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Joint Planning of Active Distribution Network and
EV Charging Stations Considering Vehicle-to-Grid

Functionality and Reactive Power Support
Yongheng Wang, Student Member, IEEE, Xinwei Shen, Senior Member, IEEE,
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Abstract—This paper proposes a collaborative planning model
for active distribution network (ADN) and electric vehicle (EV)
charging stations that fully considers vehicle-to-grid (V2G) func-
tion and reactive power support of EVs in different regions.
This paper employs a sequential decomposition method based
on physical characteristics of the problem, breaking down the
holistic problem into two sub-problems for solution. Subproblem
I optimizes the charging and discharging behavior of autopilot
electric vehicles (AEVs) using a mixed-integer linear program-
ming (MILP) model. Subproblem II uses a mixed-integer second-
order cone programming (MISOCP) model to plan ADN and
retrofit or construct V2G charging stations (V2GCS), as well
as multiple distributed generation resources (DGRs). The paper
also analyzes the impact of bi-directional active-reactive power
interaction of V2GCS on ADN planning. The presented model
is tested in the 47-node ADN in Longgang District, Shenzhen,
China, and the IEEE 33-node ADN, demonstrating that decom-
position can significantly improve the speed of solving large-scale
problems while maintaining accuracy with low AEV penetration.

Index Terms—Active distribution network, large-scale
problem, reactive power support, sequential decomposition,
V2G charging station.

NOMENCLATURE

A. Sets

N Set of nodes.
L Set of distribution lines.
T Set of time intervals.
AEV Set of autopilot electric vehicles (AEVs).
V2G Set of V2G charging stations (V2GCS).
Ω Set of areas.

B. Parameters

τu Time period AEV u is connected to the power grid.
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ϕV2G
i Retrofit or construction cost of V2GCS at

node i.
ϕij Construction cost of line ij.
Rij , Xij Resistance and reactance of line ij.
Ctou Time of use price.
PLoad
i,t , QLoad

i,t Active/reactive power load at node i in time t.
EAEV
u,0 , EAEV

u Initial and target energy of AEV u.
CAEV

ch,t , C
AEV
dis,t Charge and discharge price of AEV at time t.

ηESS
ch,i , η

ESS
dis,i Charge and discharge efficiency coefficient of

the energy storage system (ESS) at node i.
EAEV
u , E

AEV

u Minimum and maximum energy capacity of
AEV u

pAEV
u

, pAEV
u Maximum charging and discharging power of

AEV u.
SV2G
i , S

V2G

i Minimum and maximum capacity of V2GCS
at node i.

P
Sub

Maximum active power of substation.
Q

Sub
Maximum reactive power of substation.

V , V Minimum and maximum voltage magnitude.
P

PV

i,t Maximum active power of photovoltaic (PV)
at node i in time t.

QSVC

i
, Q

SVC

i Minimum and maximum reactive power of
static var compensator (SVC) at node i.

PESS
i , P

ESS

i Minimum and maximum active power of the
ESS at node i.

EESS
i , E

ESS

i Minimum and maximum capacity of the ESS
at node i.

QCB
min The minimal reactive power of capacitor

bank (CB).
vCB
s Reactive power of increasing per bank of CB.
NCB Maximum number of bank regulations for

CB.
N

CB

i Maximum banks of CB to be installed at
node i.

V Oltc
min The minimal voltage adjusted by on-load tap

changer (OLTC).
vOltc
s Voltage of increasing per tap step of OLTC.
NOltc Maximum number of step regulations for

OLTC.
N

Oltc
Maximum variation of tap steps of the OLTC.

Sij Apparent power capacity for line ij.
ϕDGRs
i Construction cost of DGRs (including ESS,

CB, PV, SVC) at node i.
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cDGRs
i Annualized operational maintenance cost of

DGRs (including ESS, CB, PV, SVC) at
node i.

cV2G
i Annualized operational maintenance cost of

V2GCS at node i.

C. Variables

pAEV
ch,u,t, p

AEV
dis,u,t Active and reactive power of AEV u charg-

ing and discharging at time t.
PV2G
i,t , QV2G

i,t Active and reactive power of V2GCS at
node i in time t.

P Sub
t , QSub

t Active/reactive power of substation in
time t.

Vi,t Voltage at node i in time t.
Pij,t, Qij,t Active and reactive power flow in line ij

at time t.
PPV
i,t Active power of PV at node i in time t.
QSVC
i,t Reactive power of SVC at node i in time t.

EESS
i,t Energy storage of ESS at node i in time t.

PESS
ch,i,t, P

ESS
dis,i,t Charge and discharge power of ESS at

node i in time t.
TESS
ch,i,t, T

ESS
dis,i,t Binary variable associated with charge and

discharge status of ESS at node i in time t.
QCB
i,t Reactive power of CB at node i in time t.

TCB
s,i,t Binary variable associated with bank quan-

tity s of CB at node i in time t.
TCB
in,i,t, T

CB
de,i,t Binary variable associated with the in-

crease and decrease status of CB at node
i in time t.

V Oltc
i,t Voltage adjusted by OLTC at node i in

time t.
TOltc
s,i,t Binary variable associated with step quan-

tity s of OLTC at node i in time t.
TOltc
in,i,t, T

Oltc
de,i,t Binary variable associated with the in-

crease and decrease status of OLTC at node
i in time t.

yV2G
i /pu/zij Binary variable associated with V2GCS at

node i / AEV u / line ij.
yDGRs
i Binary variable associated with construc-

tion of DGRs (including ESS, CB, PV,
SVC) at node i.

I. INTRODUCTION

W ITH increasing concerns regarding global climate
change and depletion of fossil fuels, there has been

a growing interest in incorporating distributed generation re-
sources (DGRs) and electric vehicles (EVs) into distribution
systems [1]. The power sector is currently experiencing a
major transformation in system planning, operation, and con-
trol paradigms aimed at achieving a secure and cost-effective
energy transition [2]. Additionally, advanced driver assistance
technology has matured and is effectively being employed in
the market [3].

Various DGRs have improved power quality and maintained
stable operation of distribution network. However, due to the
diverse behavior of EVs, their charging demand growth is
non-uniform in time and location, leading to disproportionate

peaks [4]. Furthermore, large-scale EV charging can cause
power grid security issues such as significant power losses [5],
voltage drops [6], and variations [7].

Nonetheless, EVs equipped with vehicle-to-grid (V2G)
functionality hold the potential to facilitate integration of
DGRs [8]. The intermittent nature of DGRs presents chal-
lenges to grid stability. While V2G technology empowers
EVs to store excess renewable energy during periods of high
generation and discharge it back to the grid during times of
high demand. Therefore, this bidirectional energy flow of V2G
enables EVs to serve as energy storage units, allowing grid op-
erators to balance supply and demand effectively [9]. Further-
more, EVs can be utilized as controllable resources, providing
ancillary services to the distribution system, including peak
shaving, voltage regulation, and stability enhancement [10].
Thus, optimal planning of networks that incorporate both V2G
charging stations (V2GCS) and DGRs becomes a critical task
in modern grid planning [11].

In existing literature, various DGRs have been proposed
for optimizing operations, siting, and capacity planning [12].
For example, in [13], the authors proposed an energy storage
system (ESS) planning model that considers investment costs,
system maintenance costs, and deferred equipment invest-
ments. In [14], a mixed-integer linear programming (MILP)
model was introduced to solve the problem of sizing and siting
wind and solar power generating units in radial distribution
systems. The objective of this approach is to minimize the
system’s investment and operating costs. Reference [15] fo-
cused on the integrated planning problem of cyber-physical
distribution networks and modeled multiple DGRs, including
capacitor banks (CB) and energy storage systems (ESS).
Moreover, [16] and [17] planned the siting and sizing of
multiple DGRs, such as photovoltaic (PV) systems, static
var compensation (SVC), on-load tap changer (OLTC), to
minimize annual operating costs of the distribution system.

In addition to DGRs, researchers have also studied the role
of EVs in distribution network. In [18], the uncertainty of EV
behavior was considered, and location and capacity of DGR
investments were planned to reduce power losses caused by
uncertainty. Reference [19] used a three-stage optimization
model with a gradually reduced time horizon to improve
voltage quality of the system by regulating the charging and
discharging behavior of EVs. An MILP model was proposed
in [20] to optimize the charging behavior of EVs in unbalanced
electrical distribution systems. Furthermore, reference [21] in-
troduced a multi-agent reinforcement learning algorithm based
on the deep deterministic policy gradient method, considering
the collaborative control problem of simultaneous active-
reactive interaction between EVs and grid. However, these
articles focused on improving EV performance in a fixed dis-
tribution network, rather than a dynamic one. Reference [22]
introduced a two-stage distributionally robust optimization
model for joint planning of EV charging stations and the
distribution network. Additionally, references [23] and [24]
addressed the planning of different charging facilities, focusing
on integrated system and charging-battery swapping stations,
respectively. While these studies extensively examined traffic



2102 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 5, SEPTEMBER 2024

flow and uncertainty, they offered limited insights into multiple
DGRs and V2G functionality.

Reference [18] proposed a coordinated optimal planning
model for V2GCS and multiple DGRs, which considers mul-
tiple planning objectives, including system investment cost,
reliability, power losses, and voltage stability. Reference [25]
presented a planning model for sizing and siting V2GCS,
ESS, and other DGRs. However, this model was based on
a fixed distribution network and did not account for future
network expansion. To address this limitation, reference [26]
introduced a natural aggregation algorithm to plan location and
capacity of V2GCS, PV systems, and ESS, while considering
queuing time and minimizing investment network loss. In [27],
a sequential capacitated flow capturing location allocation
model was proposed for planning the distribution network
and V2GCS. Additionally, reference [28] developed a mixed
integer second-order cone programming (MISOCP) model for
solving multiple DGRs and location planning for V2GCS.
Moreover, reference [29] developed an MILP model that
integrates needs of both the traffic network and the distribution
network using a network modeling approach based on a
winner-takes-all edge trimming technique to identify interest
points of the city in terms of traffic flows. Despite these
efforts, bi-directional interaction of active and reactive power
when planning distribution networks and V2GCS has not been
considered in the aforementioned studies.

This paper proposes a comprehensive model that facilitates
joint deployment of ADN and V2GCS, while accounting for
bi-directional active-reactive power interaction of EVs. Our
key contributions are outlined below:

1) We propose a novel collaborative planning model for joint
deployment of the ADN and V2GCS. This model takes into
full consideration V2G functionality of EVs and efficiently
utilizes unused capacities of V2G inverters to provide reactive
power support for the grid.

2) A sequential decomposition method is proposed, trans-
forming the holistic problem into two sub-problems, based
on the weak coupling property of the physical problem. This
approach not only increases the solving speed while ensuring
accuracy at low EV penetration, but also yields high-quality
approximate solutions for intractable problems at high EV
penetration.

3) This paper models multiple DGRs in the future ADN,
where autonomous driving technology is extensively deployed.
Control variables encompass active power, reactive power,
and system voltage, with control strategies encompassing both
continuous and discrete adjustments.

This paper is organized as follows. In Section II, we present
the assumptions and simplifications in the model, as well as
the existence analysis of solutions and rationale for sequential
decomposition. Section III describes the mathematical model
for decomposition method. Section IV presents illustration of
cases and simulation results. Finally, in Section V, we provide
the conclusion.

II. MODEL FORMULATION

A. Assumptions and Simplifications in the Modeling
To facilitate understanding and improve efficiency of the

proposed model, certain assumptions and simplifications were
made during the modeling process. This subsection provides a
detailed description of these assumptions and simplifications.

1) In the future transportation system, EV users will be
directed by the information processing center, while the intel-
ligent transportation system will guide users to charge their
vehicles in designated areas.

2) In the context of widespread adoption of Autopilot EV
(AEV), these vehicles have the capability to arrive at V2GCS
charging station promptly at the user’s scheduled time and
ensure an ample battery level to meet the user’s intended off-
grid requirements.

3) The behavior of EVs after clustering provides a better
representation of AEVs in different areas, presented in the
Appendix.

B. Framework of the Sequential Decomposition Method

The holistic collaborative planning model for ADN and
V2GCS has been formulated, taking into account the behavior
of AEVs. The model is a large-scale MISOCP problem, with
the objective function and constraints detailed in (1) and (2),
respectively.

Holistic Problem Formulation: (large-scale MISOCP)

min
x∈X,y∈Y

f(x) + Eξ[q(y, ξ)] (1)

s.t.



G(ξ)y = d(ξ)

N(ξ)y ≥ b(ξ)
T (ξ)x+W (ξ)y = h(ξ)

F (ξ)x+H(ξ)y ≥ u(ξ)

Eξ[q(y, ξ)] =
∑K
k=1 pkq(y, ξk)

(2)

In this formulation, variables x represent construction of
V2GCS and planning of ADN, while variables y represent
charging and discharging behavior of AEVs. The uncertain set
of AEV behavior for stochastic programming is represented by
ξ(q,G,N, T,W,F,H, d, b, h, u), which includes K scenarios
with respective probability masses p. Expectation of the ob-
jective function in different scenarios is represented by E.

For large-scale MISOCP problems, the convergence speed
may decrease, making the problem difficult to solve. To
address this issue in the context of AEVs planning, this paper
proposes a sequential decomposition method that decomposes
the large-scale MISOCP problem into MILP and MISOCP
problems, as shown in equations (3)–(6).

Subproblems: (MILP and MISOCP)
Subproblem I (SP1): (MILP)

min
y∈Y

qT(ξ)y (3)

s.t.

{
G(ξ)y = d(ξ)

N(ξ)y ≥ b(ξ)
(4)

Subproblem II (SP2): (MISOCP)

min
x∈X

f(x) + Eξ[Q(y∗, ξ)] (5)

s.t.


T (ξ)x+W (ξ)y∗ = h(ξ)

F (ξ)x+H(ξ)y∗ ≥ u(ξ)

Eξ[Q(y∗, ξ)] =
∑K
k=1 pkQ(y∗, ξk)

(6)
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In SP1, charging and discharging power of AEVs y is
optimized with uncertainty set ξ according to their behavioral
characteristics. In SP2, the distribution network and V2GCS
are collaboratively planned based on optimal value Q(y, ξ) ob-
tained in SP1. Additionally, siting and sizing of DGRs are also
planned. The physical model of the sequential decomposition
method is shown in Fig. 1.

C. Feasibility of the Sequential Decomposition Method

In the context of employing the sequential decomposition
method for problem-solving, an indispensable prerequisite for
the presence of a solution entails that the outcome y∗ ∈ Y ,
derived from SP1, producing a feasible SP2. Essentially,
this implies the existence of an x∗ ∈ X that satisfies the
subsequent equation (i.e., the constraints of SP2):{

T (ξ)x∗ +W (ξ)y∗ = h(ξ)

F (ξ)x∗ +H(ξ)y∗ ≥ u(ξ)
(7)

We found out by repeated tests that, with the proposed
sequential decomposition method, it’s highly impossible that
SP2 is infeasible with y∗. However, if someone concerns
feasibility of decomposition, a quick verification of solution
existence by method could be conducted, as illustrated in
Table I. In Step I, produce the “worst case” in SP1 by assuming
that AEVs at V2GCS are always charging, neglecting the state
of charge, denoted by y∗. In Step II, incorporate the worst
case y∗ into constraints of SP2. If SP2 is feasible with y∗,
then the sequential decomposed model must be feasible. It
should be noted that, constraints (7) in SP2 denote power
flow constraints, security constraints, and V2GCS capacity
constraints in ADN, as shown in Table I.

Figure 2 provides a small example of ADN for discussion. If
the V2GCS is located at node 2, power injection PV2G

2 influ-
ences power flows, e.g. P12, P23, P24. Nevertheless, compared
to other types of loads (e.g., air conditioning in urban areas),

TABLE I
VERIFICATION OF SOLUTION EXISTENCE (BASED ON THE EXAMPLE

IN FIG. 2)

Step I: Produce the “worst case” in SP1 by assuming that AEVs
at V2GCS are always charging, denoted by yV2G

2 .
Step II: Incorporating the worst case yV2G

2 into the constraints
of SP2, as follows:

Power
Balance:

P12 − P23 − P24 = yV2G
2 + PLoad

2

Q12 −Q23 −Q24 = QLoad
2

Security
Constraints:

V ≤ V1, V2, V3, V4 ≤ V

S ≤ P 2
12 +Q2

12 ≤ S
S ≤ P 2

23 +Q2
23 ≤ S

S ≤ P 2
24 +Q2

24 ≤ S

Capacity
Constraints:

yV2G
2 ≤ SV2G

2

If satisfied, There must be a solution for the decomposed method
If not, Solutions do not necessarily exist (extremely rare events)

V
1

V
2

V
3

V
4

1 2

3

4

P
12

P 23
Q 23

Q
24

P
24

Q
12

PV2G
2

PLoad
2

Fig. 2. A small example for feasibility analysis.

Min Charging cost for AEV users

Subject to :

AEV charge/discharge constraints

SP 2 :

Min Construction and operating costs of the power grid

Subject to :

Optimization results

Physical constraints of the power grid

Active distribution network

Time

Power

Behavioral characteristics of AEVs

Arrival times

Departure times

Initial energy

Target energy
TimeTimTimTim

Residential region

Office region

Commercial region

Autopilot electric vehicles

V2G charging stations

ESS

OLTC

SVC

CB

PV

SP 1 :

Transportation Network

AEV users’ power demand

Constraints on the construction of V2G charging stations

Modeling constraints for multiple DGRs

Uncertainty set for stochastic programming

Industry region

Fig. 1. Optimization framework for sequential decomposition method.
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PV2G
2 is generally smaller, and its impact on other power flows

usually remains within distribution line capacity. The scenario
where the AEV connected to the system is simultaneously
charging at its maximum power represents the highest load
profile for PV2G

2 , denoted by yV2G
2 . If SP2 remains feasible

with yV2G
2 , then the feasibility of the sequential decomposition

method is guaranteed with arbitrary AEVs charging behavior.

D. Rationale for Sequential Decomposition

The possibility of a feasible decomposition lies in weak
coupling between variables x and y, as shown in constraints of
equation (2). Since EVs possess autopilot and V2G character-
istics, the position of V2GCS (x) has minimal impact on EV
charging and discharging power (y). Conversely, the y only
affects power flow distribution of the distribution network,
as reflected in objective function (1), in other words, y only
impacts network loss: a small proportion of the total objective
function. Therefore, the coupling relationship between x and y
is weak, allowing them to be separated into two subproblems
for solving.

During peak load periods, time-of-use (TOU) pricing is
higher, which optimizes AEV behavior in subproblem I based
on price. This is equivalent to considering some of grid
demand. Additionally, a large number of AEVs and their
diverse behavioral characteristics make it possible to obtain
almost identical overall load of the V2GCS after AEV load
superposition.

III. MATHEMATICAL MODEL

A. SP 1: Optimization of AEV Charging Behavior

min
∑
t∈τu

∑
u∈AEV

CAEV
ch,t pch,u,t +

∑
t∈τu

∑
u∈AEV

CAEV
dis,t pdis,u,t

(8)

Subject to: (9)–(16)
Objective function (8) minimizes AEV charging costs. Sub-

script ch and dis denote charging and discharging states, re-
spectively, while t indicates the period during which AEV u is
connected to power grid. AEV charging incurs a service charge
CAEV

ch based on a TOU tariff, while a battery compensation
price incentive CAEV

dis is set to encourage AEVs to deliver
active power to the grid without compromising their behavioral
characteristics.

EAEV
u ≤ EAEV

u,0 (ξ) +
∑
t

pAEV
ch,u,t +

∑
t

pAEV
dis,u,t ≤ E

AEV

u

∀u ∈ AEV, ∀t ∈ τu (9)

EAEV
u,0 (ξ) +

∑
t∈τu

pAEV
ch,u,t +

∑
t∈τu

pAEV
dis,u,t ≥ EAEV

u (ξ)

∀u ∈ AEV (10)∑
t∈T−τu

∑
u∈AEV

pAEV
ch,u,t +

∑
t∈T−τu

∑
u∈AEV

pAEV
dis,u,t = 0 (11)

pAEV
ch,u,t ≤ (1− pu)M ∀u ∈ AEV, ∀t ∈ τu (12)

pAEV
dis,u,t ≥ −puM ∀u ∈ AEV, ∀t ∈ τu (13)

0 ≤ pAEV
ch,u,t ≤ pAEV

u ∀u ∈ AEV, ∀t ∈ τu (14)

pAEV
u

≤ pAEV
dis,u,t ≤ 0 ∀u ∈ AEV, ∀t ∈ τu (15)

pu ∈ {0, 1} ∀u ∈ AEV (16)

Capacity constraints of AEVs are expressed in equation
(9), which limits energy of each AEV within appropriate
ranges. Equation (10) represents battery capacity required to
meet target energy (EAEV

u (ξ)) when AEV departs from power
grid. Equation (11) constrains power of AEVs to zero before
arriving and after departure from the V2GCS. Constraints
(12) to (15) define charging and discharging power constraints
using big M method. Constant M is chosen to be large enough
to relax inequalities (12) and (13). If AEV u is charging in
time t, i.e. pu = 0, corresponding constraint will be enforced
and AEV cannot discharge in time t. Equations (14) and
(15) indicate charging and discharging power (pAEV

ch,u,t, p
AEV
dis,u,t)

should be limited between upper and lower bounds (pAEV
u

,
pAEV
u ).

B. SP 2: Coordinated Planning of ADN and V2GCS

minCInv
line + CInv

V2G + CInv
DGRs + CO&M

ADN + COpe
loss (17)

Subject to: (24)–(57)

CInv
line = Rd

∑
ij∈L

ϕijzij (18)

CInv
V2G = Rd

∑
i∈N

ϕV2G
i yi (19)

CInv
DGRs = Rd

∑
i∈N

ϕDGRs
i yDGRs

i (20)

CO&M
ADN =

∑
i∈N

cV2G
i yV2G

i +
∑
i∈N

cDGRs
i yDGRs

i (21)

COpe
loss = 365 ·

∑
t∈T

∑
ij∈L

CTOU
t Rij(P

2
ij,t +Q2

ij,t) (22)

Rd =
d(1 + d)year

(1 + d)year − 1
(23)

Objective function (17) minimizes annualized investment
cost, operational and maintenance expenses, and power system
network loss. Subscript ij denotes ij-th line, i denotes i-th
node, and t represents time interval.

Objective functions (18)–(20) represent costs associated
with construction of distribution lines and DGRs (including
PV, ESS, SVC, and CB), as well as expenses of retrofitting
or building V2GCS. Within these functions, Rd represents
annualized cost coefficient, d represents inflation rate, and
year represents operational lifespan. Objective function (21)
minimizes annualized operational and maintenance expenses
of ADN, accounting for both V2GCS and multiple DGRs,
while objective function (22) minimizes annualized network
loss of distribution grid. The mathematical model includes
multiple DGRs, considering their regulation functions and
operation modes. Related constraints are shown in Table II.

1) Power Flow Constraints

P∼i,t + PV2G
i,t + yPV

i PPV
i,t + yESS

i (PESS
ch,i,t − PESS

dis,i,t)

= Pi∼,t + PLoad
i,t ∀ij ∈ L, ∀t ∈ T, ∀i ∈ N (24)

Q∼i,t +QV2G
i,t + ySVC

i QSVC
i,t + yCB

i QCB
i,t = Qi∼,t +QLoad

i,t
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∀ij ∈ L, ∀t ∈ T, ∀i ∈ N (25)√
V 2
i,t − V 2

j,t − 2(RijPij,t +XijQij,t) ≤ (1− zij)×M

∀ij ∈ L, ∀t ∈ T, ∀i, j ∈ N (26)

TABLE II
MATHEMATICAL MODEL FOR MULTIPLE DGRS

Title Regulation Function Operation Mode Constraints
PV active power continuous (37)
ESS active power continuous (39)–(43)
CB reactive power discrete (44)–(49)
SVC reactive power continuous (38)
OLTC voltage discrete (50)–(57)

The distflow model is widely adopted to describe power
flow in radial distribution networks [30], [31], as shown in
(24)–(26). Equation (24) represents active power balance at
node i. Active power injected to the node includes the active
power input of the lines connected to it (P∼i,t), active power
injection by the V2GCS (PV2G

i,t ), PV contribution (PPV
i,t ), and

the energy generated by ESS (PESS
ch,i,t). Active power output at

node i consists of active power output of the line connected
from it (Pi∼,t), the active load at node (PLoad

i,t ), and energy
absorbed by ESS (PESS

dis,i,t) [32]. Similarly, equation (25)
represents the balance of reactive power, comprising reactive
power inflow through line (Q∼i,t), the reactive power from
the V2GCS (QV2G

i,t ), power contribution from SVC and CB
(QSVC

i,t , QCB
i,t ), reactive power outflow through line (Qi∼,t) and

reactive load (QLoad
i,t ). In (26), M is used to relax the inequality

while zij = 0. If the circuit is utilized in this scenario, i.e.
zij=1, the corresponding constraint will be enforced [33].

2) Radiality Constraints:
Radiality constraints are involved in the distribution sys-

tem, including spanning tree constraints and single-commodity
flow-based radiality constraints [32].

3) Security Constraints:

P 2
ij,t +Q2

ij,t ≤ zij × S
2

ij∀ij ∈ L, ∀t ∈ T (27)

V ≤ Vi,t ≤ V ∀i ∈ N, ∀t ∈ T (28)

Line capacity and voltage magnitude are constrained by (27)
and (28) to ensure system security.

4) Substation Power Constraints:

P Sub
i,t ≤ P

Sub ∀t ∈ T (29)

QSub
i,t ≤ Q

Sub ∀t ∈ T (30)

Active and reactive power flowing through a substation are
restricted by the substation’s capacity, as represented in (29)
and (30).

5) V2GCS construction Constraints:

− yi ×M ≤ PV2G
i,t ≤ yi ×M ∀i ∈ V 2G, ∀t ∈ T (31)

− yi ×M ≤ QV2G
i,t ≤ yi ×M ∀i ∈ V 2G, ∀t ∈ T (32)

− (1− yi)×M ≤ PV2G
i,t − Pi,t ≤ (1− yi)×M

∀i ∈ V 2G, ∀t ∈ T (33)

− (1− yi)×M ≤ QV2G
i,t −Qi,t ≤ (1− yi)×M

∀i ∈ V 2G, ∀t ∈ T (34)

SV2G
i ≤ (PV2G

i,t )2 + (QV2G
i,t )2 ≤ SV2G

i

∀i ∈ V 2G, ∀t ∈ T (35)∑
i∈V 2G

PV2G
i,t =

∑
u∈AEV

(pAEV
ch,u,t + pAEV

dis,u,t)

∀i ∈ Ω, ∀u ∈ AEV, ∀t ∈ T (36)

Equations (31)–(34) restrict active and reactive power flow-
ing through a V2GCS. The station’s capacity (PV2G

i,t , QV2G
i,t )

and EVs’ power (pAEV
ch,u,t, p

AEV
dis,u,t) are constrained by (35) and

(36). If V2GCS is utilized in node i, i.e. yi = 1, constraints
(31)–(34) will be relaxed, and active and reactive power will
be limited by capacity constraint (35). Otherwise, if yi = 0,
the V2GCS in node i is neither retrofitted nor constructed.
Constraint (36) means V2GCS are required to meet charging
demands of EVs at any t and in any Ω (residential region,
commercial region, industry region and office region). AEVs
in the region with charging needs follow scheduling instruc-
tions from the intelligent transportation system to charge at
the corresponding V2GCS within the area.

6) PV Operation Constraint:

0 ≤ PPV
i,t ≤ P

PV

i,t ∀i ∈ N, ∀t ∈ T (37)

7) SVC Operation Constraint:

QSVC

i
≤ QSVC

i,t ≤ QSVC

i ∀i ∈ N, ∀t ∈ T (38)

8) ESS Operation Constraints:

EESS
i,t = EESS

i,t−1 + PESS
ch,i,t−1 × ηESS

ch,i + PESS
dis,i,t−1/η

ESS
dis,i

∀i ∈ N, ∀t ∈ T (39)

PESS
i × TESS

ch,i,t ≤ PESS
ch,i,t ≤ P

ESS

i × TESS
ch,i,t

∀i ∈ N, ∀t ∈ T (40)

PESS
i × TESS

dis,i,t ≤ PESS
dis,i,t ≤ P

ESS

i × TESS
dis,i,t

∀i ∈ N, ∀t ∈ T (41)

EESS
i ≤ EESS

i,t ≤ E
ESS

i ∀i ∈ N, ∀t ∈ T (42)

TESS
ch,i,t + TESS

dis,i,t ≤ 1 ∀i ∈ N, ∀t ∈ T (43)

ESS capacity constraint is represented by (39). The energy
stored in ESS at the beginning and end of an operation period
must be equal. Charging power PESS

ch,i,t and discharging power
PESS
dis,i,t must be limited within appropriate ranges as shown

in (40) and (41). It can be observed from equations that the
charging and discharging power range of the ESS is not only
determined by minimum and maximum (PESS

i , P
ESS

i ), but also
by scheduling decision variables (TESS

ch,i,t, T
ESS
dis,i,t). Equation

(42) dictates that the ESS’s capacity should be limited between
upper and lower bounds. Expression (43) denotes the status
change constraint of charging and limitation of ESS operation.

9) CB Operation Constraints:

QCB
i,t = QCB

min +
∑
s

vCB
s × TCB

s,i,t

∀i ∈ N, ∀t ∈ T, ∀s ∈ NCB

i (44)∑
s

TCB
s,i,t −

∑
s

TCB
s,i,t−1 ≤ TCB

in,i,t−1 ×N
CB

i − TCB
de,i,t−1

∀i ∈ N, ∀t ∈ T, ∀s ∈ NCB

i (45)
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∑
s

TCB
s,i,t −

∑
s

TCB
s,i,t−1 ≥ TCB

in,i,t−1 − TCB
de,i,t−1 ×N

CB

i

∀i ∈ N, ∀t ∈ T, ∀s ∈ NCB

i (46)∑
t

TCB
in,i,t +

∑
t

TCB
de,i,t ≤ NCB ∀i ∈ N, ∀t ∈ T (47)

TCB
s,i,t ≤ TCB

s−1,i,t ∀i ∈ N, ∀t ∈ T, ∀s ∈ N
CB

i (48)

TCB
in,i,t + TCB

de,i,t ≤ 1 ∀i ∈ N, ∀t ∈ T (49)

The bank quantity of CB is denoted by s. For example,
if the bank is set to the 5-th position, lower five binary
variables are set to one, and remaining binary variables above
are set to zero. Expression (44) represents the discrete reactive
power constraint of CB. Equations (45) and (46) restrict the
regulation range of CB. It is evident that the regulation of CB
is determined not only by bank numbers but also by scheduling
decision variables (TCB

in,i,t, T
CB
de,i,t). Expressions (48) and (49)

represent operation bank limits of CB and the status transition
limit between on and off.

10) OLTC Operation Constraints:

V Sub
i,t = V Oltc

i,t ∀i ∈ N, ∀t ∈ T (50)

V ≤ V Oltc
i,t ≤ V ∀i ∈ N, ∀t ∈ T (51)

V Oltc
i,t = V Oltc

min +
∑
s

vOltc
s × TOltc

s,i,t

∀i ∈ N, ∀t ∈ T, ∀s ∈ NOltc

i (52)∑
s

TOltc
s,i,t −

∑
s

TOltc
s,i,t−1 ≤ TOltc

in,i,t−1 ×N
Oltc

i − TOltc
de,i,t−1

∀i ∈ N, ∀t ∈ T, ∀s ∈ NOltc

i (53)∑
s

TOltc
s,i,t −

∑
s

TOltc
s,i,t−1 ≥ TOltc

in,i,t−1 − TOltc
de,i,t−1 ×N

Oltc

i

∀i ∈ N, ∀t ∈ T, ∀s ∈ NOltc

i (54)∑
t

TOltc
in,i,t +

∑
t

TOltc
de,i,t ≤ NOltc ∀i ∈ N, ∀t ∈ T (55)

TOltc
s−1,i,t ≤ TOltc

s,i,t ∀i ∈ N, ∀t ∈ T, ∀s ∈ NOltc

i (56)

TOltc
in,i,t + TOltc

de,i,t ≤ 1 ∀i ∈ N, ∀t ∈ T (57)

Equations (50) and (51) describe utilization of OLTC in
the substation node, with the voltage of OLTC constrained to
ensure system security. Constraint (52) limits voltage magni-
tude between upper and lower bounds. Equations (53) and
(54) restrict the regulation range of OLTC. Regulation of
OLTC is determined by step numbers N

Oltc

i and scheduling
decision variables (TOLTC

in,i,t , TOLTC
de,i,t ). Expressions (56) and

(57) represent operation limits of OLTC, and the constraint
of status.

IV. CASE STUDIES

The proposed model has been tested in both the 47-node
region of Shenzhen, China and the IEEE 33-node distribution
network. Within the 47-node region, nodes 1–11 represent
office areas, 12–17 are designated for industrial purposes,
while nodes 18–33 and 34–47 are residential and commercial
areas, respectively. In the residential region, a total of 144
AEVs are dispersed, whereas within the office region, the

number of AEVs distributed amounts to 574, and in the
industrial region, there is a distribution of 262 AEVs.

To ensure that voltage magnitude remains within acceptable
limits, maximum and minimum values are set at 1.1 p.u. and
0.9 p.u., respectively. For Tesla Model S EVs, charging and
discharging power limits are set at 12 kW, with an energy
capacity of 90 kWh. Substation node 1 to the bulk network
is equipped with OLTC, while maximum contribution of PV
typically occurs at 14:00, reaching 75 kW. Upper and lower
regulation limits for the SVC are set at 250 kvar and −50 kvar.
Additionally, ESS is given an energy capacity of 800 kWh and
maximum charging and discharging power limits of 200 kW
and 300 kW, respectively, with efficiency factors set at 0.9 and
1.1. CB has a maximum value of 375 kvar and can be regulated
up to five times per day. OLTC, which has 20 steps ranging
from 0.9 to 1.1, regulates up to six times per day. Please refer
to Table III for information about construction and O&M costs.
Considering future development of the region, it is anticipated
that the number of EVs may further increase. Therefore, we
consider the cost of relatively larger-scale stations to meet
demands of users.

TABLE III
CONSTRUCTION AND O&M COSTS (104 CNY ¥)

Title Mode Candidate Nodes Cost Economic life

V2GCS
O&M 1–47 4.70 1
Retrofit 17, 26, 27, 33, 47 84.97 10

Construction 1–16, 18–25,
28–32, 34–46 194.36 10

PV O&M 1–47 0.50 1
Construction 1–47 17.65 15

ESS O&M 1–47 1.34 1
Construction 1–47 24.94 20

CB O&M 1–47 0.55 1
Construction 1–47 10.38 15

SVC O&M 1–47 0.65 1
Construction 1–47 11.85 20

Line Construction – 23.30 / km 20

The TOU tariff is as shown in (58). When AEVs are
charging, they will incur the same charging cost as TOU.
Conversely, when discharging, they will receive a subsidy
equal to TOU.

CTOU
t =


1.1121 t ∈ [9, 15) ∪ [19, 22)

0.6542 t ∈ [7, 9) ∪ [15, 19) ∪ [22, 24)

0.2486 t ∈ [1, 7) ∪ {24}
(Unit: yuan/kWh) (58)

Similar to DGRs, the AEV penetration rate in this paper
denotes the ratio of the total capacity of AEVs involved in
interaction to the overall power system load, as demonstrated
in (59) [26].

AEV penetration rate =

∑
u

∑
tE

EV

u,t∑
i

∑
t P

Load
i,t

(59)

A. Simulation Results

To showcase functionality of multiple DGRs, advantages
of bi-directional active-reactive power interaction of V2GCS,
and the effectiveness of the proposed method in the paper, four
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distinct cases are presented. The model was formulated using
the YALMIP tool in MATLAB (2021B) and evaluated with the
GUROBI Optimizer (9.5.2) on the M1Pro chip, which boasts
an 8-core CPU and a 14-core GPU [34]. The four cases are
outlined as follows:

Case A: Traditional distribution network planning consid-
ering bi-directional active-reactive power interaction using
sequential decomposition method

Case B: Active distribution network planning considering
bi-directional active power interaction using sequential decom-
position method

Case C: Active distribution network planning considering
bi-directional active-reactive power interaction through the
sequential decomposition method

Case D: Active distribution network planning considering
bi-directional active-reactive power interaction using holistic
optimization method

Cases A–C employ sequential decomposition method to
plan both the distribution network and V2GCS. In particular,
Case C considers bi-directional active-reactive power inter-
action between stations and multiple DGRs. However, Case
A only considers bi-directional interaction of active-reactive
power of stations, and Case B solely accounts for bi-directional
active power interaction of stations and DGRs. Finally, Case

D utilizes holistic optimization method to collaboratively
plan ADN and V2GCS, taking into account the stations’ bi-
directional active-reactive interaction and DGRs. Associated
costs and planning results are displayed in Table IV and Fig. 3.

TABLE IV
ANNUALIZED CONSTRUCTION AND OPERATING COSTS (104 CNY ¥)

Description Case A Case B Case C* Case D*
Distribution network

√ √ √ √

V2GCS
√ √ √ √

EV active power
√ √ √ √

EV reactive power
√

–
√ √

DGRs –
√ √ √

Holistic optimization – – –
√

Sequential decomposition
√ √ √

–
Network loss cost 460.38 440.64 434.96 472.58
Line construction cost 59.58 59.76 59.76 61.88
Investment cost of DGRs – 11.10 12.80 17.36
O&M cost of DGRs – 5.52 6.02 11.34
Investment cost of V2GCS 47.17 47.17 47.17 47.17
O&M cost of V2GCS 14.10 14.10 14.10 14.10
Total cost 581.23 578.29 574.81 624.43

* Compare optimization results for 6.80% AEV penetration, with holistic
method taking 10x longer than decomposition method (987.20 s).

Case C has been found to be more cost-effective than
Case A, which does not incorporate any DGRS. Specifically,
the incorporation of DGRS reduces network loss cost by
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Fig. 3. Planning solutions for different cases in Longgang District, Shenzhen, China.
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5.52%, as well as decreases line construction cost and total
cost. This highlights how multiple DGRS can effectively
lower the overall construction and O&M costs of a power
system. Furthermore, Case C was also found to be more
economical than Case B, as it reduces network loss by
1.29% and improves voltage quality. In Fig. 4, the effect
of AEV’s reactive power interaction on voltage distribution
of the power system is depicted. Results indicate that the
extreme difference in voltage was reduced by 17.61%, while
the variance dropped by 28.64%. It is important to note that,
when compared to bi-directional active power interaction, the
use of bi-directional active-reactive power interaction results
in even greater reduction in voltage fluctuations, hence further
reducing the construction and O&M cost.
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Fig. 4. The effect of AEV’s reactive power interaction on voltage distribution.
(a) AEVs participate in active-reactive power interaction. (b) AEVs participate
in active power interaction.

Cases C and D share identical modeling content but adopt
different solution methods. Employment of decomposition
method in Case C yielded a result with a 0.00% gap within
98.72 seconds, while the holistic method took 10x longer
to resolve and generate as observed in Case D. Such ob-
servations highlighted that the expenses incurred by planned
solutions outweighed those of the holistic method, leading to
an overall escalation of 8.63% in construction and O&M cost.
These revelations exemplified supremacy of the decomposition
approach, which had the capacity to deliver better optimal
planning results within a reduced timeframe.

Continuing with the holistic method from Case D, a solution
gap of 0.39% was obtained after 5000 seconds of computation.
Remarkably, the distribution grid construction plan, V2GCS

retrofitting and construction options, and various DGR sit-
ing and sizing recommended by Case D were found to be
completely identical to those obtained by planning results
in Case C that only took 98.72 seconds. Validation of both
methods on the IEEE 33 nodes system revealed that the
sequential decomposition method achieved a solution gap of
0.00% in 182.72 seconds, while the holistic approach failed to
produce an optimal solution even after 5000 seconds. Solution
gaps for both methods are depicted in Fig. 5. Moreover,
the decomposition method surpassed the holistic approach,
resulting in a 3.54% reduction in overall construction and
O&M costs in IEEE 33 nodes system.

B. Load Profile Analysis of V2GCS

At an AEV penetration rate of 6.80%, both decomposition
and holistic methods in Case C and Case D yielded identical
planning outcomes despite stark contrast in computational
times. The former method took a mere 98.72 seconds, while
the latter consumed 5000 seconds. The common strategy
involved constructing a new V2GCS at Node 5 and retrofitting
the existing EV charging stations at Node 17 and Node 27
into V2GCS. As illustrated in Fig. 6, the V2GCS load was
distributed among residential, office, and industrial areas. No-
tably, no retrofit or new construction of V2GCS was deemed
necessary for the commercial area due to paucity of AEVs
that required slow-charging services.

Despite regulation efforts implemented by the information
processing center, the charging load of stations remains pri-
marily concentrated during the peak daytime period owing to
the commuting behavior of AEVs in office area. During the
evening, the charging process will transition to discharging
power back to the grid. However, in residential and industrial
areas, a feasible solution to shift peak loads from high-demand
periods to low-demand periods during the night is by guiding
AEVs’ charging and discharging behavior, with extra benefit
of discharging power back to the grid during peak hours.

The results presented in Fig. 6 demonstrate that the two
methods exhibit almost identical active and reactive sta-
tion features across various areas, highlighting approximately
equivalent planning outcomes observed in Case C and Case
D. Therefore, the sequential decomposition method provides a
high-quality solution for addressing large-scale problems that
may be challenging in attaining optimal outcomes using the
holistic optimization method.

C. Analysis of Results at Different AEV Penetration

Based on the analysis presented in Fig. 5, our study reveals
that the solution complexity of the IEEE 33-node distribution
network exceeds that of Longgang district 47-node distribu-
tion grid, and that the optimization gap exhibits a slower
convergence rate. To investigate the impact of varying AEV
penetration rates on both the distribution network topology and
V2GCS, we employ the IEEE 33-node network as a case study
in this section. Moreover, we consider that a global optimal
solution has not been attained if the optimization process has
lasted for 5000 seconds and the optimization gap has not
decreased to less than 5%.
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Figure 7 depicts the construction and O&M cost, as well as
solution times, of two different methods under varying AEV
penetrations. Our analysis indicates that the sequential decom-
position method yields planning solutions in a relatively short
time frame, regardless of AEV penetration. Conversely, the
holistic optimization method takes a longer time to converge
and does not attain global optimum at AEV penetrations of
6.80%, 10.20%, 13.60%, and 20.40%. Further scrutiny of plan-
ning costs for the sequential decomposition method reveals a
positive correlation with an increase in AEV penetration, while
solution time displays no discernable pattern.

At an AEV penetration of 3.4%, the sequential decompo-
sition method produced the same planning solution as the
holistic optimization method, but in a significantly shorter
time of 208 seconds compared to 5000 seconds for the latter.
However, at an AEV penetration of 17.00%, the planning
cost for the sequential decomposition method exceeded that
of the holistic optimization method. In scenarios with high
AEV penetration, the coupling effect between x and y is
strengthened, and optimizing AEV behavior may significantly
impact global optimal solutions. Prioritizing AEV behavior
optimization may require additional V2GCS construction to
minimize network loss and line construction costs, leading
to higher overall planning costs. In such cases, local optimal
solutions may diverge from global optimal solutions, rendering
the sequential decomposition method suitable for planning
problems with low AEV penetration.

D. Numerical Validation of the Solution Existence

Taking planning results obtained with the proposed sequen-
tial decomposition method as an example, distribution grid
is constructed according to the layout depicted in Fig. 3 for
Case C, with corresponding DGRs and V2GCS invested at
certain locations. Even in the worst case scenario, where all
AEVs in the V2GCS are simultaneously charging at their
maximum power, load profile y∗ still complies with constraints
(7) of ADN, ensuring secure and stable operation of the power
system, as well as solution’s existence of the decomposed
model.

In Case C, V2GCS installations are deployed at specific
nodes within the residential area (Node 27), office area (Node
12), and industrial area (Node 17). Primary analysis focuses
on power flow of interconnected lines associated with V2GCS
installation nodes, as well as voltage distribution at these nodes
and their neighboring nodes. Distribution power flows are
within line capacity, while voltage distribution, as depicted in
Fig. 8, also meets the system’s requirement. Consequently, un-
der any scenario of AEVs charging or discharging, feasibility
of the sequential decomposition method is ensured.

V. CONCLUSION

In this study, we introduced a sequential decomposition
method based on MILP and MISOCP to collaboratively plan
ADN and V2GCS with consideration of AEV characteris-
tics in different regions. Our planning approach prioritizes
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Fig. 7. Planning costs for different AEV penetration rates.
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fulfilling energy demands of AEV customers, while also
accounting for their behavioral characteristics. This method is
achieved through integration of almost all regulating devices
within power grid, as well as a future distribution network
background of widespread adoption of autonomous driving
technology.

Our proposed decomposition method effectively and effi-
ciently solves large-scale planning problems. Holistic opti-
mization solutions may encounter extreme slowness or may
even be unsolvable when the problem scale is large. In
contrast, our sequential decomposition method can efficiently

obtain planning results while satisfying accuracy requirements
at low AEV penetration.

Furthermore, our results demonstrate that implementing
multiple DGRs can reduce planning costs. When planned
rationally as a new energy source, retrofitted V2GCS with bi-
directional active-reactive power interaction has the potential
to not only decrease construction and O&M costs but also
improve power grid stability.

APPENDIX

Figure A1 illustrates typical EV behavior in Shenzhen,
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Fig. 8. Voltage fluctuation of V2GCS and neighboring nodes. (a) Integration of V2GCS at node 5. (b) Integration of V2GCS at node 17. (c) Integration of
V2GCS at node 27.
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Fig. A1. Typical behavior of EV in Longgang District, Shenzhen, China.
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Fig. A2. Operation of ESS in case C.
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Fig. A3. Operation of PV and OLTC in case C.

China, encompassing arrival times, departure times, and target
energy capacities.

Figure A2 displays ESS operation in case C, illustrating
power flow between grid and ESS.

Figure A3 showcases operation of PV and OLTC in case
C, presenting power output of PV and the corresponding tap
position of OLTC.
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