrip
efficiency

PSH1 2 400 2 400 27 252 77.1%
PSH2 1 200 1 200 16 456 76.0%
PSH3 2 400 2 400 34 065 78.0%
PSH4 1 280 1 280 18 000 76.0%
BS of OWF1 60 60 640 90%
BS of OWF2 40 40 560 90%
BS of OWF3 50 50 600 90%
BS of OWF4 32 32 500 90%



FENG et al.: DISTRIBUTED AND RISK-AVERSE ADP ALGORITHM FOR STOCHASTIC ECONOMIC DISPATCH OF POWER SYSTEM WITH MULTIPLE OFFSHORE WIND FARMS 1991

30

50

40

60

70

80

90
P

 (
G

W
)

5 10 15 20 250

t (h)

Fig. A1. Active load curve of the provincial power system.

5 10 15 20 250

t (h)

5

10

15

0

W
in

d
 s

p
ee

d
 (

m
·s

−
1
)

ST-OWF1

SW-OWF2

YJ-OWF3

ZH-OWF4

Fig. A2. Forecast scenario of the wind speed in each OWF.

SHANTOU

220 kV

35 kV

Submarine cable

Battery StationOWF1

2

1

3

4

9

8

5

6

7

14

13

10

11

12

19

18

15

16

17

24

23

20

22

25

26

28

27

29

30

32

31

33

34

36

35

37

38

40

39

41

42

44

43

21

45

46

48

47

49

50

52

51

57

56

53

54

55

62

61

58

59

60

67

66

63

64

65

68

69

71

70

81

80

77

78

79

76

75

72

73

74

86

85

82

83

84

91

90

87

88
89

95

94

92

93

100

99

97

98

96

105

104

101

102

103

110

107

108

109

106

115

111

113

114

112

119

116

117

118

121

122

123

120

127

124

125

126

131

128

129

130

136

135

132

133

134

141

140

137

138

139

146

145

142

143

144

151

150

147

148

149

156

155

152

154153

160

157

158

159

220 kV

35 kV

Submarine cable

Battery Station

MAOHU

OWF2

2

1

3

4

9

8

5

6

7

14

13

10

11

12

19

18

15

16

17

24

23

20

22

25

26

28

27

29

30

32

31

33

34

36

35

37

38

40

39

41

42

44

43

21

45

46

48

47

49

50

52

51

57

56

53

54

55

62

61

58

59

60

67

66

63

64

65

68

69

71

70

81

80

77

78

79

76

75

72

73

74

86

85

82

83

84

91

90

87

88 89

95

94

92

93

100

99

97

98

96

105

104

101

102

103

110

107

108

109

106

115

111

113

114

112

119

116

117

118

121

122

123

120

127

124

125

126

131

128

129

130

136

135

132

133

134

220 kV

35 kV

Submarine cable

Battery Station

DIELING

OWF3

2

1

3

4

9

8

5

6

7

14

13

10

11

12

19

18

15

16

17

24

23

20

22

25

26

28

27

29

30

32

31

33

34

36

35

37

38

40

39

41

42

44

43

21
45

46

48

47

49

50

52

51

57

56

53

54

55

62

61

58

59

60

67

66

63

64

65

68

69

71

70

81

80

77

78
79

76

75

72

73

74

86

85

82

83
84

91

90

87

88
89

95

94

92

93

100

99

97

98

96

105

104

101

102

103

110

107

108

109

106

115

111

113

114

112

119

116

117

118

121

122

123

120

127

124

125

126

131

128

129

130

136

135

132

133

134

141

140

137

138

139

146

145

142
143

144

2

1

3

4

9

8

5

6

7

14

13

10

11

12

19

18

15

16

17

24

23

20

22

25

26

28

27

29

30

32

31

33

34

36

35

37

38

40

39

41

42

44

43

21

45

46

48

47

49

50

52

51

57

56

53

54

55

62

61

58

59

60

67

66

63

64

65

68

69

71

70

81

80

77

78

79

76

75

72

73

74

86

85

82

83

84

91

90

87

88
89

95

94

92

93

100

99

97

98

96

105

104

101

102

103

110

107

108

109

106

115

111

113
114

112

119

116
117

118

121

122

123

120

127

124

125

126

220 kV

35 kV

Submarine cable

Battery Station

GUOAN

OWF4

Fig. A3. Topology of each OWF.



1992 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 5, SEPTEMBER 2024

REFERENCES

[1] Y. F. Guo, H. L. Gao, Q. W. Wu, H. R. Zhao, J. Østergaard, and M.
Shahidehpour, “Enhanced voltage control of VSC-HVDC-connected off-
shore wind farms based on model predictive control,” IEEE Transactions
on Sustainable Energy, vol. 9, no. 1, pp. 474–487, Jan. 2018.

[2] A. Turk, Q. W. Wu, M. L. Zhang, and J. Østergaard, “Day-ahead
stochastic scheduling of integrated multi-energy system for flexibility
synergy and uncertainty balancing,” Energy, vol. 196, pp. 117130, Apr.
2020.

[3] H. R. Zhao, Q. W. Wu, S. J. Hu, H. H. Xu, and C. N. Rasmussen,
“Review of energy storage system for wind power integration support,”
Applied Energy, vol. 137, pp. 545–553, Jan. 2015.

[4] J. Li, Z. Y. Li, F. Liu, H. X. Ye, X. M. Zhang, S. W. Mei, and N.
C. Chang, “Robust coordinated transmission and generation expansion
planning considering ramping requirements and construction periods,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 268–280, Jan.
2018.

[5] M. Yang, M. Q. Wang, F. L. Cheng, and W. J. Lee, “Robust economic
dispatch considering automatic generation control with affine recourse
process,” International Journal of Electrical Power & Energy Systems,
vol. 81, pp. 289–298, Oct. 2016.

[6] W. B. Powell and S. Meisel, “Tutorial on stochastic optimization in
energy—part I: modeling and policies,” IEEE Transactions on Power
Systems, vol. 31, no. 2, pp. 1459–1467, Mar. 2016.

[7] A. Sturt and G. Strbac, “Efficient stochastic scheduling for simulation of
wind-integrated power systems,” IEEE Transactions on Power Systems,
vol. 27, no. 1, pp. 323–334, Feb. 2012.

[8] Y. T. Lin, T. Y. Ji, Y. Z. Jiang and Q. H. Wu, “Stochastic Economic
Dispatch Considering the Dependence of Multiple Wind Farms Using
Multivariate Gaussian Kernel Copula,” CSEE Journal of Power and
Energy Systems, vol. 8, no. 5, pp. 1352–1362, Sep. 2022.

[9] A. Dolatabadi, M. Jadidbonab, and B. Mohammadi-Ivatloo, “Short-
term scheduling strategy for wind-based energy hub: a hybrid stochas-
tic/IGDT approach,” IEEE Transactions on Sustainable Energy, vol. 10,
no. 1, pp. 438–448, Jan. 2019.

[10] Q. P. Zheng, J. H. Wang, and A. L. Liu, “Stochastic optimization for unit
commitment—A review,” IEEE Transactions on Power Systems, vol. 30,
no. 4, pp. 1913–1924, Jul. 2015.

[11] J. W. Wang, C. Zhang, S. You, Y. Zong, C. Træholt, and Z. Y.
Dong, “Multi-timescale coordinated operation of a CHP plant-wind farm
portfolio considering multiple uncertainties,” International Journal of
Electrical Power & Energy Systems, vol. 125, pp. 106428, Feb. 2021.

[12] Z. M. Li, L. Wu, and Y. Xu, “Risk-averse coordinated operation of
a multi-energy Microgrid considering Voltage/Var control and thermal
flow: an adaptive stochastic approach,” IEEE Transactions on Smart
Grid, vol. 12, no. 5, pp. 3914–3927, Sep. 2021

[13] F. Farzan, M. A. Jafari, R. Masiello, and Y. Lu, “Toward optimal day-
ahead scheduling and operation control of microgrids under uncertainty,”
IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 499–507, Mar. 2015.

[14] M. Daneshvar, H. Eskandari, A. B. Sirous, and R. Esmaeilzadeh, “A
novel techno-economic risk-averse strategy for optimal scheduling of
renewable-based industrial microgrid,” Sustainable Cities and Society,
vol. 70, pp. 102879, Jul. 2021.

[15] D. M. Yu, J. W. Wang, D. Z. Li, K. Jermsittiparsert, and S. Nojavan,
“Risk-averse stochastic operation of a power system integrated with
hydrogen storage system and wind generation in the presence of demand
response program,” International Journal of Hydrogen Energy, vol. 44,
no. 59, pp. 31204–31215, Nov. 2019.

[16] A. Rabiee, A. Soroudi, and A. Keane, “Risk-averse preventive voltage
control of AC/DC power systems including wind power generation,”
IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1494–1505,
Oct. 2015.

[17] R. Hemmati, H. Saboori, and S. Saboori, “Stochastic risk-averse coordi-
nated scheduling of grid integrated energy storage units in transmission
constrained wind-thermal systems within a conditional value-at-risk
framework,” Energy, vol. 113, pp. 762–775, Oct. 2016.

[18] J. Belles-Sampera, M. Guillén, and M. Santolino, “Beyond Value-at-
risk: GlueVaR distortion risk measures,” Risk Analysis, vol. 34, no. 1,
pp. 121–134, Jan. 2014.

[19] S. J. Lin, G. S. Fan, G. Y. Jian, and M. B. Liu, “Stochastic economic
dispatch of power system with multiple wind farms and pumped-
storage hydro stations using approximate dynamic programming,” IET
Renewable Power Generation, 14(13): 2507–2516, Oct. 2020.

[20] Z. Shu and P. Jirutitijaroen, “Optimal operation strategy of energy stor-
age system for grid-connected wind power plants,” IEEE Transactions
on Sustainable Energy, vol. 5, no. 1, pp. 190–199, Jan. 2014.

[21] H. Shuai, J. K. Fang, X. M. Ai, Y. F. Tang, J. Y. Wen, and H. B. He,
“Stochastic optimization of economic dispatch for microgrid based on
approximate dynamic programming,” IEEE Transactions on Smart Grid,
vol. 10, no. 3, pp. 2440–2452, May 2019.

[22] N. Zhang, B. D. Leibowicz, and G. A. Hanasusanto, “Optimal residential
battery storage operations using robust data-driven dynamic program-
ming,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1771–1780,
Mar. 2020.

[23] Y. F. Guo, H. L. Gao, H. Xing, Q. W. Wu, and Z. W. Lin, “Decentralized
coordinated voltage control for VSC-HVDC connected wind farms based
on ADMM,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2,
pp. 800–810, Apr. 2019.

[24] Y. Xiang, M. Q. Fang, J. Y. Liu, P. L, Zeng, P. Xue and G. Wu,
“Distributed Dispatch of Multiple Energy Systems Considering Carbon
Trading,” CSEE Journal of Power and Energy Systems, vol. 9, no. 2,
pp. 459–469, Mar. 2023.

[25] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal
parameter selection for the alternating direction method of multipliers
(ADMM): Quadratic problems,” IEEE Transactions on Automatic Con-
trol, vol. 60, no. 3, pp. 644–658, Mar. 2015.

[26] Z. Chen, C. X. Guo, S. F. Dong, Y. Ding, and H. Y. Mao, “Distributed
robust dynamic economic dispatch of integrated transmission and distri-
bution systems,” IEEE Transactions on Industry Applications, vol. 57,
no. 5, pp. 4500–4512, Sep./Oct. 2021.
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