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Abstract—With the advancements in voltage source converter
(VSC) technology, VSC based high voltage direct current (VSC-
HVDC) systems provide system operators with a prospective
approach to enhance system operating stability and resilience. In
addition to long-distance transmission, the VSC-HVDC system
can also provide multiple ancillary services, such as frequency
regulation, due to its power controllability. However, if a time
delay exists in the control signal, the VSC-HVDC system may
bring destabilizing influences to the system, which will decrease
the system resilience under the disturbance. In order to reduce
control deviation caused by time delay, in this paper, a small
signal model is first conducted to analyze the impact of time
delay on system stability. Then a time-delay correction control
strategy for HVDC frequency regulation control is developed to
reduce the influence of the time delay. The control performance
of the proposed time-delay correction control is verified both in
the established small signal model and the runtime simulation
in a modified IEEE 39 bus system. The results indicate that the
proposed time-delay correction control strategy shows significant
improvement in system stability.

Index Terms—Frequency regulation control, HVDC, small
signal analysis, time delay, time-delay correction control strategy.

NOMENCLATURE

A. Parameters

Td, Ts Delay time and sampling time for PMU.
fref , ω0 Nominal frequency and rotor speed.
kpf , kif Proportional and integral constant for HVDC

frequency regulation control.
Pref , Qref Reference value for real and reactive power.
kpp, kip Proportional and integral constant for outer

loop real power control.
kpq, kiq Proportional and integral constant for outer

loop reactive power control.
kpid, kiid Proportional and integral constant for inner

loop d-axis current control.
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kpiq, kiiq Proportional and integral constant for inner
loop q-axis current control.

kpPLL, kiPLL Proportional and integral constant for PLL.
Lf Transformer inductance.
TJ Inertia time constant.
D Damping coefficient.

B. Variables

fPMU Measured frequency from PMU.
f td

PMU Measured frequency received at controller
after time delay.

Ps, Qs Measured HVDC real and reactive power.
Pm Total active power input of outer loop active

power control.
isdref , isqref Reference value for d/q-axis AC current.
ucd, ucq d/q-axis AC voltage at converter.
usd, usq d/q-axis voltage at PCC point.
isd, isq d/q-axis current.
ω, θp Rotor angular speed and phase angle at PCC

point.
δ, ωg Rotor position angle and rotor speed of the

generator.
E′d, E′q d/q-axis electromotive force in the equivalent

generator function.
Pmc, Pe Mechanical/electrical power of generator.

I. INTRODUCTION

W ITH the increasing penetration of renewable energies
into power systems, such as wind, hydro and solar

power, the generation mix allows for rapid change in recent
years [1], [2]. Conventional fossil fuel generation plants are
being pushed off the power grid due to their emission reduction
requirements [3]. On the contrary, renewable energy genera-
tion witnesses continuous growth during the decade due to the
increasing maturity of the technology and decreasing invest-
ment expenses [4]. According to a recent IEA report, although
the supply chain and construction planning are influenced by
the coronavirus, the total global use of renewable energies may
still increase by about 1% and reach a new record in 2020 [5].

However, there are two differences between the traditional
generation and renewable energies that may bring significant
effects to the power system operations. First, the planning of
the renewable energy plants must depend on the geographical
distribution of renewable energies [4]. Thus, most renewable
energy plants are constructed in sparsely populated regions.
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The electrical network structures in these regions are not
strong enough so that the delivery and management of the
renewable energy generation becomes an issue to the system
operators. Secondly, some types of renewable energies, repre-
sented by wind and solar energy, are usually connected to the
power system via grid-connected converters (GCCs). Different
from the traditional generators and motors, renewable energies
integrating into power systems with GCCs do not provide iner-
tia [6]. Therefore, the system inertia is unavoidably decreased
with the accelerated penetration of renewable energies. The
power system with high proportional renewable generation
will be more vulnerable under disturbances, which brings more
challenges to system operation reliability.

The advancement of the voltage source converter based
high voltage direct current (VSC-HVDC) system provides
the system operators with a prospective way to enhance
system operating stability and resilience [7]–[12]. The HVDC
transmission system has been widely used in bulk power
transporting over long distances [13]. With the increasing
number of offshore windfarms and the promotion of super grid
plans in Europe and China, the HVDC system addresses an
unprecedented developing period [14]–[16]. According to [17],
the global HVDC system may achieve a compound annual
growth rate (CAGR) of 11.18% from 2020 to 2025. In addition
to long-distance transmission, the HVDC system could also
provide multiple ancillary services, such as inertia emulation,
frequency regulation, and oscillation suppression [18]. Com-
pared to other services, frequency regulation is regarded as
one of the most valuable additional products of the HVDC
system [19], which has been investigated by some academics
and industries. Some frequency regulation control strategies
based on the HVDC system were also developed [20]–[24].

However, most of the control strategies do not consider
the time-delay influence of the signal transmission loop. The
time-delay will occur in the measurement process [25], the
communication process between PMU and control center [26],
etc. In analysis, the delay in multiple parts can be represented
by a single time delay in the control loop [27]. With the
increase of the scale and complexity of the electric power
network, the local information based HVDC controller is not
appropriate for HVDC transmission systems with new con-
trol requirements. The wide-area monitoring system (WAMS)
based HVDC control becomes mainstream. The time delay is
inevitable due to the time consumption of the measurement,
calculation, and communications. Depending on the different
communication distances, and protocol and performance of
measuring devices, the time delay may vary from tens to
hundreds of milliseconds (ms) [28]. Due to the fast power
controllability, the time delay of the control signal in the
HVDC frequency control may bring more destabilizing influ-
ences to the system than other devices, which will decrease the
resilience under the disturbance. There are some researchers
who have studied the time-delay effect on the HVDC system,
and some control strategies have been proposed to deal with
this issue [28]–[32]. In [29], the impact of time delay on
wide-area controller design in power systems is analyzed, and
a centralized wide-area controller design is proposed to en-
hance the stability of the system under time-delay conditions.

In [30], a damping control design is proposed that uses the
improved Smith Predictor Control to consider the time-delay
effect of the feedback signals. In [28], [31] and [32], some
damping controllers with different principles are proposed for
the WAMS based HVDC systems to suppress the oscillation
caused by time delays. However, the time-delay correction
method commonly employed in power systems is the lead-lag
structure, which is only suitable for oscillation-related issues
and not applicable for frequency drops. Moreover, most of
the developed correction methods are based on known system
models. The actual system is under continuous adjustments,
with different types of generators and load puts, impacting
the operation or retirement. The model-based methods may
have some limitations and are not appropriate for the current
developing power systems.

The main objective of this paper is to develop a correction
control strategy HVDC frequency regulation service, so as
to reduce the control deviation caused by time delay. The
development of this method includes the following procedures:

1) Establish a small signal model. The small signal model
is utilized to analyze the impact of the time delay on system
stability.

2) Raise the correction control strategy. To reduce the risk
of system instability caused by the time delay, a model-free
correction control is proposed which only needs the measured
frequency data.

3) Verify the control performance. For comprehensive veri-
fication, the control effect will be tested by both small signal
analysis and runtime simulations.

The remainder of this paper is organized as follows. Sec-
tion II introduces the time-delay influences on the HVDC
frequency regulation control and establishes a small signal
model to quantitatively analyze the time-delay impact on
HVDC control. Section III describes the principle of the
proposed time-delay correction control strategy for the HVDC
frequency regulation service. Section IV verifies the control
performance of the proposed time-delay correction control
with an established small signal model and a modified IEEE
39 bus system. The paper is concluded in Section V.

II. COMMUNICATION DELAY ANALYSIS BASED SMALL
SIGNAL MODEL

A. Communication Delay During the HVDC Control Process

The conventional frequency regulation service of the HVDC
system is performed based on the control framework, as shown
in Fig. 1. The corresponding control process can be described.

The frequency regulation service of the HVDC system is
based on the measured frequency and phase angles via phase
measured units (PMUs). When the data is obtained, the PMUs
will send the measured data to the Phase Data Concentrators
(PDC) server, generally via communication protocol IEEE
C37.118 [33]. After receiving the data, the PDC will send the
data to the HVDC frequency regulation control. The HVDC
frequency regulation control will calculate the control order
by measured frequency, and then send it to the basic HVDC
control to regulate the power flow so as to realize the frequency
regulation of the AC system.
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Fig. 1. The control framework of the HVDC system, where fref is the
nominal frequency, the fPMU1/fPMU2 are the frequencies measured from
AC grid I and AC grid II, the Ps is the real-time power flow on the HVDC
system and the Pref is the active power reference of the HVDC system.
CDCC refers to constant DC voltage control, CAPC is the constant active
power control and CRPC is constant reactive power control.

In the practical system operations, as shown in Fig. 1, due
to the communication time delay from the PMU to PDC, or
from PDC to the controller, and the operational time delay, the
signal time delay in the HVDC control system is inevitable.
In [34], the Ontario system operator reports that a one-way
delay may be up to 4 seconds. If this long-term time delay
occurs in the HVDC control process, the control performance
of the HVDC system could be significantly impacted. More-
over, the delayed response of the HVDC system may bring
serious disturbances so as to reduce the system stability and
introduce oscillation, which will have negative influence on
the system’s resilience.

B. Small Signal Modeling for HVDC Considering Time Delay

In this section, for quantitatively analyzing the control
signal time-delay influence on the HVDC system control, a
small signal model is established. In order to focus on the
impact of time delay on system stability while simplifying
the model, a one-terminal VSC system connected with a
generator is adopted as the small signal test system. In the VSC
small signal model, the control diagram is shown in Fig. 2,
including frequency regulation control with time delay, outer
loop control, inner loop control, and the phase-locked loop
(PLL). The stability analysis is performed using MATLAB
R2019b. Each component of the VSC small signal model is
described as follows.
1) Frequency Regulation Control with Time Delay

The time delay generated from PMU or PDC will impact
the measured frequency. According to [35], the fourth-order
Pade approximation model can accurately describe the time
delay characteristics, which can be expressed as:

f td
PMU

fPMU
= e−sTd

≈ (Tds)
4 − 20(Tds)

3 + 180(Tds)
2 − 840(Tds) + 1680

(Tds)4 + 20(Tds)3 + 180(Tds)2 + 840(Tds) + 1680
(1)

Based on modern control theory, the Pade approximation
transfer function can be converted into state space expres-
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Fig. 2. The control diagram of the test system.

sions as: 
d

dt
zp = Apzp +Bpup

yp = Cpzp +Dpup
(2)

where the state variable matrix zp = [z1z2z3z4]T; the input
variable up = fPMU; the output variable yp = f td

PMU. z1,
z2, z3 and z4 are four state variables introduced by the Pade
approximation link.

After linearization, the small signal of the delayed frequency
f td

PMU can be written as:

∆f td
PMU = −40

Td
∆z1 −

1680

T 3
d

∆z3 + ∆fPMU

= −40

Td
∆z1 −

1680

T 3
d

∆z3 +
1

2π
∆ωg (3)

The difference between the measured frequency after time
delay and the nominal frequency will go through the frequency
regulation control, which can be considered as a proportional
and integral (PI) controller. The output of the frequency
regulation control is then added to the active power as the
input of the outer loop control. The linearized function is
described as:

∆Pm =

(
kpf +

kif

s

)
(∆fref −∆f td

PMU) + ∆Ps (4)

In order to eliminate the influence of the integral part in (4),
an intermediate state variable xf is introduced, as:

d

dt
∆xf =

40

Td
∆z1 +

1680

T 3
d

∆z3 −
1

2π
∆ωg (5)

Substituting (5) into (4), then ∆Pm can be expressed as:

∆Pm =
40

Td
kpf∆z1 +

1680

T 3
d

kpf∆z3 −
1

2π
kpf∆ωg

+ kif∆xf + ∆Ps (6)
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2) Outer Loop Control
The objective of the outer loop control is to control the

active power and reactive power. The main structure of the
outer loop control comprises two independent PI controllers,
with Pm and Qs in the track of their respective reference
values. The outputs of the outer loop control are the current
reference value in the dq frame, which will be fed into the
inner loop current control. The dynamic functions for the outer
loop control can be expressed as:

isdref = (Pref − Pm)

(
kpp +

kip

s

)
isqref = (Qref −Qs)

(
kpq +

kiq

s

) (7)

The intermediate state variables φp, φq are introduced to
represent the integral part of the input difference of the outer
loop control, as:

d

dt

[
φp
φq

]
=

[
kip 0
0 kiq

] [
Pref

Qref

]
+

[
−kip 0

0 −kiq

] [
Pm
Qs

]
(8)

Then (7) can be represented by the intermediate state
variables φp and φq:[

isdref

isqref

]
=

[
φp
φq

]
+

[
kpp 0
0 kpq

] [
Pref

Qref

]
+

[
−kpp 0

0 −kpq

] [
Pm
Qs

]
(9)

3) Inner Loop Control
The output of the inner loop control is the VSC reference

voltage value in the dq frame, which is finally fed into
the PWM module to generate gate pulses for VSC power
electronic switches. The dynamic functions for inner loop
control can be expressed as:

ucd = usd − (isdref − isd)

(
kpid +

kiid

s

)
− ωLf isq

ucq = usq − (isqref − isq)

(
kpiq +

kiiq

s

)
+ ωLf isd

(10)

Similarly, intermediate state variables φid and φiq can be
introduced to represent the integral part of the input difference
of the inner loop control, as in (11):

d

dt

[
φid

φiq

]
=

[
kiid 0
0 kiiq

] [
isdref

isqref

]
+

[
−kiid 0

0 −kiiq

] [
isd
isq

]
(11)

Then (10) can be represented by the intermediate state
variables φid and φiq:[

ucd

ucq

]
=

[
usd

usq

]
−
[
φid

φiq

]
−
[
kpid 0

0 kpiq

] [
isdref

isqref

]
+

[
kpid −ωLf
ωLf kpiq

] [
isd
isq

]
(12)

4) Phase-Locked Loop (PLL)
The real-time frequency at PCC is measured by the PLL

block, which consists of a PI controller to track usq to zero.
The dynamic function of PLL is represented as:

θp =
1

s
[(kpPLL + kiPLL)usq + ω0] (13)

The intermediate state variable φp is introduced to eliminate
integral operator s, so the equation (13) can be rewritten as:

d

dt

[
φp
θp

]
=

[
0 0
1 0

] [
φp
θp

]
+

[
0 kiPLL
0 kpPLL

] [
usd

usq

]
+

[
0
ω0t

]
(14)

5) Generator
Since only focusing on the frequency characteristics in the

power system, the electromagnetic transient characteristics can
be ignored when modeling. The classical second-order model
is applied to represent the generator, which only considers the
rotor motion of the generator. The dynamic functions for the
generator are expressed as:

dδ

dt
= ωg − ω0

TJ
dωg
dt

= Pmc − Pe −Dωg
(15)

In the small signal test system with one generator, the
measured frequency from PMU in (1) can be considered the
same as the generator frequency, which indicates that:

ωg = 2πfPMU (16)

6) Small Signal Modeling
Since eigenvalue analysis, by using state space modeling,

is one of the best methods to analyze the system stability, all
the state space functions should be represented in first-order
differential equations, as shown in (2), (5), (8), (11), (14) and
(15).

Based on the state space functions, the small signal state
space model can be obtained by linearizing (2), (8), (9), (11),
(12), and (14)–(16), together with (5)–(6), expressed as:

d∆x

dt
= A∆x + B∆u (17)

where the small signal of state variables of the system is
represented by vector x, while the small signal of input
variables is represented by vector u. A is the state matrix
containing system stability information, which can be used to
calculate the system eigenvalue. B is the input matrix.

In this test system, x = [δ, φp, φq, φid, φiq, ωg, z1, z3,
xf , z2, z4, φp, θp]

T, u = [Pref , Qref ], A is a 13 × 13 matrix
while B is a 13 × 2 matrix.

Figure 3 shows the eigenvalue locus of A with time delay Td
varying from 20 ms to 300 ms. In this simulation, the system
operates at a rated state and all the other system parameters
remain unchanged.

As shown in Fig. 3, the eigenvalue of the dominant mode
moves to the positive direction of the real axis with Td
increasing. The dominant mode refers to the set of conjugate
eigenvalues whose real part first changes from negative to
positive among all sets of eigenvalues when system parameters
vary. It is also the key mode to cause system instability.
When the time delay is larger than 142 ms, the eigenvalue
will reach the right half plane of the coordinate axis, which
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Fig. 3. The eigenvalue locus with time delay varying from 20 ms to 300 ms.

indicates that the system becomes unstable. It can be seen
from the results that, with the increase of control time delay
in the HVDC system, the small signal stability margin is
reduced, and system instability even occurs. Therefore, how
to mitigate the influence of time delay on system stability is
an intractability problem that needs to be well studied and
addressed.

III. TIME-DELAY CORRECTION CONTROL STRATEGY

The principle of time delay in frequency measurement is
shown in Fig. 4, where the frequency deviation of the actual
signal, which is also considered as the “sending signal”, is
represented by the dark blue curve, while the light blue line is
the frequency deviation of the receiving signal with time delay.
In consideration of discrete sampling behavior, the sampling
frequency can be expressed in the form of sequence data.
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Fig. 4. The principle of time delay in frequency measurement.

As shown in Fig. 4, taking the kth (k = 1, 2, 3, · · · )
PMU reporting and transmission process as an example, f td

PMU

arrived at the receiving time trk, which is sent out at the sending
time tsk. The time interval between trk and tsk is the time
delay Td.

Due to the time delay, as shown in Fig. 4, when the signal
f td

PMU arrives at the HVDC control, fPMU has an additional
change f∆. If the HVDC system adopts the f td

PMU as its

control signal, the control performance of the HVDC system
is inevitably reduced or even leads to severe contingency,
because the HVDC system output may be insufficient or
opposite from the system requirements. Therefore, the effect
of the time delay must be considered in the HVDC system
control process to guarantee the control precision.

In order to reduce the impact of control time delay on the
HVDC system, a correction control strategy is proposed in this
section.

The aim of the proposed time-delay correction control
strategy is to correct the receiving frequency signal of the
HVDC system so as to reduce the time interval between the
actual frequency signal and the received frequency signal. In
the 60 Hz system, the reporting frequency of PMUs in the
actual application could be up to 120 Hz [36]. Thus, the rate of
frequency change can be assumed unchanged between adjacent
sampling points. For the k − 1th and kth sending points, the
frequency changing rate ρk is written as:

ρk =
f td

PMU − f td
PMU(k−1)

tsk − tsk−1

(18)

The estimation of the compensated frequency fcom can be
calculated using ρk, the k−1th sending, and the kth receiving
points, expressed as:

fcom = ρk · (trk − tsk−1) (19)

As a result, fcom is compensated based on f td
PMU to estimate

the actual frequency deviation f∆, which can be written as:

f∆ = fcom − (f td
PMU − f td

PMU(k−1)) (20)

Substituting (18), (19) into (20), then the corrected fre-
quency can be expressed as:

fPMU cr = f td
PMU +

f td
PMU − f td

PMU(k−1)

tsk − tsk−1

· (trk − tsk) (21)

As the principle described above, the time-delay correction
control strategy is a model-free method that only relies on the
frequency data, which is not impacted by the system operating
conditions. The control diagram of the HVDC frequency
control considering the proposed time-delay correction control
strategy is shown in Fig. 5.

As shown in Fig. 5, the HVDC frequency control con-
sidering the proposed time-delay correction control strategy
typically includes the following steps:

1) Step1: The frequency data is obtained from PMUs and
then sent to PDCs. The function of the PDC is to process
the data, such as bad data detection. After data processing,
they will be sent to the HVDC frequency regulation control.
In this paper, the frequency active power droop control is
adopted as the HVDC frequency regulation control. It should
be noted that other HVDC advancing frequency regulation
control strategies could also be considered according to the
operating requirements.

2) Step2: When the measured frequency data arrives at the
HVDC frequency regulation control, these data will be sent to
both the hold function and the time-delay correction control
strategy. The objective of the hold function is to record the
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Fig. 5. The control diagram of the HVDC frequency control considering the
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kth timestamp and the corresponding frequency value. Then
at the time of k+1th, the hold function will send the kth data
to the time-delay correction control strategy for calculation.
The time-delay correction control strategy will calculate the
corrected frequency signal based on equation (21).

3) Step3: The corrected frequency data fPMU cr after cal-
culation will be sent back to the frequency regulation function
to perform active power compensation. The active power
reference change will be reflected in the HVDC basic control.

It should be noted that the control strategy can be applied
to any HVDC system with frequency regulation control.

IV. ANALYSIS AND SIMULATION VERIFICATION

A. Small Signal Analysis Considering Time-Delay Correction
Control Strategy

In order to investigate the effectiveness of the proposed
time-delay correction control strategy in system stability en-
hancement, the small signal test system in Section III is used
again, with an additional time-delay correction control to be
modeled.

Compared with the small signal state space model estab-
lished in (17), the model with the time-delay correction control
strategy takes (21) into account, which can be rewritten as:

fPMU cr = f td
PMU +

f td
PMU − f td

PMU(t−1)

Ts
· Td (22)

where f td
PMU(t−1) can be considered as a series of signal

delaying f td
PMU by one sampling period, which is expressed

by a first-order delay loop:

f td
PMU(t−1) =

1

1 + sTs
f td

PMU (23)

Then (23) can be written in the form of a differential
equation as:

d

dt
f td

PMU(t−1) =
1

Ts
f td

PMU −
1

Ts
f td

PMU(t−1) (24)

As expressed in (24), f td
PMU(t−1) contributes another state

variable for the state space model. Therefore, the corrected
frequency fPMU cr can be depicted with two state variables:

f td
PMU and f td

PMU(t−1). By replacing f td
PMU in (3) with fPMU cr,

the input signal Pm of the outer loop control is expressed as:

Pm = (fref − fPMU cr)

(
kpf +

kif

s

)
+ Ps (25)

By linearizing (22), (24), (25), and combining (5), the small
signal of Pm can be obtained,

∆Pm = 40kpf

(
1

Td
+

1

Ts

)
∆z1

+ 1680kpf

(
1

T 3
d

+
1

TsT 2
d

)
∆z3 −

1

2π
kpf

(
1 +

Td
Ts

)
∆ωg

+

(
kpf

Td
Ts
− kifTd

)
∆f td

PMU(t−1) + kif∆xf + ∆Ps (26)

So far, the overall small signal state space model considering
the time-delay correction control strategy can be established
as:

d∆xcr

dt
= Acr∆xcr + Bcr∆u (27)

where Acr is a 14 × 14 state matrix while Bcr is a 14 ×
2 input matrix. xcr = [δ, φp, φq, φid, φiq, ωg, z1, z3, xf ,
f td

PMU(t−1), z2, z4, φp, θp]
T.

In Fig. 6, the eigenvalue locus of both A and Acr are shown
in the same complex plane. The eigenvalue sets of A in solid
points were displayed in Fig. 3, with time delay Td varying
from 20 ms to 300 ms; while the star points refer to the
eigenvalue sets of Acr, with the same range of Td. As shown
in Fig. 6(a), for A and Acr, the eigenvalues of their dominant
modes both move to the positive direction of the real axis when
Td increases. However, the eigenvalue sets of the dominant
mode of Acr stay farther away from the imaginary axis, which
means the system with a time-delay correction control strategy
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Fig. 6. The eigenvalue locus with varying time delay. (a) The eigenvalue locus
with and without time-delay correction control strategy. (b) The eigenvalue
of A and Acr when time delay is 50 ms, 100 ms, 150 ms and 200 ms.



DONG et al.: TIME-DELAY CORRECTION CONTROL STRATEGY FOR HVDC FREQUENCY REGULATION SERVICES 2033

is more stable than the system without this control. To make
the comparison more explicit, four groups of eigenvalues with
time delays of 50, 100, 150, and 200 ms are shown in Fig. 6(b).
For A, when the time delay is chosen as 150 or 200 ms,
which is larger than the boundary time delay 142 ms, the
eigenvalues are located on the right half plane; while for Acr,
the eigenvalues have sufficient stability margins even with a
time delay of 200 ms. It could be concluded from the small
signal analysis that, the proposed time-delay correction control
strategy has significant improvement in system stability.

B. Control Performance Verification in IEEE 39-Bus System

In order to test the performance of the proposed time-delay
correction control strategy, a modified IEEE New England
39 bus system is studied in PSCAD/EMTDC, as shown in
Fig. 7 [37].
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Fig. 7. Single-line diagram of a two-terminal VSC-HVDC system in a
modified IEEE 39 bus system.

As shown in Fig. 7, the IEEE 39-bus system is divided into
two asynchronous areas by disconnecting three AC interties:
the AC interties 9–39, 3–4, and 14–15. The generators and the
buses in the divided asynchronous areas are given in Table I.
In the modified IEEE 39 bus system, a two-terminal VSC-
HVDC system is embedded. The locations of the converter
stations are as follows: VSC1 is connected to bus 31 and VSC2
is connected to bus 36. The parameters of the VSC-HVDC
system are shown in Table II.

In the VSC-HVDC system, the VSC1 works at constant
DC voltage control and VSC2 works at constant active power
control. The frequency regulation control is configured at
VSC2, with the proposed time-delay correction control strat-
egy added. The initial power flow of the VSC-HVDC system
is 30 MW from VSC1 to VSC2.

TABLE I
THE PARTITIONS OF TWO AREAS IN THE IEEE 39 BUS SYSTEM

Area Generator Bus
Area I G30, G33, G34,

G35, G36, G37,
G38, G39

1, 2, 3, 7, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 33, 34, 35, 36, 37,
38, 39

Area II G31, G32 4, 5, 6, 8, 9, 10, 11, 12, 13,
14, 31, 32

TABLE II
MAIN PARAMETERS OF THE VSC-HVDC SYSTEM

Area Items Values

VSCs

Circuit parameters
Rated power 400 MW
Rated DC voltage 400 kV
Switching frequency 1350 Hz

Control parameters

kpp, kip (0.001, 0.5)
kpq, kiq (0.0005, 0.5)
kpid, kiid (90, 10000)
kpiq, kiiq (90, 10000)
kpf , kif (200, 0.5)

DC lines

Length of each DC line 100 km
Resistance per unit length 0.01 Ω/km
Inductance per unit length 0.85 mH/km
Capacitance per unit length 0.013 µF/km

1) Performance Verification of the Proposed Time-Delay Cor-
rection Method

At time t = 1.0 s, the load at bus 6 increases 300 MW.
Fig. 8 shows the comparison of three frequency signals: 1)
the original frequency; 2) the time delayed frequency (150 ms
time delay); 3) the time delayed frequency with the proposed
correction control strategy (150 ms time delay).
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Fig. 8. Frequency comparison with and without proposed time-delay
correction control strategy.

As shown in Fig. 8, the time delayed frequency lags behind
the original frequency for 150 ms, especially obvious at the
frequency drop process. At the beginning of the frequency
drop, the corrected frequency first coincides with the delayed
frequency. It is for the reason that the time-delay correction
control collects delayed signals for calculation, so it only
works when the delayed signal changes. The simulation results
indicate that with a time-delay correction control strategy, the
delayed frequency is corrected and the trend is similar to
the original frequency, which proves the effectiveness of the
proposed time-delay correction method.
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2) Performance Verification of the Proposed Time-Delay Cor-
rection Control Strategy

In order to verify the effectiveness of the proposed time-
delay control strategy, the frequency and active power at the
VSC terminal are chosen to observe the system response with
different inputs of frequency regulation controls. Three input
signals are selected for comparison: 1) the original frequency
fori; 2) the time delayed frequency ftd; 3) the time delayed
frequency with the proposed correction control strategy, fcr.

Case 1: At time t = 1.0 s, the load at bus 6 increases
300 MW; Time delay Td = 100 ms.

Figure 9(a) shows the bus frequency at VSC2 with three
different control input signals. With input signal fori, the bus
frequency reaches its nadir around 49.80 Hz and then gradually
restores to a new steady state. When the input signal is delayed
as ftd, the bus frequency has a lower nadir of 49.79 Hz.
In addition, small oscillation occurs during the frequency
recovery, which proves the influence of time delay on the
small signal stability in Section III. After ftd is corrected with
fcr, the bus frequency is close to that with fori as the input
signal. The frequency nadir becomes higher and oscillation
disappears.
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Fig. 9. Control effect comparison when Td = 100 ms. (a) The frequency
comparison. (b) The active power comparison.

The control effect can also be observed in active power
at VSC2. As shown in Fig. 9(b), with input signal fori, the
maximum of active power transmission from VSC1 to VSC2
is 144.8 MW; while with delayed input signal ftd, the active
power reversal compensation can be up to 153.3 MW. After
ftd is corrected with fcr, the highest active power support
is 146.1 MW, which is close to that with input signal fori.
Moreover, the active power with the delayed input signal has
an oscillation in the restoration process, which is not observed
with the other two input signals.

Case 2: At time t = 1.0 s, the load at bus 6 increases
300 MW; Time delay Td = 150 ms.

With a larger time delay, the results are clearer for com-
parison. As can be seen in Fig. 10(a), the bus frequency
nadir at VSC2 is 49.80 Hz, 49.79 Hz, and 49.80 Hz with the
input signals of fori, ftd, fcr respectively. During the recovery
process, the bus frequency with input signal ftd has a more
obvious oscillation compared to Case 1, which also confirms
the conclusion in Section III: the increase of time delay could
reduce the small signal stability margin and even cause system
instability. With fcr as the input signal, the bus frequency
can be close to that with input signal fPMU, so it can be
summarized that the time-delay correction control strategy can
improve the frequency nadir and enhance the system stability.
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Fig. 10. Control effect comparison when Td = 150 ms. (a) The frequency
comparison. (b) The active power comparison.

In Fig. 10(b), the maximum of active power reversal com-
pensation is 144.8 MW, 158.3 MW, and 146.9 MW with the
input signals of fori, ftd, fcr respectively. Similarly, there is
a large oscillation when the input signal is delayed, but the
system stays stable with fori orfcr as input. Therefore, the
issue of increased power compensation and system instability
caused by the time delay can be resolved by the proposed
correction control strategy.

Case 3: In order to simulate a situation closer to the real
project, the randomness in time delay should be considered.
The time delay is not a fixed value and can be assumed to
satisfy the normal distribution, which is represented as:

Td ∈ N(µ, σ2) (28)

where µ is the average value and σ2 is the variance value
for the normal distribution. In this case, µ = 100 ms , σ2 =
10 ms.

At time t = 1.0 s, the load at bus 6 increases 300 MW.
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Figure 11(a) shows the bus frequency at VSC2 and that
the input signals ftd and fcr have a random time delay. With
input signal fcr, the frequency nadir becomes higher than that
with input signal ftd, which is closer to the original frequency
nadir. In the recovery process, although the frequency with
input signal fcr restores a bit slower than the original case, the
oscillation coming from the delayed signal disappears. Thus, it
can be concluded that the time-delay corrected control strategy
is still effective with a random time delay.

F
re

q
u
en

cy
 (

H
z)

Time (s)

0 10 15 25 30205

150

50

0

100

(b)

50

49.95

49.85

49.8

49.9

A
ct

iv
e 

p
o
w

er
 (

M
W

)

Time (s)

0 10 15 25 30205

(a)

Zoomed in

Zoomed in

Zoomed in

Zoomed in

With original signal
With delayed signal
With corrected signal

With original signal
With delayed signal
With corrected signal

Fig. 11. Control effect comparison when Td ∈ N(µ, σ2), µ = 100 ms,
σ2 = 10 ms. (a) The frequency comparison. (b) The active power comparison.

For active power comparisons, Fig. 11(b) shows similar con-
clusions. The maximum power reversal compensation with the
three input signals fori, ftd and fcr is 144.8 MW, 154.8 MW,
and 146.6 MW, respectively. In addition, the stability issue still
exists when the input signal has a random time delay. After
the input signal is corrected, the active power is close to the
original case and the system stability is improved.

V. CONCLUSION

In this paper, a time-delay correction control strategy for
HVDC frequency regulation service is proposed to suppress
the time-delay influence. In order to analyze the impact of
time delay on HVDC control, first, a small signal model is
conducted. Then, according to the cause of the time delay,
a time-delay correction control strategy for HVDC frequency
regulation control is proposed. The proposed time-delay cor-
rection control is verified in both the established small signal
model and the modified IEEE 39 bus system. The small signal
analysis shows that the system with a time-delay correction
control strategy has more stability margin than the system
without this control. The simulation results in the modified
IEEE 39 bus system indicate that the proposed time-delay

correction control strategy could improve the frequency nadir
and enhance system stability.

A future study includes (1) an application of the time-delay
correction control strategy to a hybrid HVDC system. (2)
improvement of the time-delay correction control method to
make it adaptive to noisy frequency data.

APPENDIX

STATE MATRICES OF THE SYSTEM
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In the matrices, the defined elements are as follows:
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“Wide-area time-delay damping control to prevent power oscillations in
HVDC/AC interconnected power systems,” 2010 International Confer-
ence on Power System Technology, Hangzhou, China, 2010, pp. 1–6.

[33] IEEE Standard for Synchrophasor Data Transfer for Power Systems,
IEEE Standard C37.118.2–2011, 2011.
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