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Abstract—The stability problem of weak grid connected con-
verter interfaced generation (CIG) cannot be ignored. For mul-
tiple weak grid connected CIGs with different parameters, the
system oscillation characteristics and equivalence methods still
need to be further studied. This paper first discusses the oscilla-
tion characteristics when CIGs are perfectly coupled, perfectly
decoupled and their general conditions respectively. Based on
the Monte Caro simulation, the number of critical eigenvalues,
the participation of each CIG to critical eigenvalues and the
correlative parameters to participation are analyzed. Then the
single-CIG and multi-CIG equivalence methods are proposed
for stations containing nonidentical CIGs. The CIG parameters
of a single-CIG equivalent model are identified based on the
consistency of the output admittance characteristics. According
to the different participations of CIGs with critical eigenvalues,
the station is equivalent to a multi-CIG model. Results of large
simulation samples show that the two equivalent models can both
preserve the critical eigenvalues very well, and can be used for
stability analysis. Furthermore, the multi-CIG equivalent model
can also very well reflect the participation of CIGs in detailed
models, and can be used for damping control study.

Index Terms—Critical eigenvalues, equivalence, Monte Caro
simulation, multiple CIGs, participation, weak grid.

I. INTRODUCTION

IN order to meet the growing demand for large-scale re-
newable energy generation, a large number of inverters

are being widely used in modern power systems. Converter
interfaced generations (CIGs), such as photovoltaic and wind
power, are connected to the grid via voltage-source converters.
The stable operation of the system with multiple CIGs is very
important to the security of power systems.

When CIGs are connected to a weak grid, the control
of CIGs can result in cross couplings with dynamics of
CIGs and the network, which may lead to unstable power
system oscillations over a wide frequency range. Instability
phenomena showing relatively low frequencies are classified
as slow-interaction converter-driven stability (typically, less
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than 10 Hz), while phenomena with relatively high frequencies
are classified as fast-interaction converter-driven stability (typ-
ically, tens to hundreds of Hz, and possibly into kHz) [1], [2].
This paper focuses on the slow-interaction converter-driven
stability. In recent years, there are many reports of oscillation
accidents caused by CIGs, such as the type IV wind farm
oscillation in China in 2015 and the offshore type IV wind
farm oscillation in the UK in 2019 [3]. Researches have shown
that the phase locked loop (PLL), DC voltage control (DVC),
and AC voltage control (AVC) of CIG are highly correlated
with the slow-interaction stability, while inner current control,
and even switching control of CIG are largely irrelevant due
to the small timescale [1], [4]. Much research about stability
of single weak grids connected to CIGs have been studied
and many valuable conclusions have been obtained [4]–[7].
However, there are still few studies on multiple CIG systems,
especially when the CIGs are not identical [8].

A symmetric system is a special multiple machine system,
in which all machines are identical, and the connected-grid
impedance is symmetric. It was first studied in the torsional
oscillation of synchronous generation [9], [10]. In recent years,
researchers have extended it to the system of multiple weak
grid connected CIGs [11], [12]. Their research shows that: A
symmetric system with n CIG will have a set of eigenvalues,
which is observable both on the CIGs side and the grid side.
The eigenvectors to the eigenvalues of each CIG are exactly
the same, thus it is called an in-phase mode in the torsional
oscillation. Meanwhile, the system has another n-1 set of
eigenvalues, which are only observable at the CIGs side, but
not at the grid side. Therefore, the CIGs oscillate with each
other, which are called anti-phase modes [9]–[12]. The above
conclusions can be derived from matrix theory and can be
strictly proved. The same conclusion was drawn for all similar
symmetric systems, for example, the high-frequency stability
problem in [13].

Equivalence is necessary in multiple CIG systems analysis
due to large-scale model and dimensionality disaster. For
symmetric CIG systems, normally, the in-phase mode will be
always weaker than the anti-phase mode, and the grid does
not participate in the anti-phase mode. Therefore, only the in-
phase mode needs to be considered in the equivalence [10]–
[12]. Through matrix transformation, the detailed system is
transformed into n independent subsystems. The subsystem
related to the in-phase mode is taken as the single-CIG
equivalent model, which are the equivalence ideas in [10]–
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[12]. The method that the grid impedance multiplies n times
in [13] is essentially the same idea. In addition, there are
also equivalence methods to preserve the interaction mode
(i.e., anti-phase) between CIGs. Ref. [14] introduces double
machines equivalence to preserve both in-phase mode and anti-
phase mode.

Furthermore, some research has been carried out based on
some special asymmetric systems, which are the symmetric
system with less strict assumptions. In [15], [16], the system
with identical machines and asymmetric grid impedance is
studied. In [17], the system, that all wind turbine generators
have approximated open-loop modes, is studied. Considering
the asymmetric collector lines in wind farms, the wind farm
is equivalent to a single machine model based on matrix
transformation [16].

For an asymmetric system, which is more generally, current
research primarily focuses on the interactions between each of
the CIGs [18]–[20]. However, for the oscillation characteristics
of the whole system, there are still few studies, which also
applies to the equivalence method of the asymmetric CIG
system. Ref. [21] proposes a dynamic aggregation modeling
method of CIGs using coherency-based equivalence. But the
aggregation method is based on the premise of DC voltage
having coherency, which has some limitations in applications.

Various research shows that when the multiple weak grid
connected CIGs are in a symmetric system, only one pair
of critical eigenvalues (in-phase mode) needs to be focused
on [10]–[12]. However, in the asymmetric system of CIGs, the
default assumption that the system has only one pair of critical
eigenvalues is taken [22]. Whether this assumption is correct
remains to be verified. On the other hand, in the symmetric
system, CIGs have the same eigenvectors and participation
factors to the critical eigenvalues (in-phase mode). On the con-
trary, because of not having identical CIGs in the asymmetric
system, the participation of CIGs with the critical eigenvalues
are different. But which parameters the participation is related
to still needs to be explored.

When studying the stability of large-scale weak grid con-
nected CIGs, if modeling all CIGs in each station, it will bring
about a large number of problems, such as big workload,
dimension disaster, poor calculation speed and convergence.
Therefore, it is necessary to study the equivalent model of
CIG stations within the premise of preserving the critical
eigenvalues. It will reduce the analysis complexity and ensure
accuracy. When analyzing stability of the symmetric CIG
systems, it can be equivalent to a single-CIG model [10]–
[12]. But in the asymmetric of the CIG system, the single-
CIG equivalence is possible only if the system has only one
pair of critical eigenvalues. The single-CIG equivalent model
is very concise, but it cannot distinguish the differences of all
CIGs. For example, when applying damping control, the CIGs
with higher participation should be identified as the candidate
locations. At this time, the system should be equivalent to the
multi-CIG model.

The contributions in this paper are as follows. First, the
oscillation characteristics of multiple weak grid connected
CIGs with different parameters are analyzed. It is found
that the system may have multiple critical eigenvalues which

depends on the coupling degree of CIGs. The participation of
CIG to the critical eigenvalues is primarily related to the PLL
bandwidth and the coupling degree of CIGs. Secondly, based
on the oscillation characteristics of the system, the single-
CIG and multi-CIG equivalence methods for CIG stations
are proposed, which can be applied to stability analysis and
damping control studies respectively.

The remainder of this paper is organized as follows. Sec-
tion II presents the CIG model. The oscillation characteristics
of multiple weak grid connected CIGs in an asymmetric sys-
tem are analyzed in Section III. The single-CIG and multi-CIG
equivalence methods are proposed respectively in Section IV.
Section V provides a simulation example. The conclusion is
presented in Section VI.

II. CIG MODEL

The oscillation of a weak grid connected CIG is primarily
related to the grid-side converter and its control. Therefore,
the generator side of CIG is ignored and is equivalent to a
power source. In practical applications, most onshore type
IV wind turbine generators and photovoltaic powers use two-
level converters [23], [24]. Refs. [4]–[7] also use a two-level
converter model to study the single weak grid connected
CIG systems. Therefore, the two-level converter model is also
adopted as a CIG model in the multiple weak grid connected
CIG system in this paper, and the other topologies, such
as a modular multilevel converter, are not considered. The
established CIG model consists of DVC (2nd order), PLL (2nd

order), AVC (1st order), and current control (4th order), as
shown in Fig. 1.
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Fig. 1. CIG model.

The CIG small signal model has been derived in many
papers [4]–[7]. This paper only gives the state space modeling
and impendence modeling results. The state space model is as
follows. {

∆ẋW = AWW∆xW +AWV∆xV

∆iW = CW∆xW

(1)
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where

∆xW = [∆xP ∆θP ∆vdc ∆x1

∆x2 ∆x2 ∆x4 ∆itd ∆itq]
T

∆xV = [∆vtx ∆vty]T

∆iW = [∆itx ∆ity]T

are state variables, input variables composed of terminal
voltage, and output variables composed of the output current
of CIG, respectively. The matrices AWW, AWV and CW are
state matrix (9th × 9th order), input matrix (9th × 2nd order)
and output matrix (2nd × 9th order) respectively.

The impedance model is also one of the mainstream models
for analyzing the stability of CIG. The impedance model is
given as follows.[

∆itx
∆ity

]
= −

[
Yxx Yxy
Yyx Yyy

] [
∆vtx
∆vty

]
(2)

where vt and it are terminal voltage and output current of
CIG,[

Yxx Yxy
Yyx Yyy

]
=[

cos θ0 − sin θ0
sin θ0 cos θ0

] [
Ydd Ydq
Yqd Yqq

] [
cos θ0 sin θ0
− sin θ0 cos θ0

]
Yxy is the admittance in global coordinates; Ydq is the
admittance in local coordinates; θ0 is the steady-state value
of the terminal voltage phase angle in the global coordinate.
The expression of each element is as follows:

Ydd = Gdvc(s)
itd0
vtd0

, Yqq = −Gpll(s)Gccq(s)
itd0
vtd0

Ydq = (Gdvc(s) + (1−Gdvc(s))Gpll(s)Gccd(s))
itq0
vtd0

Yqd = −Kavc(s)Gccq(s) (3)

where Gccd(s), Gccq(s), Gdvc(s), Gpll(s) are the transfer
function of the d-axis current control, q-axis current control,
DVC, PLL respectively; Kavc(s) is the transfer function of PI
controller of AVC. The expressions are as follows:

Gccd(s) =
s
Kp3

Lf
+ Ki3

Lf

s2 + s
Kp3

Lf
+ Ki3

Lf

, Gccq(s) =
s
Kp4

Lf
+ Ki4

Lf

s2 + s
Kp4

Lf
+ Ki4

Lf

Gdvc(s) =

(
s
Kp1vtd0
Cvdc0

+ Ki1vtd0
Cvdc0

)
Gccd(s)

s2 +
(
s
Kp1vtd0
Cvdc0

+ Ki1vtd0
Cvdc0

)
Gccd(s)

Gpll(s) =
sKpPvtd0 +KiPvtd0

s2 + sKpPvtd0 +KiPvtd0

Kavc(s) = Kp2 +
Ki2

s
(4)

III. OSCILLATION CHARACTERISTICS ANALYSIS OF
MULTIPLE WEAK GRID CONNECTED CIGS IN

ASYMMETRIC SYSTEM

This section primarily answers the following two questions
by analyzing the oscillation characteristics of multiple weak
grid connected CIGs in an asymmetric system. 1) How many
pairs of critical eigenvalues does the system have? 2) How

much does each CIG participate in the critical eigenvalues?
And which parameters is the participation related to? There
are different answers for different scenarios.

A. The Multiple CIG System

The asymmetric system studied in this section is: the output
and parameters of each CIG are not exactly the same, or the
grid structure is asymmetrical. By using Kron reduction [25]
to eliminate all interior nodes, the system can be equivalent
to the figure on the left of Fig. 2. Since all systems can be
reduced to the following standard form by Kron reduction, the
analysis is based on this standard system.
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Fig. 2. Multiple CIGs connection diagram.

The multi-infeed interaction factor is introduced to relate
interaction between any two inverter AC voltages. It is used
in estimating the degree of voltage interaction between two
HVDC systems. The multi-infeed interaction factor from in-
verter i AC bus to inverter j AC bus is defined by (5) and is
essentially a measure of the impact that a 1% voltage drop
(∆Vi) at the inverter i AC bus has on the line voltage at
inverter j [26]. It is deduced that MIIFji is equal to the ratio
of mutual-impedance Zji and self-impedance Zii [27].

MIIFji =
∆Vj
∆Vi

=
Zji
Zii

(5)

The multi-infeed interaction factor is asymmetric, i.e.,
MIIFji 6= MIIFij . It can be obtained by these two methods.

a) The voltage drop test [26]. An about 1% voltage drop
∆Vi is applied at the CIG i, and the voltage drop at the CIG
j ∆Vj can be measured. The ratio of the two voltage drops is
MIIFji.

b) The ratio of mutual-impedance and self-impedance [27].
In practical terms, mutual-impedances and self-impedances
are not easy to be obtained directly. Fortunately, they can
be obtained based on the identification method. First, ob-
tain the admittance matrix Y of the system with only CIG
nodes based on online identification [28]. Then calculate the
impedance matrix Z = Y −1, whose diagonal elements and
other elements are self-impedance Zii and mutual-impedance
Zji respectively. Finally, obtain MIIFji = Zji/Zii.

Based on the multi-infeed interaction factor, the coupling
degree index between CIG i and CIG j is defined as the
average value of MIIFji and MIIFij .

Fij = Fji =
1

2
(MIIFij + MIIFji) (6)
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The coupling degree index meets 0 ≤ Fij ≤ 1. The larger
Fij , the greater the coupling degree between the two CIGs.
When Fij = 1, the two CIGs are perfectly coupled, and when
Fij = 0, the two CIGs are perfectly decoupled.

According to the coupling degree of CIGs, the system is
divided into three scenarios. The first one is that all CIGs are
perfectly coupled (i.e., Fij = 1, all CIGs are parallel on the
same bus, as shown on the upper right of Fig. 2). The second
one is that all CIGs are perfectly decoupled (i.e., Fij = 0, all
CIGs are separately connected to the infinite system, as shown
on the lower right of Fig. 2). The last one is the general system,
as shown on the left of Fig. 2. The oscillation characteristics
of these three systems are analyzed in Parts B, C, and D.

B. System with Multiple Perfectly Coupled CIGs

Due to the different parameters of each CIG, and the
large number of CIGs, it is difficult to analyze theoretically.
Therefore, the Monte Carlo method is adopted in this section
to analyze oscillation characteristics through large-scale sim-
ulation samples.
1) Critical Eigenvalues Analysis

The critical eigenvalues refer to the negative damped or
weak damped eigenvalues. In this paper, the threshold is set
as the damping ratio, which is less than 0.05.

For the system with n = 66 parallel CIGs connected to the
weak grid (as shown on the upper right of Fig. 2), the Monte
Carlo simulation is designed as follows:

Step 1: Randomly generate the parameters of every CIG, in-
clude output power, bandwidth and damping of DVC and PLL,
and the PI controller parameters of AVC. The parameters are
different between each CIG. To avoid unpractical situations,
such as lower damping of PLL, the parameters of each CIG
should be within the normal range. The upper and lower limits
of CIG parameters are given in Table I.

TABLE I
UPPER AND LOWER LIMITS OF CIG PARAMETERS

CIG parameters Lower limits Upper limits
PLL bandwidth (Hz) 10 40
PLL damping 0.30 0.80
DVC bandwidth (Hz) 5 25
DVC damping 0.30 0.80
AVC proportional coefficient (S) 0.2 20
AVC integral coefficient (S/s) 8 800
Output power (p.u.) 0.05 1

Step 2: Obtain the state matrix of the system, and calculate
the eigenvalues.

Step 3: Analyze the characteristics of critical eigenvalues.
N = 2000 random samples are used to calculate and

analyze. The results show that there are only one pair of
critical eigenvalues in every sample. A typical eigenvalue
distribution is shown in Fig. 3. Only one pair of eigenvalues
is negative damped, while the rest are strong damped. The
eigenvalue distributions in all samples are similar to Fig. 3.
Large sample statistical analysis shows that the number of
critical eigenvalues is not related to the random parameters.
After repeating the simulation 2000 times there is still only
one pair of critical eigenvalues.
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Fig. 3. A typical eigenvalues scatter diagram.

Calculate the difference between the damping ratio of the
weakest eigenvalues and the second weakest eigenvalues, and
obtain the maximum, minimum and average values of the
differences of the damping ratio in all samples, which is
the first column of Table II. The results of the real part are
obtained by the same method, i.e., the second column of
Table II. As can be seen from the first column, the damping
of critical eigenvalues is on average 0.5853 weaker than that
of other eigenvalues. As shown in the second column, the
critical eigenvalues are on average 30.0128 more right than
other eigenvalues. Both the damping ratio and the real part
indicate that the critical eigenvalues (weakest eigenvalues)
are significantly weaker than other eigenvalues. It shows that
the oscillation mode corresponding to non-critical eigenvalues
attenuate rapidly because of the strong damping, and the
modes are difficult to be observed in the system. However,
the oscillation mode corresponding to the critical eigenvalues
attenuates slowly even increasing due to its weak damping,
and it is easy to be observed.

TABLE II
COMPARISON OF THE WEAKEST AND SECOND WEAKEST EIGENVALUES

Statistical items Difference of damping ratio Difference of real part
Average value −0.5853 30.0128
Maximum value −0.7662 50.8938
Minimum value −0.3386 18.5668

In the symmetric multiple CIG systems, both CIGs and grid
participated in the critical eigenvalues (i.e., in-phase mode),
while only CIGs participated in the non-critical eigenvalues
(i.e., anti-phase mode) [9]–[12]. Now the participation of CIGs
and grid to the different eigenvalues in the asymmetric multiple
CIG system will be studied.

Based on the small signal state space model, the eigenvalue
analysis method is used to obtain the eigenvalue λ and its right
eigenvector ϕ and left eigenvector ψ of the system. Let prs
denote the participation factor of the rth state variable xr to
the sth eigenvalue λs, defined as:

prs = ϕrsψrs (7)
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where ϕrs is the rth row of the right eigenvector ϕs; ψrs is
the rth row of the left eigenvector ψs.

Based on the participation factor, the relative participations
of all CIGs and grid are defined as follows [29]:

σCIGs,s =

n∑
k=1

‖ρks‖1
/ n+1∑

k=1

‖ρks‖1

σgrid,s = ‖ρn+1,s‖1
/ n+1∑

k=1

‖ρks‖1 (8)

where ‖ · ‖1 is l1-norm; σCIGs,s and σgrid,s are the relative
participation of the all CIGs and grid to the sth eigenvalue
respectively; ρks (k = 1, 2, · · · , n) is a vector composed of
the participating factors (as shown in (7)) of all state variables
of the kth CIG to the sth eigenvalue; ρn+1,s is a vector
composed of the participating factors of all state variables of
the grid to the sth eigenvalue. The relative participation of σ
can intuitively indicate the participation of all CIGs or grid to
the eigenvalues. The higher σ is, the greater the participation
of CIGs or grid.

Based on (8), the σCIGs and σgrid to all eigenvalues in all
samples can be calculated. In all N = 2000 samples, the
average values of σCIGs and σgrid to the critical and non-
critical eigenvalues can be obtained, as shown in Table III.
The statistical results show that both CIGs and grid partici-
pated in the critical eigenvalues, and the grid has almost no
participation in non-critical eigenvalues. This means that the
grid has great observability and controllability only for the
critical eigenvalues, but poor observability and controllability
for other eigenvalues.

TABLE III
AVERAGE VALUES OF RELATIVE PARTICIPATIONS OF ALL

CIGS AND GRID

Statistical items Critical eigenvalues Non-critical eigenvalues
σCIGs 0.7997 0.9970
σgrid 0.2003 0.0030

The CIG station is a subset of the multiple CIG systems
studied in this section. In the above case study, the Monte
Carlo method is used for general multiple CIG systems which
could consist of several CIG stations and the parameters
among the different types of CIGs have a wide range of ran-
domness. Therefore, each CIG is simulated to have individual
parameters and a total of 66 sets of CIG parameters are set
up in the sampling.

In a single CIG station, there may be only a few types
of CIGs and the parameters among the same type of CIGs
are highly consistent. The Monte Carlo simulations, for a
single CIG station scenario, are also studied. The Monte Caro
simulation is designed so that six sets of CIG parameters
or two sets of CIG parameters are respectively randomly
generated. The statistical analysis of N = 2000 samples for
each case shows that the system still has only one pair of
critical eigenvalues, which is consistent with the previous
conclusion.

In summary, when the CIGs are perfectly coupled and
connected into the grid, the system has only one pair of critical

eigenvalues. The grid has a large participation only in critical
eigenvalues, but almost no participation in other eigenvalues.
2) Participation Analysis

In order to analyze the participation of each CIG in the
critical eigenvalues, the concept of relative participation is
introduced. The details are as follows.

Based on the participation factor, the relative participation of
each CIG to the critical eigenvalues is defined as follows [29]:

ηk = ‖ρk‖1/
n∑
j=1

‖ρj‖1 (9)

where ‖ · ‖1 is l1-norm; n is the number of CIGs; ηk is
the relative participation of the kth CIG; ρk is a vector
composed of the participating factors (as shown in (7)) of all
state variables of the kth CIG to critical eigenvalues. Relative
participation ηk can intuitively indicate the participation of kth

CIG to critical eigenvalues in all CIGs. Among all CIGs, the
higher ηk is, the greater the participation of kth CIG to the
critical eigenvalues.

Based on the Monte Carlo simulation, the relative par-
ticipation η1 ∼ ηn of each CIG in all samples can be
obtained. Starting from the first sample, the n scatted points
are successively drawn, the two coordinates of which are
relative participation and PLL bandwidth of the CIG. All N
samples are drawn on a graph, which is Fig. 4(a). Scatter
diagrams of other parameters can be plotted in the same way.
Some scatter diagrams are shown in Fig. 4.

It can be seen that the lower the PLL bandwidth, the greater
the relative participation of the CIG. There is a significant
negative correlation between them. DVC bandwidth is also
negative correlated with relative participation, but the corre-
lation is not as strong as the PLL bandwidth. In addition,
there is little correlation between the output power and relative
participation.

In order to quantitatively study the correlation, the Pearson
correlation coefficient is introduced as follows:

rX,Y =

∑m
i=1(Xi −X)(Yi − Y )√∑m

i=1(Xi −X)2
√∑m

i=1(Yi − Y )2
(10)

where, X and Y are two variables. The value of r is between
−1 and 1. Positive value means positive correlation; nega-
tive value means negative correlation; and 0 means linearly
independent. In general, r between 0.8–1.0 indicates a very
strong correlation; 0.6–0.8 a strong correlation; 0.4–0.6 a
moderate correlation; 0.2–0.4 a weak correlation; 0–0.2 a very
weak correlation or no correlation. In the calculation of the
correlation coefficient, the significance test is also required.
Generally, significance level P < 0.05 is considered to be
relatively significant.

The correlation coefficient between each parameter and the
relative participation is calculated, and the results are shown
in Table IV. It can be seen that only two parameters, PLL
bandwidth and DVC bandwidth, are significantly correlated
with the relative participation. PLL bandwidth has a strong
negative correlation, while DVC bandwidth has a moderate
negative correlation. The remaining parameters are very weak
correlative with the relative participation.
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Fig. 4. Scatter diagram of some parameter and relative participation of CIGs.
(a) PLL bandwidth and relative participation. (b) DVC bandwidth and relative
participation. (c) Output power and relative participation.

A typical diagram of relative participation, PLL bandwidth
and DVC bandwidth is shown in Fig. 5. The z-axis is the
relative participation of each CIG, the x-axis and y-axis are
PLL bandwidth and DVC bandwidth respectively. It is shown
that the lower the PLL bandwidth and the lower the DVC
bandwidth, the larger the relative participation of CIG. If
the DVC bandwidth is high, it is possible that the relative
participation of the CIG is still small, even though the PLL

TABLE IV
CORRELATION COEFFICIENT BETWEEN EACH PARAMETER AND THE

RELATIVE PARTICIPATION

CIG parameters Pearson correlation
coefficient

Significance
level

PLL bandwidth −0.6661 0
PLL damping −0.1445 0
DVC bandwidth −0.4469 0
DVC damping −0.1694 0
AVC proportional coefficient 0.0031 0.2526
AVC integral coefficient 0.1025 0
Output power 0.1015 0
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Fig. 5. A typical diagram of relative participation, PLL and DVC bandwidth.

bandwidth is low. However, among the CIGs with similar DVC
bandwidth, the law of “the lower the PLL bandwidth, the larger
the relative participation” still holds.

C. System with Multiple Perfectly Decoupled CIGs

Obviously, when the CIGs are completely decoupled (as
shown on the lower right of Fig. 2), each CIG is independently
connected to the infinite bus, which is equivalent to n single
CIG systems. In this situation, each system has a pair of critical
eigenvalues, and the whole system has n pairs of critical
eigenvalues. The eigenvalues of a single CIG system are only
related to itself, and have no relationship with other CIGs.

D. General Multiple CIG Systems

According to the analysis of the two special cases above, it
can be reasonably inferred that the oscillation characteristics
of the general CIG systems are as follows:

The number of critical eigenvalues of the system is related
to the coupling degree among each CIG. Obviously, when the
coupling degree Fij between the CIGs reduces from 1 to 0,
that is, the CIGs change from perfectly coupled to perfectly
decoupled, the critical eigenvalues increase from 1 pair to n
pairs. Focusing only on the weakest pair of eigenvalues may
overlook the potential oscillation risk.

For a pair of critical eigenvalues, as the coupling degree
among CIGs decreases, there is definitely a CIG whose par-
ticipation will gradually increase. When the CIGs are perfectly
decoupled, only one CIG participates in the oscillation mode.

It is worth noting that when the connection impedance
between each CIG zij (i 6= j) is much smaller than the
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connection impedance between each CIG and the power
system zk0, the coupling between each CIG is very strong,
and the oscillation characteristics of the CIG system are very
close to the case of CIGs perfectly coupled.

An example, which is a system with two different CIGs,
is used to illustrate the above inference. The coupling degree
between the two CIGs is:

F12 =
1

2

(
z20

z12 + z20
+

z10
z12 + z10

)
(11)

where z10, z20, z12 are connection impedance in Fig. 2.
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Fig. 6. Eigenvalue trajectories with variable connection impedance.

Let z10 = 103.29 p.u., z20 = 72.50 p.u. (in 100 MVA),
and z12 successively increase from 0 to ∞ (i.e., 0, 1, 5, 10,
50, 100, 500, 1000, 2000, 3000, 4000, 5000, 10000, 109. The
corresponding case numbers are 1∼14). The eigenvalue trajec-
tories with variable connection impedance are shown in Fig. 6.
When z12 = 0, the coupling degree F12 = 1, there are only one
pair of critical eigenvalues λ1,2. However, with the increase
of z12, the coupling degree F12 becomes small. The damping
of eigenvalues λ3,4 also becomes negative, and the number
of critical eigenvalues becomes two pairs. When the second
critical eigenvalue appears (the damping ratio of λ3,4 is equal
to 0.05), the coupling degree of the two CIGs is 0.2011. The
relative participations of each CIG to the critical eigenvalues
are shown in Fig. 7. The top figure is about eigenvalues λ1,2,
and the bottom figure is about eigenvalues λ3,4. It can be
seen that as the connection impedance z12 increases, i.e., the
coupling degree F12 decreases, the participation of one CIG
increases and the participation of the other CIG decreases.

To quantitatively evaluate the relationship between the
coupling degree and the number of critical eigenvalues, the
simulation of a two-CIG system is designed based on the
Monte Carlo method, which is as follows. Randomly generate
2000 sets of samples. The dynamic parameters and output
power of two CIGs are within the range of that in Table I.
When the connection impedances z10 and z20 of each sample
are constant, the larger the connection impedance z12, the
lower the coupling degree between two CIGs. As shown in
the previous analysis, when the coupling degree is low enough,
the critical eigenvalues will increase from 1 to 2 pairs. When
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Fig. 7. Relative participations trajectories with variable connection
impedance. (a) Relative participation to λ1,2. (b) Relative participation to
λ3,4.

the second pair of critical eigenvalues appears, the connection
impedance z12 is calculated. Then the coupling degree index
F is calculated by (11). All samples are statistically analyzed,
and the results are as follows:

When the second pair of critical eigenvalues appears, the
mean value and standard deviation of coupling degree index
F of all samples are 0.1432 and 0.1028, respectively. The
coupling degree index F in 99% of all samples is below 0.48;
in 95% of all samples, it is below 0.33; in 90% of all samples,
it is below 0.2775. The results prove the conclusion that when
the coupling degree among CIGs is low, the system can indeed
have multiple pairs of critical eigenvalues. According to the
above results, it is suggested that: when the coupling degree
index is less than 0.48, the system is a weak coupled system
and may have more than one pair of critical eigenvalues; when
the coupling degree index is larger than 0.48, the system is
a strongly coupled system and basically has only one pair of
critical eigenvalues.

IV. EQUIVALENCE METHOD OF CIG STATIONS IN THE
ASYMMETRIC SYSTEM

A. Single-CIG Equivalence Method

In the asymmetric system, the equivalence method should
be determined according to the coupling degree between
the CIGs. Only when the CIGs are closely coupled with
each other, will the system have only one pair of critical
eigenvalues, and then the system can carry out the single-CIG
equivalence. Fortunately, in most CIG stations, such as direct-
drive wind farms and photovoltaic plants, the impedance of the
collector line is small enough compared with the impedance
of the grid. The coupling degree among all CIGs is close to 1.
The critical eigenvalues of weak grid connected CIG stations
are only one pair. Therefore, the CIG stations can be equivalent
to one CIG.
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1) Dynamic Parameters Identification of Equivalent CIG
In the CIG stations, all CIGs are closely coupled, and the

voltages of CIGs are almost equal. Therefore, the voltages and
phase angles of all CIGs are approximately equal. The sum of
admittance of all CIGs is the detailed model of CIGs, which
is of the 9nth order. The equivalent model is the 9th order.
The expression of the equivalent model is known, which is the
same as the CIG model in (1)–(2), and the parameters are to be
determined according to the identification method. Finally, n
CIGs are equivalent to one CIG, and the order of the dynamic
model is reduced from 9nth to 9th.

To simulate a detailed CIG station with an equivalent CIG, it
is only necessary to ensure that the admittance characteristics
of the equivalent CIG and the detailed CIGs are consistent in
the concerned frequency band. The parameters of equivalent
CIGs can be solved by the least squares method. The objective
function is:

min F =

ωmax∑
ω=ωmin

∣∣∣∣∣Yeq(jω)−
n∑
k=1

Yk(jω)

∣∣∣∣∣
2

(12)

where Y can be Ydd, Yqq, Ydq or Yqd respectively; the subscript
eq represents equivalent model. Since there are four elements,
the optimization objective is a multi-objective function, And
can be converted to a single objective as follows:

min Fdd + Fqq + Fdq + Fqd (13)

Because the time scales of the inner-loop and outer-loop
control of CIG are very different, these two parts should be
identified separately. When identifying the outer-loop control
parameters, the inner-loop transfer function is ignored, i.e.,
Gccd(s) = 1, Gccq(s) = 1, and the rest of the transfer
functions are the same as (12). When identifying the inner-
loop control parameters, the outer-loop control is ignored. The
objective function is:

min F =

ωmax∑
ω=ωmin

∣∣∣∣∣Geq(jω)−
n∑
k=1

Gk(jω)

∣∣∣∣∣
2

(14)

where G can be Gccd or Gccq to identify the PI parameters
of the d-axis or q-axis current control respectively.

All PI control parameters can be obtained by identification.
The main circuit parameters are calculated as follows:

Lf,eq = 1

/ n∑
k=1

1

Lf,k

Cdc,eq =

n∑
k=1

Cdc,k

vdc0,eq =

n∑
k=1

Cdc,kvdc0,k

/ n∑
k=1

Cdc,k (15)

2) Steady Parameters Calculation of Equivalent CIG Station
The power of the equivalent CIG is aggregated as follows:

Pt,eq =

n∑
i=1

Pti (16)

where n is the number of CIGs; Pt is the output power.

The equivalence of the CIG terminal transformer is regarded
as a parallel connection. The impendence of transformer is:

ZT,eq = 1

/ n∑
i=1

1

ZTi
(17)

According to the principle that the generalized short circuit
ratio [22] of the system before and after equivalence is equal,
the equivalent collector lines impendence is:

Zcol,eq = Zgscr − Zg − ZT,eq (18)

where Zgscr is the generalized short-circuit impedance of the
CIGs, which is calculated according to [22]; Zg is the system
impedance as Fig. 2.

B. Multi-CIG Equivalence Method

When enhancing the damping of the system, the CIGs
with stronger participation are usually selected as candidate
locations to be controlled. Therefore, in the study of damping
control, it would be better if the equivalent CIG model can
distinguish the CIGs with different participations to critical
eigenvalues. Obviously, the single-CIG equivalent model in the
previous section cannot be used for this scenario. Therefore,
the multi-CIG equivalence method is proposed in this section.

According to Section III.B.2, the participations of high PLL
(or DVC) bandwidth CIGs and low PLL (or DVC) bandwidth
CIGs to the critical eigenvalues are significantly different.
Therefore, CIGs can be divided into two groups according to
PLL bandwidth. Similarly, based on DVC bandwidth the CIGs
can also be divided into two groups. Taking both into con-
sideration, all the CIGs can be divided into four groups: low
PLL bandwidth and low DVC bandwidth, low PLL bandwidth
and high DVC bandwidth, high PLL bandwidth and low DVC
bandwidth, high PLL bandwidth and high DVC bandwidth.
The CIGs in each group adopt single-CIG equivalence. The
parameters are calculated the same as the previous section.

The bandwidth boundaries of the high bandwidth group and
the low bandwidth group are not invariant, but are determined
according to the specific situation. This section gives the
following method to divide the low and high bandwidth
groups. The basic idea is that the CIGs ranking in the front
several lower (the proportion is denoted as ζ) are in the low
bandwidth group, and the remaining CIGs are in the high
bandwidth group. The proportion ζ is determined according
to the large sample data in the previous section. The method
is as follows:

Step 1: Determine a constant kη between 0 and 1, and
obtain the bandwidth fc. kη is the proportion of the sum of the
relative participation η of CIGs with less than fc bandwidth
to the relative participation η of the CIGs of whole samples.
The relationship between kη and fc is as follows:

kη(fc) =
∑
f≤fc

η(f)

/ ∑
f≤fmax

η(f) (19)

where η is relative participation, as shown in (9). kη represents
the participation of CIGs in the low bandwidth group to the
critical eigenvalues. It is a determined according to experience,
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which is taken as 0.5 in this paper. Given kη , a fc can be
obtained.

Step 2: Calculate the proportion of all samples whose
bandwidth is less than fc to the whole samples, denoted as ζ,
i.e.,

ζ(fc) = C(f ≤ fc)/C(f ≤ fmax) (20)

where C(f ≤ fc) is the number of samples whose bandwidth
is less than fc; C(f ≤ fmax) is the number of whole samples.
Given fc, a ζ can be obtained.

Step 3: Sort all CIGs by bandwidth from lowest to highest,
and divide the front ζ proportion CIGs in the low bandwidth
group and the rest of the CIGs in the high bandwidth group.
When there are n CIGs, the CIGs whose bandwidth is ζ · n
lower are the low bandwidth CIGs, and the rest are the high
bandwidth CIGs.

Use Fig. 8 as an example. The dotted line intersects the
horizontal axis at fc. The proportion of the sum of η of the
points on the left of the dotted line to the sum of η of all the
points is kη . The proportion of the number of points on the
left of the dotted line to the total number of points is ζ.
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Fig. 8. Illustration diagram of PLL bandwidth.

The clustering results (select kη = 0.5) are shown in Fig. 5.
The two dotted lines on the xOy-plane represent the boundary
between high and low bandwidth. These two lines divide all
the CIGs into four groups. Basically, the CIGs with higher
participation are grouped together, and the CIGs with lower
participation are grouped into other groups.

The clustering method above is the only appropriate method.
Other methods can be implemented according to the actual
situation. Since the correlation between DVC bandwidth and
relative participation is only a moderate correlation, the CIGs
can be divided into two groups only considering the PLL
bandwidth.

Theoretically, the more equivalent CIGs there are, the more
accurate the model will be. But it will also be more complex.
Compared with the detailed model, the multi-CIG equivalent
model greatly reduces the system complexity. Compared with
the single-CIG equivalence method, the multi-CIG equivalence
method improves the accuracy, which is at the expense of
complexity.

Furthermore, compared with the single-CIG equivalence
method, the multi-CIG equivalence method has more abundant
application scenarios. For example, when damping control
is carried out, the CIGs with large participation are usually
selected to exert control for better effect. There is only
one CIG in the single-CIG equivalent model, which cannot
distinguish those CIGs with large participation. However, the
multi-CIG equivalence method can separate the CIGs with
large participation and select the corresponding equivalent
CIGs to apply the damping control.

V. SIMULATION

A. Small Signal Model of CIGs
The CIG station adopts the wind farm with a type IV wind

turbine generator in this section. Its structure is an actual
wind farm in Northwest, China. It includes 66 type IV wind
turbine generators with rated power of 1.5 MW; it takes
account of collector lines and CIG terminal transformers; and
it is connected to a weak grid. This type IV wind turbine
generator model is shown in Fig. 1. In the simulations, the
wind farm adopts a small signal model, in which the wind
turbine generators, lines and ground capacitances are all taken
into account. The system state matrix (i.e., matrix A) is the
808th order.
N = 2000 sets of samples are randomly generated. In all

samples, the coupling degree indexes between each CIG are
calculated, and the average value coupling degree index is
0.9497. And there are only one pair of critical eigenvalues
in all the samples. Although the wind turbine generators are
not perfectly coupled (that is, F 6= 1), the coupling degree
index is still much larger than 0.48, which is the result of the
two-CIG system in Section III.D. Therefore, the wind turbine
generators can be considered to be almost perfectly coupled,
and the system have only one pair of critical eigenvalues.
Fig. 9 shows a distribution of eigenvalues (solid dots), which is
one of 2000 samples. It can be seen that there is only one pair
of critical eigenvalues, although the wind turbine generators
are not perfectly coupled.

The equivalent model of each sample is obtained by the
proposed method. The accuracy of the equivalent models will
be compared respectively.
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Fig. 9. Comparison of eigenvalues.
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1) Accuracy Analysis of Single-CIG Equivalent Model
Using the sample in Fig. 9 as an example, draw the

eigenvalues of its equivalent model in the same figure. It can
be seen that the critical eigenvalues of the equivalent model
are very close to those of the detailed model.

Critical eigenvalues of an equivalent wind farm and detailed
wind farm are calculated respectively, and the error of critical
eigenvalues will be obtained. After applying statistics, the
histogram of the error distribution is shown in Fig. 10. The
x-axis and y-axis are the real and imaginary parts of the errors
of critical eigenvalues. The z-axis is the count of the errors of
critical eigenvalues. It can be seen that the real part errors of
the critical eigenvalues concentrate in the range of −3∼2 and
the imaginary part errors concentrate in the range of −3∼4.
The errors are all very small. The single-CIG equivalent model
can approximately represent the detailed model.
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Fig. 10. Histogram of critical eigenvalue error of single-CIG equivalent
model.

The statistical information of the errors of the real part,
imaginary part, frequency, damping, amplitude and angle of
the critical eigenvalues between the equivalent model and the
detailed model is shown in Table V. It can be found that the
errors of several indicators are relatively small and within the
acceptable range.

TABLE V
COMPARISON OF CRITICAL EIGENVALUES ERROR

Indicators Mean Standard deviation
Real part −0.7524 1.1129
Imaginary part 0.4955 1.9917
Frequency 0.0789 0.3170
Damping 0.0127 0.0179
Amplitude 0.1217 1.8983
Angle 0.8107 1.1410

2) Accuracy Analysis of Multi-CIG Equivalent Model
For critical eigenvalues, such as the previous section, the

histogram of error distribution is shown in Fig. 11. The x-
axis and y-axis are the real and imaginary parts of the errors
of critical eigenvalues. The z-axis is the count of the errors of
critical eigenvalues. It is shown that the real part errors of the
critical eigenvalues are almost within −2∼1 and the imaginary
part errors are almost within −2∼3. The multi-CIG equivalent
model can also approximately represent the detailed model.
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Fig. 11. Histogram of critical eigenvalue error of multi-CIG equivalent
model.

The relative participation of each equivalent CIG to the
critical eigenvalues is calculated, and is compared with the
sum of the relative participation of the detailed CIGs. The
statistical information of errors of the relative participation
of the four equivalent CIGs is shown in Table VI. It can be
seen that the relative participation errors of each equivalent
CIG are all small, which can better reflect the participation
of the detailed CIGs to the critical eigenvalues. According to
the equivalence method, the CIGs in group 1 has the greatest
participation. If damping control is applied, a better candidate
location could be equivalent CIG 1.

TABLE VI
COMPARISON OF RELATIVE PARTICIPATION ERROR

Indicators Mean (×10−2) Standard deviation (×10−2)
Equivalent CIG 1 0.0633 1.1188
Equivalent CIG 2 0.4295 1.2134
Equivalent CIG 3 −0.3538 0.6268
Equivalent CIG 4 −0.1390 0.8059

The state matrix of the multi-CIG equivalent model is
reduced from the 808th to 56th order compared with that of
the detailed model which is greatly reduced in complexity.
Compared with the single-CIG equivalent model, it can be
clearly seen that the error of the multi-CIG equivalent model
is much smaller as shown in Figs. 10 and 11. Furthermore,
the relative participation of each equivalent CIG to the critical
eigenvalues can better reflect the participation of the detailed
CIGs, which the single-CIG equivalent model cannot do.

B. Electromagnetic Transient Model of CIGs
In this section, the electromagnetic transient simulation is

to prove the accuracy of the equivalent model in a nonlinear
simulation. The accuracy is evaluated by whether the oscil-
lation waveforms in the detailed model and equivalent model
is consistent in the studied time scale. The waveforms of the
active power of the wind farm and the DC voltage of the
wind turbine generator are selected, since both theoretical and
practical observations show that when the wind farm with
type IV wind turbine generators oscillates, these two variables
can both observe the oscillation mode. In order to excite
the oscillation mode, a three-phase instantaneous short-circuit
fault is applied at the outgoing line.
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Electromagnetic transient simulation software, such as
PSCAD, can hardly simulate a large-scale system. Therefore,
a simple wind farm model, which contains 4 type IV wind
turbine generators, is established on PSCAD. The parameters
of the CIG bandwidths are shown in Table VII. The mutli-
CIG equivalent model contains two CIGs. CIG 1 and 2 are in
group 1, and CIG 1 and 2 are in group 2.

The three-phase instantaneous fault is set on the transmis-
sion line at 0.1 s, which lasts 20 ms. The active power and DC
voltage after the fault in the detailed and equivalent wind farm
are observed respectively, which are shown in Fig. 12. The DC
voltage belongs to CIG 1 in the detailed model, and equivalent
CIG 1 in the multi-CIG equivalent model respectively. As
can be seen from Fig. 12, no matter whether it is from the
wind farm active power or the CIG DC voltage, the equivalent
models are both close to the detailed model. The equivalent
models can reflect the oscillation mode of the system.

TABLE VII
PARAMETERS OF CIGS BANDWIDTH

CIG PLL bandwidth (Hz) DVC bandwidth (Hz)
CIG 1 10 13
CIG 2 15 10
CIG 3 20 21
CIG 4 25 17
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Fig. 12. Time domain simulation curves comparison. (a) Active power.
(b) DC Voltage.

VI. CONCLUSION

In this paper, the oscillation characteristics of multiple weak
grid connected converter interfaced generations (CIGs) with
different parameters are studied based on large samples of
the Monte Carlo simulation. The single-CIG and multi-CIG
dynamic equivalence methods in stations with multiple CIGs
are proposed respectively. The conclusions are as follows:

1) The number of critical eigenvalues and the participation
of each CIG to the critical eigenvalues are related to the
coupling degree of CIGs. When the CIGs are perfectly cou-
pled, the system has only one pair of critical eigenvalues. The
participation of each CIG to the critical eigenvalues is strongly
negative correlated with a phase locked loop (PLL) bandwidth,
moderate negative correlated with a DC voltage control (DVC)
bandwidth, and basically irrelevant with other parameters. As
the coupling degree of CIGs decreases, the number of critical
eigenvalues increases and the participations of all CIGs also
changes. Particularly, when n CIGs are perfectly decoupled,
the system has n pairs of critical eigenvalues, and only one
CIG participates in the pair of critical eigenvalues.

2) In the system of multiple weak grid connected CIGs,
when CIGs are closely coupled with each other, there is
only one pair of critical eigenvalues and the single-CIG
equivalence can be carried out. And CIGs in most real stations
are closely coupled. Therefore, this paper proposes a single-
CIG equivalence method. The equivalent CIG parameters are
identified based on the consistency of the output admittance
characteristics. Simulation results under large samples show
that the critical eigenvalues errors before and after equivalence
are very small. The equivalent model is simple and can be used
to analyze the system stability.

3) In order to apply damping control better, it is necessary
to further determine the candidate location based on the
participation of the CIGs. Therefore, a multi-CIG equivalence
method is proposed. According to the participation of each
CIG to the critical eigenvalues, the station is equivalent to a
multi-CIG model. This method first classifies the CIGs into
several groups based on PLL bandwidth and DVC bandwidth,
and then carries out the single-CIG equivalence in each group.
A large number of simulations shows that the equivalent model
can reflect the participation of CIGs in the detailed model
to the critical eigenvalues. Moreover, the error of critical
eigenvalues is lower than the single-CIG equivalent model.
The equivalent model is more complex, and could be used to
study damping control.
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