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Abstract—This paper proposes an implicit function based
open-loop analysis method to detect the subsynchronous res-
onance(SSR), including asymmetric subsynchronous modal at-
traction(ASSMA) and asymmetric subsynchronous modal repul-
sion(ASSMR), of doubly-fed induction generator based wind
farms(DFIG-WFs) penetrated power systems. As some important
parameters of DFIG-WF are difficult to obtain, reinforcement
learning and least squares method are applied to identify those
important parameters. By predicting the location of closed-loop
subsynchronous oscillation(SSO) modes based on the calculation
of partial differentials of characteristic equation, both ASSMA
and ASSMR can be found. The proposed method in this paper
can select SSO modes which move to the right half complex
planes as control parameters change. Besides, the proposed
open-loop analysis method is adaptive to parameter uncertainty.
Simulation studies are carried out on the 4-machine 11-bus power
system to verify properties of the proposed method.

Index Terms—Open-loop modal analysis, reinforcement
learning based parameter identification, subsynchronous
resonance.

NOMENCLATURE

Rs Stator resistance of DFIG-WF.
Ls Stator inductance of DFIG-WF.
Rr Rotor resistance of DFIG-WF.
Lr Rotor inductance of DFIG-WF.
Lm Mutual inductance of DFIG-WF.
Rc Resistance of the RL filter in DFIG-WF.
Lc Inductance of the RL filter in DFIG-WF.
C DC-link capacitance of DFIG-WF.
Hg Generator inertia constant.
Ht Turbine inertia constant.
Dt Turbine damping coefficient.
Dg Generator damping coefficient.
Dtg Shaft mutual damping coefficient.
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Ktg Shaft spring constant.
ã estimate of a by using parameter identification

method.

I. INTRODUCTION

IN recent years, large-scale wind power plants have been
increasingly integrated into power systems. However, open-

loop modal proximity [1] between the subsynchronous oscil-
lation (SSO) modes of wind farm (WF) subsystem and the
SSO modes of the rest of power system (ROPS) subsystem [1]
may cause subsynchronous resonance (SSR) in the entire
power system. SSR is worthy of being detected as it greatly
affect small-signal stability of power system. So far, methods
for investigation of SSR between WF subsystem and ROPS
subsystem include modal analysis [2], damping torque anal-
ysis(DTA) [3]–[5], small-signal impedance method [6], [7],
open-loop analysis method [1] and residue based method [8].

Modal analysis is a widely applied method of studying SSR
of power system [9]. Modal analysis has been applied to the
entire WF penetrated power system, and can indicate roles
of the WF subsystem and the ROPS subsystem in affecting
the system’s small-signal stability by calculating participation
factors of states. However, it is difficult for the method
to reveal the mechanism which determines the influence of
selected WFs on small-signal stability of the entire power
system. Furthermore, it is time-consuming for the method to
perform stability analysis due to the high dimension of the
state matrix of entire power system.

In addition, DTA is another method to study impact of
SSR on power system small-signal stability. In [10], DTA
was used to exam open-loop modal proximity between elec-
tromechanical oscillation modes (EOMs) of an AC power
system and oscillation modes of the integrated multi-terminal
DC (MTDC) network. In [5], DTA is adopted to study SSR
damping characteristics with SVC. An investigation on the
mechanism about how and why SVC can effectively provide
damping to SSR is presented. Although the physical meaning
of DTA method is clear, it cannot find the exact location of
SSO modes on the complex plane.

Recently, other methods of studying SSR have been put
forward, such as small-signal impedance method and the open-
loop analysis method proposed in [1]. In [6], small-signal
impedance method has been used to analyze multiple high-
frequency resonances (MHFR) between the DFIG system and
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series Π-sections weak network. An active damping strategy
which introduces a virtual impedance, including a phase
leading compensation unit and a virtual positive resistance,
was proposed there to mitigate the MHFR. Besides, [7] uti-
lized small-signal impedance method to study high-frequency
resonance between DFIG-based offshore wind farm and long
transmission cable.

The open-loop analysis method identifies any pair of open-
loop SSO modes close to each other from two open-loop
subsystems. An index, indicator of the strength of symmetric
modal repulsion [8] of the identified open-loop modes, is
calculated without using the information of closed-loop eigen-
values. However, the method is only suitable for analyzing
symmetric modal resonance [8]. In particular, location of
closed-loop SSO modes and small-signal stability margin it
gives are correct only when the identified pair of open-loop
modes are equal [8]. Besides, the mechanism of SSR, espe-
cially asymmetric subsynchronous modal attraction(ASSMA)
and asymmetric subsynchronous modal repulsion(ASSMR),
has not been intensively analyzed in [1], [11], [12]. Last, but
not least, the open-loop analysis method proposed in [1] is not
adaptive to parameter uncertainty.

The above-mentioned problems have been partially solved
by paper [8]. In [8], the mechanism of modal resonance,
especially modal repulsion and modal attraction, has been
intensively analyzed. A residue based analysis method has
been proposed there to detect asymmetric modal resonance [8]
via estimating locations of selected closed-loop modes. How-
ever, estimation error of the locations of closed-loop mode
still exists. The method studied in [8] is still not adaptive to
parameter uncertainty.

In order to improve accuracy of small-signal analysis when
some important system parameters are difficult to obtain
directly, parameter identification methods can be utilized [8].
Existing parameter identification methods include least squares
method [13], [14], reinforcement learning method [15],
Kalman filter based method, etc. Among those methods, least
squares method is easier to implement. However, it cannot be
directly used to identify parameters of DFIG, according to the
mathematic model of the generator. Reinforcement learning
method can be used to identify parameters of equipment with
complex structure. But it suffers from high computational
complexity [8].

Contributions of this paper consist of three aspects. First of
all, a model for analyzing SSR of DFIG-WFs integrated power
system is derived. The model consists of DFIG subsystem
and ROPS subsystem [8]. In addition, reinforcement learning
and least squares method are applied to identify parameters of
DFIG subsystem, which are difficult to obtain. Furthermore, an
implicit function based open-loop analysis method is proposed
to detect ASSMA and ASSMR by estimating locations of
selected closed-loop SSO modes of the entire power system.
Compared with the residue based open-loop modal analysis
method mentioned in [8], the proposed method is adaptive
to variation of system parameters. A DFIG-WFs integrated
4-machine 11-bus power system is used to demonstrate per-
formances of the proposed method.

II. ASSMA AND ASSMR CAUSED BY DFIG
A. A Closed-Loop Model of DFIG-WFs Integrated Power
System for Analyzing SSR

Figure 1 shows a multi-machine power system with p DFIG-
WFs, where Ixk + jIyk (k = 1, 2, · · · , p) denotes the output
current of the kth DFIG-WF and Vxk+jVyk (k = 1, 2, · · · , p)
denotes terminal voltage of the kth DFIG-WF, expressed in the
common x-y coordinate. The system can be divided into DFIG
subsystem and ROPS subsystem [8]. As for DFIG subsystem,
its open-loop linearized state-space model is:{

d
dt∆Xd = Ad∆Xd + Bd∆Vxy

∆Ixy = Cd∆Xd

(1)

where

Ad =



Ad1 0 · · · · · · · · · 0

0 Ad2 0
...

... 0
. . .

...
... Adk

...
...

. . . 0
0 · · · · · · · · · 0 Adp


Adk is state matrix of the kth DFIG-WF, Xd is vector of all
state variables of p DFIG-WFs, and prefix ∆ indicates small
variation of variable(s). Note each wind farm is modelled as
an aggregated DFIG-based wind turbine (DFIG-WT) [8]. Ac-
cording to (1), the transfer function matrix of DFIG subsystem
can be written as:

∆Ixy = D(s)∆Vxy (2)

where

∆Ixy = [∆Ix1 ∆Iy1 · · · ∆Ixp ∆Iyp]
T

∆Vxy = [∆Vx1 ∆Vy1 · · · ∆Vxp ∆Vyp]
T

D(s) = Cd(sI −Ad)−1Bd (3)

and I is the identity matrix of proper dimension. As for
ROPS subsystem, its open-loop linearized state equation can
be written as [8]:{

d
dt∆Xr = Ar∆Xr +Br∆Ixy

∆Vxy = Cr∆Xr +Dr∆Ixy
(4)

ROPS
subsystem

DFIG wind farm

DFIG wind farm

1

k

Power
system

DFIG wind farm
k+1

DFIG wind farm
p

Vx1+jVy1

Ix1+jIy1
Ix(k+1)+jIy(k+1)

Vx(k+1)+jVy(k+1)

Ixk+jIyk Ixp+jIyp

Vxp+jVypVxk+jVyk

Fig. 1. A multi-machine power system with p DFIG wind farms.
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where Xr is the vector of all the state variables of ROPS
subsystem, and Ar is the state matrix of ROPS subsystem.
The transfer function matrix of ROPS subsystem is:

∆Vxy = R(s)∆Ixy (5)

where

R(s) = Cr(sI −Ar)
−1Br +Dr (6)

In order to calculate the residue of open-loop modes of
DFIG subsystem, the multi-machine power system should be
regarded as the feedback connection of DFIG subsystem and
ROPS subsystem, as shown in Fig. 2 [8]. However, in order to
calculate the residue of open-loop modes of ROPS subsystem,
virtual transfer functions D′(s) and R′(s) should be intro-
duced, since Dr 6= O, according to the hybrid formulation
for the sensitivity [16]. At the same time, the multi-machine
power system needs to be treated as the feedback connection of
a modified ROPS subsystem and a modified DFIG subsystem,
as demonstrated in Fig. 3 [8]. D′(s), R′(s) in Fig. 3 are
derived as:

D′(s) = Cd(sI −Ad)−1Bd[I −DrD(s)]−1

R′(s) = R(s)−Dr

∆V ′xy = [I −DrD(s)]∆Vxy (7)

Besides, the linearized closed-loop model of the entire
power system can be presented as:

d

dt
∆X = A∆X (8)

where

∆X = [∆XT
r ∆XT

d ]T

A =

[
Ad +BdDrCd BdCr

BrCd Ar

]
(9)

DFIG subsystem

u = 0

ROPS subsystem

D(s)

R(s)
ΔVxy

ΔIxy

Fig. 2. Closed-loop model for calculation of residue of open-loop modes of
DFIG subsystem.

Modified ROPS subsystem

u = 0

Modified DFIG subsystem

D′(s)

R′(s)
ΔV′xy

ΔIxy

Fig. 3. Closed-loop model for calculation of residue of open-loop modes of
ROPS subsystem.

B. Identification of Parameters of DFIG Subsystem

As several parameters of DFIG-WF are difficult to ob-
tain directly, reinforcement learning [17] and least-square
method [18] are applied to identify them. While Ktg is
identified via reinforcement learning, other parameters listed
below are estimated via least-square method.

[Rs, Ls, Rr, Lr, Lm, Rc, Lc, C,Hg, Ht, Dt, Dg, Dtg]

1) Identification of Ktg Via Reinforcement Learning
The reinforcement learning based parameter identifica-

tion [17], [19] consists of two key steps. The first key step is to
sample the measurable state variable ωt within a certain time
interval. The second key step is to make comparisons between
the sampled values and simulated values of ωt. Simulated
values of ωt are obtained from simulating the following
differential equation via improved euler method.

Tm =
Pm

ωt

d

dt
ωt =

(−Dg −Dtg)ωt +Dtgωr − Tg + Tm
2Ht

d

dt
Tg = 120πKtg(ωt − ωr) (10)

Parameters in (10) are replaced by their identified values. To
find an optimal result of identification, an objective function
is constructed as:

F =
10
√∑s

i=1(ω̃it − ωit)2∑s
i=1(ωit)

2
+ Fpi

Fpi = max(−Ht, 0) + max(−Ktg + 300, 0) +

max(−Dt, 0) + max(−Dtg, 0) + max(−Tg0, 0) (11)

where s is total number of sampling points, Tg0 is an estimate
of the value of Tg at the beginning of the sample interval, ai

is value of variable a at the ith sampling time, ã is simulated
value of variable a. and Fpi is penalty item aiming at avoiding
parameters falling into unreasonable range. By using genetic
algorithm to obtain minimum of the objective function, the
best estimate of Ktg can be obtained.
2) Identification of Remaining Parameters of DFIG-WF Using
Least Squares Method

Once the identified value of Ktg and the best estimate of Tg
are obtained, other parameters of DFIG-WF can be identified
via least square method [18]–[20]. The least square method
is based on linear identification equations demonstrated in the
appendix, which are originated from the backward difference
of the state equation of DFIG-WF.

In order for identification to work properly, ixs, iys, ixr, iyr,
ixc, iyc, Vxs, Vys, Vxr, Vyr, Vxc, Vyc, ωt, Tg, ωr and Udc should
be measured. Because it is difficult for Tg to be measured
directly, Tg is replaced by T̃g. Moreover, the square deviation
of the linear identification equations can be written as:

δ =

s∑
i=1

9∑
j=1

(zi,j,1k1 + zi,j,2k2 + · · ·+ zi,j,21k21 − vi,j)2

(12)

where zi,j,m (m = 1, · · · , 21) are the coefficients of km in
jth equation of (12) related to value of variables at the ith
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sampling time, and vi,j represents the left-hand side of the ith
equation of (A1), taking values at the ith sampling time. After
finding the least square solution of (A1) for k1, k2, · · · , k21,
identified values of parameters R̃s, L̃s, R̃r, L̃r, L̃m, R̃c, L̃c, C̃,
H̃g, H̃t, D̃t, D̃g and D̃tg can be obtained from (A2).

C. Formation of ASSMA and ASSMR

Normally, dynamic interactions between DFIG subsystem
and ROPS subsystem are weak. As a result, DFIG subsystem
and ROPS subsystem can be recognized as almost decoupled.
This recognition has been explained in [11]. Therefore, within
the range of the frequency of SSO, ∆Vxy ≈ 0 and ∆V ′xy ≈ 0.
Based on this supposition, a small positive number ξ, 0 <
ξ � 1, can be introduced in the transfer function matrix of the
ROPS subsystem and it can be expressed as R(s) = ξX(s) [8],
where

R(s) = ξX(s) =
ξx(s)

s− λgi

D(s) =
d(s)

s− λwh,i

ξx(s) = Rgi + (s− λgi)

 ng∑
j=1,j 6=i

Rgj

s− λgj
+Dr


d(s) = Rwh,i + (s− λwh,i)

 nwh∑
j=1,j 6=i

Rwh,j

s− λwh,j

+

(s− λwh,i)

 p∑
l=1,l 6=h

nwl∑
j=1

Rwl,j

s− λwl,j

 (13)

λgi is ith eigenvalue of Ar; λwh,i (h = 1, · · · , p, i =
1, · · · , nwh) is ith eigenvalue of Adh; ng is dimension of
Ar; nwh is dimension of Adh, Rgi = Crvgiw

T
giBr, Rwh,i =

Cdvwh,iw
T
wh,iBd; vgi is right eigenvector corresponding to

λgi; wgi is left eigenvector corresponding to λgi; vwh,i is right
eigenvector of Ad corresponding to λwh,i; and wwh,i is left
eigenvector of Ad corresponding to λwh,i.

According to [21], all eigenvalues of A are continuously
differentiable with respect to ξ. When ξ = 0, eigenvalues of
A are composed of eigenvalues of Ar and Ad. To be more
specific, for λgi, also an eigenvalue of A when ξ = 0, it moves
to λ̂gi as ξ becomes positive. Moreover according to [12],
∆λgi = λ̂gi − λgi can be approximately expressed as [8]:

∆λgi ≈ ξ
tr[d(λgi)x(λgi)]

λgi − λwh,i
(14)

where tr(A) denotes the trace of matrix A. Similarly, for
∆λwh,i = λ̂wh,i − λwh,i, it can be derived that

∆λwh,i ≈ ξ
tr[d(λwh,i)x(λwh,i)]

λwh,i − λgi
(15)

When λgi is not close to λwh,i, equations (14) and (15)
show under the condition of 0 < ξ � 1 ∆λgi and ∆λwh,i are
small. However, as system parameters or operating condition
vary, λgi may become close to λwh,i, causing ∆λgi and
∆λwh,i to become significant. Such phenomenon is called
SSR [8], if the imaginary part of λgi and λwh,i are within

range of the frequency of SSO when |λgi − λwh,i| is small.
Note the difference between SSR and low frequency modal
resonance (LFMR) studied in [8] is that LFMR occurs when
the imaginary part of λgi and λwh,i are within range of the
frequency of low frequency oscillation (LFO). As for SSO,
λgi and λwh,i are defined as the pair of open-loop SSO modes
participating in the SSR. λ̂gi and λ̂wh,i are considered to be
the corresponding pair of closed-loop SSO modes [8]. As for
a specified parameter set in parameter space, if the following
requirements on the pair of open-loop SSO modes can fulfill
as system parameters vary within the set [8],

λgi = λwh,i

∆λgi = ∆λwh,i (16)

then SSR occurred in the system is considered to be sym-
metric. Otherwise, SSR occurred in the system is regarded as
asymmetric [8]. As for asymmetric SSR, within the parameter
set, there is a group of parameters, under which |λgi − λwh,i|
reaches the minimum [8]. That group of parameters corre-
spond to a parameter vector in the parameter space, and
endpoint of the vector is defined as near open-loop modal
resonance(NOLMR) point. Once the endpoint of the parameter
vector of the system reaches the NOLMR point [8], if

Re(λwh,i) < Re(λgi), Re(∆λgi) < 0

or

Re(λwh,i) > Re(λgi), Re(∆λgi) > 0

then ASSMA happens in the system. On the other hand, if

Re(λwh,i) < Re(λgi), Re(∆λgi) > 0

or

Re(λwh,i) > Re(λgi), Re(∆λgi) < 0

then ASSMR occurs in the system. In comparison to symmet-
ric SSR, it is much easier for asymmetric SSR to occur in
power system.

D. Estimation of ASSMA and ASSMR

For detecting ASSMA and ASSMR, an implicit function
based open-loop analysis method is proposed to estimate loca-
tions of closed-loop SSO modes. The proposed method relies
on information of partial derivatives of real and imaginary
parts of the characteristic equation as well as residue of open-
loop SSO modes. Detailed derivations of the proposed method
are presented as follows.

Assume λgi and λwh,i are the identified pair of open-loop
modes participating in the SSR. Then, for R(s) and D(s) in
Fig. 2, they can be expressed as:

R(s) =
Rgi

s− λgi
+

ng∑
j=1,j 6=i

Rgj

s− λgj
+Dr

D(s) =
Rwh,i

s− λwh,i
+

nwh∑
j=1,j 6=i

Rwh,j

s− λwh,j

+

p∑
l=1,l 6=h

nwl∑
j=1

Rwl,j

s− λwl,j
(17)
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For R′(s) and D′(s) in Fig. 3, they can be written as:

R′(s) =

 Rgi

s− λgi
+

ng∑
j=1,j 6=i

Rgj

s− λgj


D′(s) =

(
Rwh,i

s− λwh,i
+

nwh∑
j=1,j 6=i

Rwh,j

s− λwh,j
+

p∑
l=1,l 6=h

nwl∑
j=1

Rwl,j

s− λwl,j

)
[I −DrD(s)]−1 (18)

As for estimation of λ̂gi, in the first place, denote:

∆λgi = s− λgi = α+ jβ sgi = ν + jκ

Γ(∆λgi) =

Rgi +

ng∑
j=1,j 6=i

Rgj ·∆λgi
∆λgi + λgi − λgj


·

 p∑
l=1

nwl∑
j=1

Rwl,j

∆λgi + λgi − λwl,j


· [I −DrD(∆λgi + λgi)]

−1

˜̂
λgi,r = λgi + wT

giBrD
′(λgi)Crvgi

˜̂
λwhi,r = λwh,i + wT

wh,iBdR(λwh,i)Cdvwh,i (19)

where wT
giBrD

′(λgi)Crvgi is the residue of λgi and
wT

wh,iBdR(λwh,i)Cdvwh,i is the residue of λwh,i. Obviously,
equation Det[(sgi − λgi)I − Γ(∆λgi)] = 0 is equivalent to

2p∏
k=1

(sgi − λgi − eigk(Γ(∆λgi))) = 0 (20)

where eigk(Γ) is the kth eigenvalue of Γ. Via the expansion
of the left-hand side of (20), it can be obtained that

(sgi − λgi)2p − (sgi − λgi)2p−1tr(Γ(0))−
(sgi − λgi)2p−1(eig1(Γ(∆λgi))−
tr(Γ(0))) + (sgi − λgi)2p−1(−eig2(Γ(∆λgi))) + · · · +

(sgi − λgi)2p−1(−eig2p(Γ(∆λgi))) + (sgi − λgi)2p−2×∑
µk∈{0,1}
k=1,2,··· ,2p
µ1+···+µ2p=2

(
2p∏
k=1

(−eigk(Γ(∆λgi)))
µk

)
+ · · · +

Det(Γ(∆λgi)) = 0 (21)

Furthermore, denote:

Ψ(∆λgi) = −(sgi − λgi)2p−1(eig1(Γ(∆λgi))− tr(Γ(0))) +

(sgi − λgi)2p−1(−eig2(Γ(∆λgi))) + · · · +

(sgi − λgi)2p−1(−eig2p(Γ(∆λgi))) + (sgi − λgi)2p−2×∑
µk∈{0,1}
k=1,2,··· ,2p
µ1+···+µ2p=2

(
2p∏
k=1

(−eigk(Γ(∆λgi)))
µk

)
+ · · · +

Det(Γ(∆λgi)) (22)

Then, (21) can be transformed into

(sgi − λgi)2p − (sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi) = 0
(23)

As can be seen, the exact closed-loop SSO mode, λ̂gi, is
the solution of (20) with ∆λgi replaced by λ̂gi− λgi. ˜̂

λgi,r is
the solution of

∏2p
k=1(sgi − λgi − eigk(Γ(0))) = 0.

For obtaining the estimate of λ̂gi, rewrite (23) as
Fg1(α, β, ν, κ) = 0 and Fg2(α, β, ν, κ) = 0, where

Fg1(α, β, ν, κ) =

Re((sgi − λgi)2p − (sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi))

Fg2(α, β, ν, κ) =

Im((sgi − λgi)2p − (sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi))
(24)

Since Fg1 + jFg2 = Det((ν + jκ − λgi)I − Γ(α + jβ)),
when |∆λgi| is small, both Fg1 and Fg2 are continuously
differentiable with respect to ν, κ, α and β. The partial
derivatives of Fg1 and Fg2 with respect to ν and κ are
presented as:

∂Fg1(α, β, ν, κ)

∂ν
= Re

(
∂

∂ν
((sgi − λgi)2p−

(sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi))

)
∂Fg1(α, β, ν, κ)

∂κ
= Re

(
∂

∂κ
((sgi − λgi)2p−

(sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi))

)
∂Fg2(α, β, ν, κ)

∂ν
= Im

(
∂

∂ν
((sgi − λgi)2p−

(sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi))

)
∂Fg2(α, β, ν, κ)

∂κ
= Im

(
∂

∂κ
((sgi − λgi)2p−

(sgi − λgi)2p−1tr(Γ(0)) + Ψ(∆λgi))

)
(25)

Via some algebraic manipulations, it can be proved that

∂Fg1

∂ν

∣∣∣∣∣ α+jβ=0
ν+jκ=s0gi

= Re(2p(s0gi − λgi)2p−1−

(2p− 1)(s0gi − λgi)2p−2tr(Γ(0)))

∂Fg2

∂ν

∣∣∣∣∣ α+jβ=0
ν+jκ=s0gi

= Im(2p(s0gi − λgi)2p−1−

(2p− 1)(s0gi − λgi)2p−2tr(Γ(0)))

∂Fg1

∂κ

∣∣∣∣∣ α+jβ=0
ν+jκ=s0gi

= Re(j2p(s0gi − λgi)2p−1−

j(2p− 1)(s0gi − λgi)2p−2tr(Γ(0)))

∂Fg2

∂κ

∣∣∣∣∣ α+jβ=0
ν+jκ=s0gi

= Im(j2p(s0gi − λgi)2p−1−
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j(2p− 1)(s0gi − λgi)2p−2tr(Γ(0))) (26)

where s0gi =
˜̂
λgi,r. For ∂Fg1

∂α ,
∂Fg1

∂β ,
∂Fg2

∂α and ∂Fg2

∂β , they can
be expressed as:

∂Fg1

∂α
= Re

(
∂

∂α
Det((ν + jκ− λgi)I − Γ(α+ jβ))

)
∂Fg1

∂β
= Re

(
∂

∂β
Det((ν + jκ− λgi)I − Γ(α+ jβ))

)
∂Fg2

∂α
= Im

(
∂

∂α
Det((ν + jκ− λgi)I − Γ(α+ jβ))

)
∂Fg2
∂β

= Im

(
∂

∂β
Det((ν + jκ− λgi)I − Γ(α+ jβ))

)
(27)

Based on the idea of fixed-point iteration [22], [23] and
implicit function theorem [24], [25], the estimate of λ̂gi is
given as:[

Re(λ̂gi,est)

Im(λ̂gi,est)

]
=[

Re(
˜̂
λgi,r)

Im(
˜̂
λgi,r)

]
−

([
∂Fg1

∂ν
∂Fg1

∂κ
∂Fg2

∂ν
∂Fg2

∂κ

] ∣∣∣∣∣ α+jβ=0
ν+jκ=s0gi

)−1

·

([
∂Fg1

∂α
∂Fg1

∂β
∂Fg2

∂α
∂Fg2

∂β

] ∣∣∣∣∣ α+jβ=0
ν+jκ=s0gi

)[
Re(∆λgi)
Im(∆λgi)

]
(28)

where λ̂gi,est is the estimate of λ̂gi, and −

[
∂Fg1

∂ν
∂Fg1

∂κ
∂Fg2

∂ν
∂Fg2

∂κ

]−1
[
∂Fg1

∂α
∂Fg1

∂β
∂Fg2

∂α
∂Fg2

∂β

]
is interpreted as the partial derivatives of (ν, κ)

with respect to (α, β), according to the implicit function
theorem [26], [27].

Besides, for estimation of λ̂wh,i, denote

∆λwh,i = s− λwh,i = ω + jζ swh,i = µ+ jϕ

Γ(∆λwh,i) =

 ng∑
j=1

Rgj

∆λwh,i + λwh,i − λgj


(
Rwh,i +

nwh∑
j=1,j 6=i

Rwh,j ·∆λwh,i
∆λwh,i + λwh,i − λwh,j

+

p∑
l=1,l 6=h

Rwl,j ·∆λwh,i
∆λwh,i + λwh,i − λwl,j

)
Obviously, equation Det((swh,i−λwh,i)I−Γ(∆λwh,i)) = 0

is equivalent to
2p∏
k=1

(swh,i − λwh,i − eigk(Γ(∆λwh,i))) = 0 (29)

Similar to derivations from (21) to (24), (29) can be
expressed as Fd1(ω, ζ, µ, ϕ) = 0 and Fd2(ω, ζ, µ, ϕ) = 0,
where

Fd1(ω, ζ, µ, ϕ)

= Re((swh,i − λwh,i)2p−
(swh,i − λwh,i)2p−1tr(Γ(0)) + Ψ(∆λwh,i))

Fd2(ω, ζ, µ, ϕ)

= Im((swh,i − λwh,i)2p−
(swh,i − λwh,i)2p−1tr(Γ(0)) + Ψ(∆λwh,i)) (30)

Moreover, similar to Fg1 and Fg2, when |∆λwh,i| is small,
both Fd1 and Fd2 are continuously differentiable with respect
to µ, ϕ, ω and ζ. Finally, based on the idea of fixed-point
iteration and implicit function theorem, estimate of λ̂wh,i is
given as:[

Re(λ̂wh,i,est)

Im(λ̂wh,i,est)

]
=[

Re(
˜̂
λwh,i,r)

Im(
˜̂
λwh,i,r)

]
−

([
∂Fd1

∂µ
∂Fd1

∂ϕ
∂Fd2

∂µ
∂Fd2

∂ϕ

] ∣∣∣∣∣
µ+jϕ=

˜̂
λwh,i,r

ω+jζ=0

)−1

·

([
∂Fd1

∂ω
∂Fd1

∂ζ
∂Fd2

∂ω
∂Fd2

∂ζ

] ∣∣∣∣∣
µ+jϕ=

˜̂
λwh,i,r

ω+jζ=0

)[
Re(∆λwhi)
Im(∆λwhi)

]
(31)

where λ̂wh,i,est is the estimate of λ̂wh,i, and

−

[
∂Fd1

∂µ
∂Fd1

∂ϕ
∂Fd2

∂µ
∂Fd2

∂ϕ

]−1 [
∂Fd1

∂ω
∂Fd1

∂ζ
∂Fd2

∂ω
∂Fd2

∂ζ

]
is interpreted as the

partial derivatives of (µ, ϕ) with respect to (ω, ζ), according
to the implicit function theorem.
Remark 1. In practice, λ̂wh,i,est and λ̂g,i,est can be calcu-
lated based on the identified parameters of DFIG subsystem.

III. STUDY CASES

In this section, a study case is presented to verify accuracy
of the parameter identification method and demonstrate the
mechanism of asymmetric SSR and features of the proposed
SSR detection method. This case is performed in the 4-
machine 11-bus power system with two DFIG-WFs integrated.
Existence of ASSMA and ASSMR in this system, affected by
variation of kdcp and kdci, will be demonstrated. kdcp and kdci
are the proportional gain and integral gain of the PI controller
in DC-link voltage control loop.

Figure 4 shows the structure of the 4-machine 11-bus power
system. In the system, the 1st DFIG-WF(DFIG1) is connected
at bus 12, while the 2nd DFIG-WF(DFIG2) is connected at bus
13. both DFIG1 and DFIG2 are comprised of 50 DFIG-WTs.
The detailed 19th-order model of the DFIG-WT, including
its control systems, is given in [28]. Besides, models and
parameters of transmission lines, transformers and loads are
obtained from [21]. Models and parameters of the four SGs
are given in [29]. Note the six-mass model is adopted for
modeling the shaft system of SG.

Since the parameters of DFIG1 are necessary for detecting
ASSMA and ASSMR, reinforcement learning and least square
method are used to identify them in this study case. The Ktg

of DFIG1, denoted as Ktg1, is identified via reinforcement
learning. The identified result of Ktg1, denoted as K̃tg1, is
498.2457, while actual value of Ktg1 is 500. Besides, Tg1, as
well as its estimate T̃g1, are shown in Fig. 5. Remaining param-
eters of DFIG1, including Rs, Ls, Rr, Lr, Lm, Rc, Lc, C,Hg,
Ht, Dt, Dg and Dtg are estimated by least squares method.
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Fig. 4. Configuration of the 4-machine 11-bus power system.

Estimated values and actual values of those parameters are
listed in Table I.
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Fig. 5. Comparison between Tg1 and its estimate T̃g1.

TABLE I
PARAMETERS OF DFIG

Name Identified value Actual value
R̃s (p.u.) 4.8219 × 10−4 0.1 × 10−4

L̃s (p.u.) 5.7892 5.8333
R̃r (p.u.) 6.7275 × 10−4 0.1 × 10−4

L̃r (p.u.) 5.789 5.8333
L̃m (p.u.) 4.9619 5
R̃c (Ω) 7.877 × 10−8 0.1 × 10−4

L̃c (H) 0.2375 0.2375
C̃ (F) 0.0376 0.0376
H̃g (s) 1.7936 1.8
H̃t (s) 4.2696 4.29
D̃t (p.u.) 0.0083 0.01
D̃g (p.u.) 0.0083 0.01
D̃tg (p.u.) 2.9748 3

The example power system is divided into DFIG subsystem
and ROPS subsystem. As for the ROPS subsystem, the eigen-
value of Ar corresponding to the open-loop speed mode(SM)
of SG is of great concern as it is sufficiently close to the
imaginary axis of the complex plane, under a wide range of
operating conditions and system parameters [8]. Moreover, it
is possible for the SM to interact with one or more modes
of DFIG subsystem, resulting in ASSMA or ASSMR. What’s
worse, if ASSMR happens, the small-signal stability of the
entire power system may be lost [8]. In this study case, the
eigenvalue corresponding to the open-loop SM of the 3rd
mass of the shaft system of SG2(ω3), denoted as λr3−2, is

−0.1348+j95.5069, while the eigenvalue corresponding to the
open-loop SM of the 4th mass of the shaft system of SG2(ω4),
denoted as λr4−2, is −0.14851 + j130.78. Both λr3−2 and
λr4−2 are forced to interact with the eigenvalue of Ad corre-
sponding to the open-loop DC-link voltage mode(DCLVM) of
DFIG1, denoted as λdc, to study ASSMA and ASSMR.

In order to verify existence of ASSMA and ASSMR
originated from interaction between λr3−2, λr4−2 and λdc,
kdcp and kdci are varied from kdcp = 0.1, kdci = 250 to
kdcp = 0.35, kdci = 800. It is worth noting variation of kdcp
and kdci brings no impact on the operating condition of ROPS
subsystem. In addition, locations of λ̂r3−2 for kdcp = 0.1475,
kdci = 331.21475 and kdcp = 0.1502, kdci = 338.0282,
locations of λ̂r4−2 for kdcp = 0.2711, kdci = 618.4881 and
kdcp = 0.2783, kdci = 636.6573, as well as locations of
λ̂dc for kdcp = 0.1475, kdci = 331.21475, kdcp = 0.1502,
kdci = 338.0282, kdcp = 0.2711, kdci = 618.4881 and
kdcp = 0.2783, kdci = 636.6573, are estimated by the
proposed method. Note λ̂r3−2, λ̂r4−2 and λ̂dc are the closed-
loop SSO modes corresponding to λr3−2, λr4−2 and λdc
respectively.

Figure 6 displays the location of λr3−2 and the trajec-
tories of λ̂r3−2, λdc and λ̂dc as kdcp, kdci increase from
kdcp = 0.1, kdci = 250 to kdcp = 0.2, kdci = 400. As is
presented, Re(λr3−2) > Re(λdc) for all kdcp ∈ [0.1, 0.2] and
kdci ∈ [250, 400]. In addition, with kdci increasing from 250
to 336 and kdcp from 0.1 to 0.148, |λr3−2 − λdc| arrives at
a local minimum when kdcp = 0.1475, kdci = 331.21475.
Because Re(∆λr3−2) = λ̂r3−2 − λr3−2 = 0.1257 > 0
when kdcp = 0.1475, kdci = 331.21475, as indicated from
Table II, ASSMR happens in the 4-machine 11-bus power
system as kdcp and kdci vary from kdcp = 0.1, kdci = 250
to kdcp = 0.148, kdci = 336. What’s more, as kdcp,
kdci increases further from kdcp = 0.148, kdci = 336 to
kdcp = 0.2, kdci = 400, |λr3−2 − λdc| arrives at a new local
minimum when kdcp = 0.1502, kdci = 338.0282. Due to the
fact that Re(∆λr3−2) = −0.2058 < 0 when kdcp = 0.1502,
kdci = 338.0282, ASSMA occurs in the power system when
kdcp and kdci are tuned from kdcp = 0.148, kdci = 336 to
kdcp = 0.2, kdci = 400. Besides, estimates of λ̂r3−2 and λ̂dc
given by the proposed method using actual system parameters,
denoted as ˜̂

λr3−2 and ˜̂
λdc respectively, estimates of λ̂r3−2

and λ̂dc given by the proposed method using the identified
system parameters, denoted as ˜̂

λs2r3−2 and ˜̂
λs2dc are demonstrated

in Fig. 6. Besides, estimates of λ̂r3−2 and λ̂dc given by the
method proposed in [1], denoted as ˜̂

λor3−2 and ˜̂
λodc, as well as
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Fig. 6. Trajectories of eigenvalues and their estimates as kdcp and kdci
increase from kdcp = 0.1, kdci = 250 to kdcp = 0.2, kdci = 400.

TABLE II
THE ACTUAL AND ESTIMATED LOCATIONS OF λ̂r3−2 AND λ̂dc

kdcp = 0.1475 kdcp = 0.1502
kdci = 331.21475 kdci = 338.0282

λ̂r3−2 −0.0091+j95.6203 −0.3406+j95.7280
˜̂
λr3−2 −0.0445+j95.6254 −0.3357+j95.6569
˜̂
λor3−2 0.1466+j95.7509 −0.4527+j95.1730
˜̂
λrr3−2 0.1752+j95.5547 −0.3710+j95.5967
˜̂
λs2r3−2 −0.00482+j95.9961 −0.3451+j95.6479
λ̂dc −0.7484+j95.0048 −0.4249+j95.8715
˜̂
λdc −0.7031+j94.6422 −0.4122+j95.9351
˜̂
λodc −0.5430+j94.8439 0.0567+j96.3953
˜̂
λrdc −0.9401+j95.0675 −0.4020+j96
˜̂
λs2dc −0.730887+j94.6253 −0.3821+j95.9416

the estimates of λ̂r3−2 and λ̂dc given by the method proposed
in [8], denoted as ˜̂

λrr3−2 and ˜̂
λrdc, are also presented in Fig. 6.

In particular, values of ˜̂
λr3−2, ˜̂

λdc, ˜̂
λs2r3−2, ˜̂

λs2dc, ˜̂
λor3−2, ˜̂

λodc,
˜̂
λrr3−2 and ˜̂

λrdc for kdcp = 0.1475, kdci = 331.21475 and
kdcp = 0.1502, kdci = 338.0282 are listed in Table II. It can
be confirmed from Fig. 6 and Table II that compared to ˜̂

λor3−2

and ˜̂
λrr3−2, ˜̂

λr3−2 is closer to λ̂r3−2. Besides, since ˜̂
λr3−2 is

also close to ˜̂
λs2r3−2, accuracy of parameter identification is

relatively high, which guarantees adaptability of the proposed
open-loop analysis method to parameter uncertainty.

Figure 7 demonstrates location of λr4−2, as well as tra-
jectories of λ̂r4−2, λ̂dc and λdc with both kdcp and kdci
increasing from kdcp = 0.2, kdci = 400 to kdcp = 0.35,
kdci = 800. As is presented, Re(λr4−2) > Re(λdc) for all
kdcp ∈ [0.2, 0.35] and all kdci ∈ [400,800]. In addition, when
kdcp = 0.2711, kdci = 618.4881, |λr4−2 − λdc| reaches a
local minimum. Because Re(∆λr4−2) = 0.1529333 > 0 for
kdcp = 0.2711, kdci = 618.4881, as can be deduced from
Table III, ASSMR arises in the power system, with kdcp
and kdci tuned from 0.2, 400 to 0.25, 625. Moreover, as
kdcp, kdci increase further from kdcp = 0.25, kdci = 625
to kdcp = 0.35, kdci = 800, |λr4−2 − λdc| arrives at a
new local minimum when kdcp = 0.2783, kdci = 636.6573.
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Fig. 7. Trajectories of eigenvalues and their estimates as kdcp and kdci
increase from kdcp = 0.2, kdci = 400 to kdcp = 0.35, kdci = 800.

TABLE III
THE ACTUAL AND ESTIMATED LOCATIONS OF λ̂r4−2 AND λ̂dc

kdcp = 0.2711 kdcp = 0.2783
kdci = 618.4881 kdci = 636.6573

λ̂r4−2 0.00442+j130.91 −0.2955+j130.96
˜̂
λr4−2 0.0526+j131.2029 −0.3118+j130.9412
˜̂
λor4−2 0.26458+j131.12 −0.5692+j130.43
˜̂
λrr4−2 0.1874+j130.81 −0.3978+j130.88
˜̂
λs2r4−2 0.07+j131.2037 −0.3157+j130.9395
λ̂dc −1.2347+j129.96 −0.9560+j131.74
˜̂
λdc −1.215+j129.7429 −0.9214+j131.7417
˜̂
λodc −0.78971+j129.63 0.045292+j132.21
˜̂
λrdc −1.4293+j130.02 −0.8662+j131.84
˜̂
λs2dc −1.2013+j129.7333 −0.8946+j131.7386

Since Re(∆λr4−2) = −0.14695 < 0 when kdcp = 0.2783,
kdci = 636.6573, ASSMA occurs in the power system when
kdcp and kdci are tuned from kdcp = 0.25, kdci = 625 to
kdcp = 0.35, kdci = 800. Besides, estimates of λ̂r4−2 and λ̂dc
given by the proposed method using actual system parameters,
denoted as ˜̂

λr4−2 and ˜̂
λdc respectively, estimates of λ̂r4−2 and

λ̂dc given by the proposed method using identified system
parameters, denoted as ˜̂

λs2r4−2 and ˜̂
λs2dc, are displayed in Fig. 7.

Moreover, estimates of λ̂r4−2 and λ̂dc given by the method
proposed in [1], denoted as ˜̂

λor4−2 and ˜̂
λodc, as well as estimates

of λ̂r4−2 and λ̂dc given by the method proposed in [8], denoted
as ˜̂
λrr4−2 and ˜̂

λrdc, are demonstrated in Fig. 7. In particular, the

values of ˜̂
λr4−2, ˜̂

λdc, ˜̂
λs2r4−2, ˜̂

λs2dc, ˜̂
λor4−2, ˜̂

λodc, ˜̂
λrr4−2 and ˜̂

λrdc
for kdcp = 0.2711, kdci = 618.4881 and kdcp = 0.2783,
kdci = 636.6573 are listed in Table III. It can be confirmed
from Fig. 7 and Table III that compared to ˜̂

λor4−2 and ˜̂
λrr4−2,

˜̂
λr4−2 is closer to λ̂r4−2. ˜̂

λs2r4−2 is also close to ˜̂
λr4−2.

To confirm existence of ASSMA and ASSMR in differ-
ent ways, time domain simulation is carried out on the 4-
machine 11-bus power system. Simulation results are shown
in Fig. 8. According to Fig. 8(a) and (b), decay time constant
and frequency of ω3 and Udc are matched with those indi-
cated by the real and imaginary part of λ̂r3−2 and λ̂dc for
kdcp = 0.1475, kdci = 331.21475 and kdcp = 0.1502, kdci =
338.0282. Similarly, Fig. 8(c) and (d) reflect the decay time



2024 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 5, SEPTEMBER 2024

0 1 2 3 4 5
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

S
p
ee

d
 o

f 
th

e 
 3

rd
 m

as
s

o
f 

S
G

2
 i

n
 C

O
I 

fr
am

e 
(p

.u
.)

Time (s)

kdcp=0.1275, kdci=331.21475

kdcp=0.1502, kdci=338.0282

(a)

0 1 2 3 4 5
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
kdcp=0.1502, kdci=338.0282

kdcp=0.1275, kdci=331.21475

D
C

 v
o
lt

ag
e 

o
f 

D
F

IG
1
 (

p
.u

.)

Time (s)
(b)

0 1 2 3 4 5
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02
kdcp=0.2783, kdci=636.6573

kdcp=0.2411, kdci=618.4881

D
C

 v
o

lt
ag

e 
o

f 
D

F
IG

1
 (

p
.u

.)

Time (s)
(d)

0 1 2 3 4 5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

S
p

ee
d

 o
f 

th
e 

 4
th

 m
as

s

o
f 

S
G

2
 i

n
 C

O
I 

fr
am

e 
(p

.u
.)

kdcp=0.2411, kdci=618.4881

kdcp=0.2783, kdci=636.6573

Time (s)
(c)

Fig. 8. Results of time domain simulation on the 4-machine 11-bus power system. (a) The difference between the speed of the 3rd mass of SG2 when
control parameter kdcp = 0.1275, kdci = 331.21475 and kdcp = 0.1502, kdci = 338.0282. (b) The difference between DC voltage of DFIG1 when control
parameter kdcp = 0.1502, kdci = 338.0282and kdcp = 0.1275, kdci = 331.21475. (c) The difference between the speed of the 4rd mass of SG2 when
control parameter kdcp = 0.2411, kdci = 618.4881 and kdcp = 0.2783, kdci = 636.6573. (d) The difference between DC voltage of DFIG1 when control
parameter kdcp = 0.2411, kdci = 618.4881 and kdcp = 0.2783, kdci = 636.6573.

constant and frequency of oscillation of ω4 and Udc are
matched with those indicated by the real and imaginary part
of λ̂r4−2 and λ̂dc for kdcp = 0.2711, kdci = 618.4881 and
kdcp = 0.2783, kdci = 636.6573. What’s worse, small-signal
stability of the entire power system is lost when kdcp =
0.2711, kdci = 618.4881.

IV. CONCLUSION

This paper has studied the mechanism of ASSMA and
ASSMR in DFIG-WFs integrated power system and proposed
an implicit function based open-loop analysis method for
detecting them.

According to analysis in this paper, ASSMA and ASSMR
are caused by interaction between open-loop SSO modes of
DFIG subsystem and ROPS subsystem as system parameters
or operating conditions change. When ASSMA occurs, small-
signal stability of the entire power system can be improved
On the other hand, if ASSMR is encountered, small-signal
stability of the entire power system may be lost [8], which is
a novel finding of this paper.

In the proposed open-loop analysis method, partial deriva-
tives of real and imaginary parts of the characteristic equation
need to be calculated. But the calculation requires several

important parameters of DFIG subsystem, which may be
unavailable. As a result, reinforcement learning and least
square method are utilized to identify those parameters.

Simulation studies have confirmed the relatively high accu-
racy of parameter identification. Also, simulation studies have
validated estimates of the location of closed-loop SSO modes
provided by the proposed method have higher accuracy than
those given by the method proposed in [8].

The proposed method can be used for tuning parameters
of the controllers of DFIG-WF in order to prevent ASSMR
from being excited in the entire power system. Moreover,
because the proposed method does not rely on information of
the eigenvalues of the state matrix of the entire power system,
it may consumes a shorter time for the proposed method to
perform small-signal stability analysis when the power system
is complex.

APPENDIX

Linear identification equations:

iixs − ii−1xs

ti − ti−1
+ iiys = −120π(ωiri

i
yrk1 − V ixrk2 + V ixsk3

+ ωiri
i
ysk4 + iixrk5 − iixsk6)
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iiys − ii−1ys

ti − ti−1
+ iixs = 120π(ωiri

i
xrk1 + V iyrk2 − V iysk3

+ ωiri
i
xsk4 − iiyrk5 + iiysk6)

iixr − ii−1xr

ti − ti−1
− iiyr = 120π(ωiri

i
ysk8 + V ixsk2 − V ixrk9

+ ωiri
i
yrk7 − iixsk10 + iixrk11)

iiyr − ii−1yr

ti − ti−1
− iixr = −120π(ωiri

i
xsk8 − V iysk2 + V iyrk9

+ ωiri
i
xrk7 + iiysk10 − iiyrk11)

iixc − ii−1xc

ti − ti−1
− iyc = 120π((V ixs − V ixc)k12 − iixck13)

iiyc − ii−1yc

ti − ti−1
+ ixc = 120π((V iys − V iyc)k12 − iiyck13)

ωit − ωi−1t

ti − ti−1
= −ωitk14 + ωirk15 +

(
Pm

ωir
− T̃ ig

)
k16

ωir − ωi−1r

ti − ti−1
= ωitk17 − ωirk18 + T̃ igk19

+ (iixri
i
ys − iiyriixs)k20

U idc − U
i−1
dc

ti − ti−1
=

1

U idc
(V ixci

i
xc + V iyci

i
yc − V ixriixr

− V iyriiyr)k21 (A1)

In (A1), k1, k2, · · · , k21 are expressed as:

k1 =
L̃rL̃m

L̃2
m − L̃rL̃s

, k2 =
L̃m

L̃2
m − L̃rL̃s

, k3 =
L̃r

L̃2
m − L̃rL̃s

k4 =
L̃2
m

L̃2
m − L̃rL̃s

, k5 =
L̃mR̃r

L̃2
m − L̃rL̃s

, k6 =
L̃rR̃s

L̃2
m − L̃rL̃s

k7 =
L̃rL̃s

L̃2
m − L̃rL̃s

, k8 =
L̃mL̃s

L̃2
m − L̃rL̃s

, k9 =
L̃s

L̃2
m − L̃rL̃s

k10 =
L̃mR̃s

L̃2
m − L̃rL̃s

, k11 =
L̃sR̃r

L̃2
m − L̃rL̃s

, k12 =
1

L̃c

k13 =
R̃c

L̃c

, k14 =
D̃t + D̃tg

2H̃t

, k15 =
D̃tg

2H̃t

k16 =
1

2H̃t

, k17 =
D̃tg

2H̃g

, k18 =
D̃g + D̃tg

2H̃g

k19 =
1

2H̃g

, k20 =
L̃m

2H̃g

, k21 =
1

C̃
(A2)
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